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ABSTRACT: In this paper we prove upper and lower estimates for the one-sided

Hausdorff approximation of the Heaviside step-function ht∗(t) by means of a Hyper-

Logistic family. We will explore the interesting methodological task for constructing

new activation functions using “correcting amendments” of “Hyper-Logistic- type”

(HLAF). We also define the new family of recurrence generated activation functions

based on “Hyper-Logistic correction”. We prove upper and lower estimates for the

Hausdorff approximation of the sign function by means of this new class of parametric

activation functions. Numerical examples, illustrating our results are given.
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1. INTRODUCTION

Sigmoidal functions (also known as “activation functions”) find multiple applications

to population dynamics, biostatistics, neural networks, nucleation theory, machine

learning, debugging theory, computer viruses propagation theory and others [5]-[37],

[41]-[49]. In a series of papers, we have explored the interesting task of approximating

the functions - Heaviside function h(t) and sign(t) with all-knowing functions such

as Hyperbolic tangent, Logistic, Log-Logistic, Gompertz, Gompertz-Makeham and
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others. The task is important in the treatment of questions related to the study of the

“super saturation” - the object of the research in various fields. Dynamical models

consisting of a systems of ”reaction” differential equations are commonly used in

chemistry, there the differential equations are called reaction equations. In chemistry

reaction differential equations are induced by chemical reactions networks via reaction

kinetic principles, such as mass action kinetics [1], [2], [3]. Reaction networks are well-

known for a number of dynamical processes of natural phenomena, such as radioactive

exponential decay, tumor growth, epidemics, population dynamics, to name a few.

The classical Verhulst logistic model can be formulated in terms of a reaction network

involving species S,X,Q [4]:.

S +X
k1−→ Q+X

S +X
k2−→ 2X + S

induces the following dynamical system for the masses/concentrations s, x of species

S,X : s′ = −k1sx; x′ = k2sx, where k1, k2 are positive parameters. The system

generates the classical Verhulst differential equation for the growth function: x′ =

kx(1−x/K), K > 0. The Gompertz model can be formulated by means of a reaction

networks [4]:

S
k1−→ Q

S +X
k2−→ 2X + S

induces Gompertz reaction equations: s′ = −k1s; y
′ = k2sy, resp. Gompertz differ-

ential equation y′ = ky(c − ln y). Some reaction networks reveal new links between

Gompertz and Verhulst growth functions can be found in [4].

In the present work we propose a new sigmoidal class of growth functions, called

hyper-logistic. We prove upper and lower estimates for the one-sided Hausdorff ap-

proximation of the Heaviside step-function ht∗(t) by means of a new Hyper-Logistic

family. We will explore the interesting methodological task for constructing new acti-

vation functions using “correcting amendments” of “Hyper-Logistic-type” and prove

upper and lower estimates for the Hausdorff approximation of the sign function by

means of this new family of parametric activation functions. The proposed model can

be successfully used to approximating data from Debugging Theory and Computer

Viruses Propagation Theory.
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2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

ht∗(t) =























0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗

(1)

Definition 2. The sign function of a real number t is defined as follows:

sgn(t) =











−1, if t < 0,

0, if t = 0,

1, if t > 0.

(2)

Definition 3. [39], [40] The Hausdorff distance (the H-distance) ρ(f, g) between

two interval functions f, g on Ω ⊆ R, is the distance between their completed graphs

F (f) and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (3)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

3. MAIN RESULTS

3.1. A HYPER-LOGISTIC MODEL

The Verhulst model can be considered as a prototype of models used in bioreactor

modelling.

There, especially in the case of continuous bioreactor, the nutrient supply is con-

sidered as an input function s(t) as follows:

dy(t)

dt
= ky(t)s(t)

where s is additional specified.

Consider the following hyper-logistic equation:

dy(t)
dt

= ky(t)2

(

1−
1

1 + e−pt

)

= ky(t)
2e−pt

1 + e−pt

y(t0) = y0,

(4)
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Figure 1: The functions M(t)-(thick) and s(t)-(dashed) for k = 100; p = 10.

where k > 0 and p > 0.

The general solution of this differential equation is of the form:

y(t) = y0e
2k(t−t0)+

2k
p

ln(1+ept0 )− 2k
p

ln(1+ept). (5)

It is important to study the characteristic - “super saturation” of the model to

the horizontal asymptote.

In this Section we prove upper and lower estimates for the one-sided Hausdorff

approximation of the Heaviside step-function ht∗(t) by means of families (5).

Without loss of generality, we consider the following class of this family (for t0 =

0; y0 = e−
2k
p

ln 2):

M(t) = e2k(t−
1
p
ln(1+ept)). (6)

The function M(t) and the “input function” s(t) are visualized on Fig. 1.

Let t∗ is the positive solution of the nonlinear equation:

t∗ −
1

p
ln
(

1 + ept
∗

)

+
1

2k
ln 2 = 0. (7)

Evidently, M(t∗) = 1
2 .

The one-sided Hausdorff distance d between the function ht∗(t) and the sigmoid -

(6) satisfies the relation

M(t∗ + d) = 1− d. (8)

The following theorem gives upper and lower bounds for d
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Theorem 1. Let

α = − 1
2 ,

β = 1 + 2ke2kt∗

(1+ept
∗)

1+ 2k
p

γ = 2.1β.

(9)

For the one-sided Hausdorff distance d between ht∗(t) and the sigmoid (6) the

following inequalities hold for γ > e1.05:

dl =
1

γ
< d <

ln γ

γ
= dr. (10)

Proof. Let us examine the function:

F (d) = M(t∗ + d)− 1 + d. (11)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = α+ βd. (12)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) > 0.

Further, for γ > e1.05 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

Approximations of the ht∗(t) by model (6) for various k and p are visualized on

Fig. 3-Fig. 5.

3.2. THE NEW PARAMETRIC ACTIVATION FUNCTION BASED

ON “AMENDMENTS” OF “HYPER-LOGISTIC - TYPE”

Definition 4. The new parametric activation function based on “amendments” of

“Hyper-Logistic - type” - (HLAF) is defined as follows:

ϕ0(t) =
ek(t−

1
p
ln(1+e−pt)) − ek(t−

1
p
ln(1+ept))

ek(t−
1
p
ln(1+e−pt)) + ek(t−

1
p
ln(1+ept))

. (13)

In this Section we prove upper and lower estimates for the Hausdorff approxima-

tion of the sign function by means of the (HLAF).
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Figure 2: The functions F (d) and G(d) for k = 100; p = 10.

Figure 3: The model (6) for k = 100; p = 10; t∗ = 0.334487; Hausdorff

distance d = 0.147907; dl = 0.108069; dr = 0.240452.

The H-distance d0(sgn(t), ϕ0(t)) between the sgn function and the function ϕ0

satisfies the relation:

ϕ0(d0) =
ek(d0−

1
p
ln(1+e−pd0 )) − ek(d0−

1
p
ln(1+epd0))

ek(d0−
1
p
ln(1+e−pd0 )) + ek(d0−

1
p
ln(1+epd0))

= 1− d0. (14)

The nonlinear equation (14) has unique positive root d0.
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Figure 4: The model (6) for k = 1000; p = 20; t∗ = 0.248411; Hausdorff

distance d = 0.0963171; dl = 0.0602201; dr = 0.169203.

Figure 5: The model (6) for k = 1000; p = 30; t∗ = 0.152034; Hausdorff

distance d = 0.0736281; dl = 0.0419798; dr = 0.1331.

The following Theorem gives upper and lower bounds for d0

Theorem 2. Let

p1 = −1; q1 = 1 +
k

2
; r1 = 1.1q1.
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For the Hausdorff distance d0 between the sgn function and the function ϕ0 the fol-

lowing inequalities hold for r1 > e1.1

dl0 =
1

r1
< d0 <

ln r1
r1

= dr0 . (15)

Proof. We define the functions

F0(d0) =
ek(d0−

1
p
ln(1+e−pd0 )) − ek(d0−

1
p
ln(1+epd0 ))

ek(d0−
1
p
ln(1+e−pd0 )) + ek(d0−

1
p
ln(1+epd0 ))

− 1 + d0 (16)

and

G0(d0) = −1 +

(

1 +
k

2

)

d0. (17)

From Taylor expansion we find F0(d0)−G0(d0) = O(d30).

In addition G′

0(d0) > 0.

We look for two reals dl0 and dr0 such that G0(dl0) < 0 and G0(dr0) > 0 (leading

to G0(dl0) < G0(d0) < G(dr0) and thus dl0 < d0 < dr0).

Trying dl0 = 1
r1

and dr0 = ln r1
r1

we obtain for r1 > e1.1

G0(dl0) < 0; G0(dr0) > 0.

This completes the proof of the inequalities (15).

Approximation of the sgn(t) by (HLAF)-function for k = 100 and p = 10 is

visualized on Fig. 6.

From the graphic it can be seen that the “saturation” is faster.

For othrt results, see [38].

3.3. THE NEW FAMILY OF RECURRENCE GENERATED

PARAMETRIC ACTIVATION FUNCTIONS BASED ON

“HYPER-LOGISTIC CORRECTION” - (RGHLAF)

It is natural to define the following special class of recurrence generated activation

functions:

Definition 5. The new family of recurrence generated activation functions based

on “Hyper-Verhulst correction” - (RGHLAF) is defined as follows

ϕi(t) = ϕ0(t+ ϕi−1(t)); i = 1, 2, . . . ,m, (18)

where ϕ0(t) is defined by (13) and m is the number of recursions.

The H-distance dp(sgn(t), ϕp(t)) between the sgn function and the function ϕp

satisfies the relation:

ϕp(dp) = ϕ0(t+ ϕp−1(t)) = 1− dp, p = 1, 2, 3, ... (19)
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Figure 6: Approximation of the sgn(t) by (HLAF) for k = 100; p = 10;

Hausdorff distance: d0 = 0.0391399; dl0 = 0.0178253; dr0 = 0.071785.

Figure 7: The activation functions for k = 6; p = 2: ϕ0 (dashed); ϕ1 (blue);

ϕ2 (thick); ϕ3 (red).

Approximation of the sgn(t) by family ϕi i = 0, 1, 2, 3; for k = 6 and p = 2 is
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visualized on Fig. 7.

3.4. SOME COMPARISONS BETWEEN HYPER-LOGISTIC

DIFFERENTIAL MODEL (4) AND GOMPERTZ DIFFERENTIAL

MODEL

Consider the Gompertz differential model:

d ln y(t)
dt

= −k ln y(t)

y(t0) = y0.

(20)

The general solution of this differential equation is of the form:

y(t) = eln y0e
−k(t−t0)

. (21)

Without loss of generality, let t0 = 0; y0 = e−
2k
p

ln 2.

Let p = ak, where a > 2 ln 2 ≈ 1.38629....

Then for the general solutions (5)- (yHL(t)) and (21) - (yG(t)) we have

yHL(t) = e2t−
2
a
ln(1+eakt), (22)

yG(t) = e−
2
a
ln 2e−kt

. (23)

From Taylor expansion we find

yHL(t)− yG(t) =
k(a− 2 ln 2)

a2
2
a

t+O(t2) = ct+O(t2).

If c > 0 then a > 2 ln 2 and y0 > e−1 ≈ 0.367879.

Under these constraints and from Fig. 8 and Fig. 9 it can be concluded that the

Hyper-Logistic model has a better “saturation”.

Remark. Following these methodological comparisons, the reader can made the

appropriate conclusions in comparing the Hyper-logistic model and the seemingly

more sophisticated model of Gompertz and Makeham:

GM(t) = 1− e−λt−α
β
(eβt

−1).

4. SOME APPLICATIONS

The proposed model can be successfully used to approximating data from Popula-

tion Dynamic, Biostatistics, Debugging Theory and Computer Viruses Propagation

Theory.
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Figure 8: Comparisons between yHL(t) (thick) and yG(t) (dashed) for a =

1.5, k = 20, p = 30.

Figure 9: Comparisons between yHL(t) (thick) and yG(t) (dashed) for a = 2,

k = 30, p = 60.
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Figure 10: CDF of Bitcoin received (in ransoms) per address in CCL [50].

4.1. APPROXIMATING CDF OF THE NUMBER OF BITCOIN

RECEIVED PER ADDRESS

We consider the following data (see, [50]:

data CDF of Bitcoin received (inransoms) per address in CCL

:= {{1, 0.0857}, {2, 0.1238}, {3, 0.6571}, {4, 0.6854}, {5, 0.8381},

{6, 0.8476}, {7, 0.8810}, {8, 0.9095}, {9, 0.9143}, {10, 0.9333},

{12, 0.9429}, {14, 0.9571}, {18, 0.9667}, {20, 0.9762}, {23, 0.9810},

{27, 0.9857}, {40, 0.9905}, {46, 0.9952}, {59, 0.9981}}.

Fig. 10 show cdf of the number of Bitcoin received per address respectively [50].

After that using the model M∗(t) = ek(t−
1
p
ln(1+ept)) for p = 0.5, k = 1.84419 we

obtain the fitted model (see, Fig. 11).

4.2. APPLICATION OF THE NEW CUMULATIVE SIGMOID FOR

ANALYSIS OF THE “CANCER DATA” [?]-[?]

.

We will illustrate the advances of the new Hyper-Logistic model for approximation

and modelling of “cancer data” (for some details see, [51]-[52]).

days 4 7 10 12 14 17 19 21

R(t) 0.415 0.794 1.001 1.102 1.192 1.22 1.241 1.3
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Figure 11: The fitted model M∗(t) (6).

Figure 12: The model M1(t) based on the “cancer data”.

Table 1: The “cancer data” [51]-[52]

Consider the model

M1(t) = ωek(t−
1
p
ln(1+ept)).

The model M1(t) = based on the data from Table 1 for the estimated parameters:

ω = 1.3; p = 0.2567; k = 0.904311

is plotted on Fig. 12.

From the conducted experiments (see, also Fig. 12 and Fig. 13) it can be concluded

that the examined model can be successfully used in the field of Population dynamics.
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Figure 13: Numerical solution of the inhibition initial value problem and

initial data-points (see Antonov, Nenov and Tsvetkov [52]).

5. CONCLUSION

A Hyper-Logistic population model is introduced. We prove upper and lower esti-

mates for the Hausdorff approximation of the Heaviside function by means of this

new class of functions. A family of parametric activation functions (HLAF) based

on “correcting amendments” of “Hyper-Logistic - type” is also introduced finding

application in neural network theory and practice.

Theoretical and numerical results on the approximation in Hausdorff sense of the

sgn function by means of functions belonging to the family are reported in the paper.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of (RGHLAF) functions.

The module offers the following possibilities:

• calculation of the H-distance between the ht∗ and the function M(t);

• generation of the activation functions under user defined values of the parame-

ters k, p and number of recursions m;

• calculation of the H-distance between the sgn function and the activation func-

tions ϕi(t);

• software tools for animation and visualization.



HYPER-LOGISTIC MODEL 365

In conclusion, we will note that the newly constructed recurrently general families

of sigmoidal and activation functions can be used with success in creating a new higher

order recurrent neural networks.

Strict practical stability was studied for various types of differential equations (see,

e.g. [53]).
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