
Dynamic Systems and Applications, 28, No. 2 (2019), 317-328 ISSN: 1056-2176

IMPULSIVE MODELS:
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ABSTRACT: The laboratory cultivation of two or more populations is usually

carried out when we need to extract some volume or size from the populations. In

this case, it is natural to set the questions for maximum yield of biomass.

In this article, we use the impulsive differential equations as an adequate tool

for modelling of such processes (i.e. processes with external impulsive influences as

withdrawing or adding of some quantity of biomass) and to set and investigate the

maximum yield problems.
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1. STATEMENT OF THE PROBLEM

In this article, we consider the classical predator-pray model:

ẋ1 = x1h1(x1, x2), (1)

ẋ2 = x2h2(x1, x2), (2)

where the functions h1 and h2 denote the growth rates of the two populations with

sizes x1 and x2, respectively. We will always suppose that the functions h1 and h2

are continuously differentiable in R
2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

The system (1), (2) is called:
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1. Competitive (see [11]-[16]) if for all (x, y) ∈ R
2
+, we have

∂h1(x1, x2)

∂x2
< 0 and

∂h2(x1, x2)

∂x1
< 0,

i.e. competing populations affect each others growth rates negatively.

2. Cooperative (see [11]-[16]) if for all (x, y) ∈ R
2
+, we have

∂h1(x1, x2)

∂x2
> 0 and

∂h2(x1, x2)

∂x1
> 0.

3. Kolmogorov’s predator-pray model (see [9] and [2]) if for all (x, y) ∈ R
2
+, we have

∂h1(x1, x2)

∂x2
< 0 and

∂h2(x1, x2)

∂x1
> 0.

One of the main questions, arises in analysis of the predator-prey models, is related

to the laboratory cultivation of the two populations and the yield (output) of the

predator and/or yield (output) of both communities. As a general example: How to

plan the moments on withdrawal (in an given time interval [0, T ]) such that the total

yield (output) be maximal. Here we suppose that the time period of all withdrawals

is zero.

The adequate mathematical model is the following impulsive system

ẋ1 =x1h1(x1, x2), t 6= τi, i = 1, . . . , p− 1, (3)

ẋ2 =x2h2(x1, x2), t 6= τi, i = 1, . . . , p− 1, (4)

x1(τi + 0) =x1(τi) + φ1(x1, x2), i = 1, . . . , p− 1, (5)

x2(τi + 0) =x2(τi) + φ2(x1, x2), i = 1, . . . , p− 1, (6)

x1(0) =x10, x2(0) = x20. (7)

Here: τ = {τ0, . . . , τp} ∈ T , where T is the set of all increasing sequences in [0, T ],

i.e.

T = {τ = {τ0 = 0, τ1, . . . , τp−1, τp = T } : τi < τi+1, i = 0, . . . , p} ;

φi ∈ C(R2
+,R), i = 1, 2; xi0 ≥ 0, i = 1, 2.

Let us set Φ(x1, x2) =
(

φ1(x1,x2)
φ2(x1,x2)

)

and let x(t; τ ,Φ) be the solution of (3)-(7).

The stated above extremal problem is: Find the moments of impulsive effect

τ
∗ ∈ T and function Φ∗ such that

p
∑

i=1

‖x(τ∗i + 0; τ ∗,Φ∗)− x(τ∗i ; τ
∗,Φ∗)‖2

= sup

{

p
∑

i=1

‖x(τi + 0; τ ,Φ)− x(τi; τ ,Φ)‖
2 : τ ∈ T , Id + Φ ∈ C(R2

+,R
2
+)

}

. (8)
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Figure 1

Remark 1. We suppose that τp ≤ T and x1(τp + 0) = x2(τp + 0) = 0, i.e. at the

final impulsive moment τp we collect the total biomass of both populations.

Remark 2 (Global extremum). In the general case, the problem (8) does not have

a global solution even Φ is a bounded map.

Indeed, consider the Lotka-Volterra system: h1(x1, x2) = b1 − a12x2, h2(x1, x2) =

−b2 + a21x1; b1, a12, b2, a21 > 0.

Let A > 1 be any sufficiently large number.

For any initial conditions, we will define two moments of impulsive effects τ1 and

τ2 such that τ1 < τ2 < ∞ and

2
∑

i=1

‖x(τi + 0)− x(τi)‖
2 ≥ A2 > A.

Let σ be the half-line perpendicular to the x1-axis and containing the stationary

point
(

b2
a21

, b1
a12

)

, see Figure 1.

Now, let us define: τ1 to be the first moment when the orbit through the initial

condition (x1(0), x2(0)) crosses σ such that x1(τ1) = b2
a21

and x2(τ1) ∈ (0, b1
a12

). We

set φ1(x1, x2) = 0 and

(

x1(τ1 + 0)

x2(τ1 + 0)

)

=

(

x1(τ1)

x2(τ1)

)

−

(

0

φ2(x2(τ1))

)

=

(

b2
a21

x2(τ1)− φ2(x2(τ1))

)

.
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Moreover, let the point ( b2
a21

, x2(τ1) − φ2(x2(τ1)), where x2(τ1) − φ2(x2(τ1) > 0,

be chosen such that the orbit of system (3), (4), through it, crosses the circle with

center (0,0) and radius A. On the end let τ2 be the second impulsive moment such

that the point (x1(τ2), x2(τ2)) lies outside the central disk with radius A.

Then, we have only to define the second impulse at (x1(τ2), x2(τ2)):

(x1(τ2 + 0), x2(τ2 + 0)) = (0, 0).

The global extrema of the same problem exists under additional constraints. For

example:

1. The time interval [0, T ] is fixed.

2. The functions φi are bounded, etc.

2. MAXIMUM YIELD AT THE FINAL MOMENT: NECESSARY

CONDITIONS

Let (3)-(7) be a solution of the following extreme problem:

‖x(τ∗p + 0; τ ∗,Φ∗)− x(τ∗p ; τ
∗,Φ∗)‖2 = ‖x(τ∗p ; τ

∗,Φ∗)‖2

= sup

{

‖x(τp; τ ,Φ)‖
2 : τ ∈ T , ‖Φ(x1, x2)‖ ≤ M, 0 ≤ φi(x1, x2), i = 1, 2

}

. (9)

Let Ψ be a first integral of the system without impulses (1), (2), defined in R
2
+.

Obviously the points x0 = x
±

0 , x
+
i = x(τi + 0,x0), x

−

i = x(τi,x0), i = 1, . . . , p

(here x
−
p = xp(τp − 0,x0), x

+
p = 0) satisfy

Ψ(x+
i ) = Ψ(x−

i+1), i = 0, . . . , p− 1.

Hence, the stated max-problem is equivalent to the following Lagrange problem:

Find the extremum of

‖x−

p ‖
2, (10)

subject to the following constraints

Ψ(x+
i ) = Ψ(x−

i+1), i = 0, . . . , p− 1. (11)

‖x+
i − x

−

i ‖
2 ≤ M, i = 1, . . . , p− 1,

and

x(τi + 0,x0) ∈ R
2
+, i = 1, . . . , p− 1. (12)
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Let us note that inclusions (12) follow from the condition φi(x1, x2) ≥ 0 and

xi0 > 0, i = 1, 2.

Therefore, we may rewrite the problem (10)-(12) in the form: Find the extremum

of

‖x−

p ‖
2, (13)

subject to the following constraints

Ψ(x+
i ) = Ψ(x−

i+1), i = 0, . . . , p− 1. (14)

‖x+
i − x

−

i ‖
2 ≤ M, i = 1, . . . , p− 1,

Remark 3. The condition (14) does not imply that the points x
+
i and x

−

i+1 lie

on one and the same orbit of system (1), (2). Indeed the level set of first integral,

passing through x
+
i contains x−

i+1, but in the general case the level set may contain

more than one solution of the system (1), (2).

Therefore, the constrained problems (10)-(12) and (13), (14) are not equivalent.

But if the problem (10)-(12) has a solution, then the “autonomous” problem (13),

(14) has a solution too.

Let us also mark that the two considered problems are equivalent if any level set

of the first integral Ψ of system (1), (2) contains only one solution of the system. Here

a simple example is the Lotka-Volterra system.

Using the introduced notations, the Lagrangian expression for the constrained

problem (13), (14) (see also Remark 1: x+
p = 0) is

L(x−

1 , . . . ,x
−

p ;x
+
1 , . . . ,x

+
p−1;λ0, . . . , λp−1;µ1, . . . , µp−1)

= ‖x−

p ‖
2 −

p−1
∑

i=0

λi

(

Ψ(x+
i )−Ψ(x−

i+1)
)

−

p−1
∑

i=1

µi‖x
+
i − x

−

i ‖
2.

Hence, applying the classical necessary condition for constrained extremum, if the

vectors x−

1 , . . . ,x
−
p , x

+
1 , . . . ,x

+
p−1 are a solution of (10)-(11), then there exist numbers

λ0, . . . , λp−1 and µ1, . . . , µp−1 satisfying the system

0 =∇
x

−

i

p−1
∑

i=0

λi

(

Ψ(x+
i )−Ψ(x−

i+1)
)

+∇
x

−

i

p−1
∑

i=1

µi‖x
+
i − x

−

i ‖
2, i = 1, . . . , p− 1,

0 =∇
x

−

p
‖x−

p ‖
2 −∇

x
−

p

p−1
∑

i=0

λi

(

Ψ(x+
i )−Ψ(x−

i+1)
)

,
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0 =∇
x

+

i

p−1
∑

i=0

λi

(

Ψ(x+
i )−Ψ(x−

i+1)
)

+∇
x

+

i

p−1
∑

i=1

µi‖x
+
i − x

−

i ‖
2, i = 0, . . . , p− 1.

Primal feasibility:

Ψ(x+
i ) =Ψ(x−

i+1), i = 0, . . . , p− 1,

‖x+
i − x

−

i ‖
2 ≤M, i = 1, . . . , p− 1.

Dual feasibility:

µi ≥0, i = 1, . . . , p− 1.

Therefore

2µi

(

x
+
i − x

−

i

)

=− λi−1∇Ψ(x−

i ), i = 1, . . . , p− 1, (15)

2x−

p =− λp−1∇Ψ(x−

p ), (16)

2µi

(

x
+
i − x

−

i

)

=− λi∇Ψ(x+
i ), i = 1, . . . , p− 1, (17)

Ψ(x+
i ) =Ψ(x−

i+1), i = 0, . . . , p− 1. (18)

Theorem 4. Let the vectors x−

1 , . . . ,x
−
p , x

+
1 , . . . ,x

+
p−1 are a local extremum of (13)

subject to constraints (14). Moreover, let

det
(

∇Ψ(x+
i ) ∇Ψ(x−

i+1)
)

6= 0, i = 1, . . . , p− 1.

Then there exist numbers λ0, . . . , λp−1 such that equations (15)-(18) hold true.

If Ψ is first integral with nonzero gradient, λ0 6= 0, and x
+
i 6= x

−

i , i = 1, . . . , p−1,

then λi 6= 0 and µi 6= 0, i = 1, . . . , p− 1.

Proof. Let us set ((·)t is the transpose operator)

x̄ =
(

x
−

1 · · · x
−
p x

+
1 · · · x

+
p−1

)t

,

Fi(x̄) =Ψ(x+
i )−Ψ(x−

i+1), i = 0, . . . , p− 1,

F (x̄) =
(

F0(x̄) F1(x̄) · · · Fp−1(x̄)
)t

.

We have to prove that the vectors ∇x̄Fi(x
−

1 , · · · ,x
−
p ,x

+
1 , · · · ,x

+
p−1) are linearly in-

dependent, i.e. (x−

1 , · · · ,x
−
p ,x

+
1 , · · · ,x

+
p−1) is a regular point of F (x̄) = 0.

The rows of matrix∇x̄F (x̄) are the gradient vectors∇x̄Fi, i = 0, . . . , p−1. Hence,

the rank of matrix ∇x̄F (x̄) is maximal if the conditions of theorem hold true.
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Assume Ψ is a first integral with nonzero gradient.

Obviously, λp 6= 0.

Let us suppose there exists an index i0 = 1, . . . , p − 1 such that µi0 = 0. Hence,

by (17) and assumptions of the theorem, λi0 = 0. Analogously, by (15), λi0−1 = 0.

Using (17), again, we receive µi0−1 = 0, and so on. Therefore, λ0 = µ0 = 0. The

obtained contradiction proves that λi 6= 0 and µi 6= 0 for all i = 0, . . . , p− 1.

Let f(x) = (x1h1(x) x2h2(x))
t
, x = (x1 x2)

t
.

Corollary 5. Let the vectors x
−

1 , . . . ,x
−
p , x

+
1 , . . . ,x

+
p−1 are a solution of (14) and

det
(

∇Ψ(x+
i ) ∇Ψ(x−

i+1)
)

6= 0, i = 1, . . . , p− 1.

Also, let Ψ is first integral with nonzero gradient, λ0 6= 0, and x
+
i 6= x

−

i , i = 1, . . . , p−

1.

Then, for all i = 1, . . . , p− 1, the vector x
+
i − x

−

i is perpendicular to the vectors

f(x−

i ) and f(x+
i ). Moreover, there exist numbers Λ1, . . . ,Λp such that

x(τi + 0) =x(τi) + Λi∇Ψ(x(τi)), i = 1, . . . , p− 1,

x
−

p =Λp∇Ψ(x−

p ).

Proof. The function Ψ(x) is a first integral of (1), (2). Then

0 = Ψ̇(x) = 〈∇Ψ(x), ẋ〉 = 〈∇Ψ(x), f(x)〉.

Hence (considering the dot product of (15) and (17)) we obtain

〈x+
i − x

−

i , f(x
−

i+1)〉 =−
λi−1

2µi−1
〈∇Ψ(x−

i+1), f(x
−

i+1)〉 = 0,

〈x+
i − x

−

i , f(x
+
i )〉 =−

λi

2µi

〈∇Ψ(x+
i ), f(x

+
i )〉 = 0.

To prove the second part of corollary it is sufficient to set

Λi =
λi−1

2µi

, i = 1, . . . , p− 1; Λp =
λp−1

2
.

Hence, the proof is complete.

Example 6. Consider the Lotka-Volterra initial value problem

ẋ1 =0.9x1 − 1.5x1x2, (19)

ẋ2 =− 1.5x2 + 3x1x2, (20)

x1(0) = 0.15, x2(0) = 0.15. (21)
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Let p = 3. The stated extremal problem is: Find the moments of impulsive effect

τ
∗ = {τ0 = 0, τ∗1 , τ

∗
2 , τ

∗
3 } ∈ T and function Φ∗ such that

‖x(τ∗p ; τ
∗,Φ∗)‖2

= sup
{

‖x(τp; τ ,Φ)‖
2 : τ ∈ T , ‖Φi(x1, x2)‖ ≤ 0.6, 0 < φi(x1, x2)

}

. (22)

Using a simple code on CAS Maple (more precisely the procedure GlobalSolve

to obtain numerically all results, see [1]), it is not hard to calculate the coordinates

of all points x±

i , i = 1, 2, 3 (we round down the results to three decimal places):

x
−

1 =(1.364 1.153)t, x
+
1 =(1.925 1.365)t; (23)

x
−

2 =(1.859 1.53)t, x
+
2 =(2.413 1.76)t; (24)

x
−

3 =(0.526 4.587)t, x
+
3 =(0 0)t. (25)

The corresponding impulsive moments are

τ∗1 = 3.417, τ∗2 = 3.444, τ∗3 = 3.793.

The maximum yield is 4.617, see Figure 2.

Now, let us calculate the gradients of the first integral

Ψ(x) = 3x1 − 1.5 ln(x1) + 1.5x2 − 0.9 ln(x2)

at the obtained impulsive points:

∇Ψ(x−

1 ) =(1.9 0.719)t,

∇Ψ(x−

2 ) =(2.193 0.911)t.

Therefore, using

x
+
1 − x

−

1 =(0.561 0.212)t,

x
+
2 − x

−

2 =(0.554 0.23)t,

we receive

x
+
1 − x

−

1 =(0.561 0.212)t ≈ 0.295(1.9 0.719)t = Λ1∇Ψ(x−

1 ),

x
+
2 − x

−

2 =(0.554 0.23)t ≈ 0.252(2.193 0.911)t = Λ2∇Ψ(x−

2 ),

i.e. Λ1 = 0.295 and Λ2 = 0.252, see the conclusion of Corollary 5.

Moreover, at the final impulsive point x
−

3 = (0.526 4.587)t we have ∇Ψ(x−

3 ) =

(0.149 1.303)t, and

x
−

3 = (0.526 4.587)t = 3.518(0.149 1.303)t = ∇Ψ(x−

3 ),
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x1

x2

(x (0),x (0))1 2

(x ( ),x ( ))1 1 2 1τ        τ

Ψ(x ( ),x ( ))1 2 2 2τ        τ

(x ( ),x ( ))1 2 2 2τ        τ

(x ( ),x ( ))1 3 2 3τ        τ

(x ( +0),x ( +0))1 2 2 2τ τ

(x ( +0),x ( +0))1 1 2 1τ τ

∆

Figure 2: Example 6

i.e. Λ3 = 2× 3.518 = 7.036.

Therefore, the solution of extreme problem (22) is the following impulsive system

ẋ1 =0.9x1 − 1.5x1x2, t 6= τi, i = 1, . . . , 2,

ẋ2 =− 1.5x2 + 3x1x2, t 6= τi, i = 1, . . . , 2,

x1(τi + 0) =x1(τi) +
3x1 − 1.5

x1
, i = 1, . . . , 2,

x2(τi + 0) =x2(τi) +
1.5x2 − 0.9

x2
, i = 1, . . . , 2,

x1(0) =0.15, x2(0) = 0.15.

Let us summarize: At initial moment: ‖(0.15 0.15)t‖ = 0.212. Without any

impulsive influence, the maximum yield is 2.348.

In our example: adding two times biomass of total size 1.2, at the final moment

τ∗3 = 3.783, we receive total biomass of size 4.617 (here, we associate the size of

biomass with the norm of solution).

The similar construction is plotted on Figure 3 with initial assumption p = 5. In

this case the maximal yield is 7.022.
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x1

x2

(x (0),x (0))1 2

(x ( ),x ( ))1 1 2 1τ        τ

(x ( ),x ( ))1 2 2 2τ        τ

(x ( ),x ( ))1 3 2 3τ        τ

(x ( ),x ( ))1 4 2 4τ        τ

(x ( +0),x ( +0))1 3 2 3τ τ

(x ( +0),x ( +0))1 4 2 4τ τ

(x ( +0),x ( +0))1 1 2 1τ τ

(x ( +0),x ( +0))1 2 2 2τ τ

Figure 3: Example 6
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