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1. INTRODUCTION

We consider the system of nonlinear ordinary fractional differential equations with

ri-Laplacian and ro-Laplacian operators
Dgt (e, (DEW( £)) + Af(t,u(t), v(t)) =0, t€(0,1),
Dgi (@Tz (D()Jrv( ))) + Mg(tvu(t)a 'U(t)) =0, t€ (07 ]-)a
with the coupled multi-point boundary conditions
uU)(O) =0,5=0,....,n—2; DJ1u(0) =0,

Lu(l) = S, Db v(&),
U(J)(O)—O j=0,...,m—2; DZuv(0) =0,
Fo(

n=x" 1bDo+U(7h)
where aq, as € (0,1], 51 € (n—1,n], Bo € (m—1,m], n,m € N, n,m > 3,

(5)

(BC)
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P1, P2, 1, 42 €E R, p1 € [1,n—2], p2 € [1,m — 2], ¢1 € [0,p2], g2 € [0,p1], &, a; € R
foralli=1,....N(NeN),0<& < - <énv<1,m,beRforalli=1,....M
(M eN),0<m < - <nu <1, r,rm>1 o.(s) = |s]"2s, cpr_il = Qp;s
T%—f—é =1i=1,2, A\ p>0,f, g€ C(0,1]x]0,00) %[0, 0), [0, 00)), and Dlg+ denotes
the Riemann-Liouville derivative of order k (for k = aq, 81, ag, B2, p1, q1, P2, ¢2)-

Under sufficient conditions on the functions f and g, we present intervals for
the parameters A and g such that problem (S) — (BC') have positive solutions. By
a positive solution of problem (S) — (BC) we mean a pair of functions (u,v) €
(C([0,1],[0,00)))?, satisfying (S) and (BC) with u(t) > 0 for all t € (0, 1], or v(t) >0
for all ¢ € (0,1]. We also investigate the nonexistence of positive solutions for the

above problem. The system (S) supplemented with the uncoupled boundary condi-

tions
u(0) =0, j=0,...,n—2; DJiu(0) =0,
N
(BCy) Dgiu(l) = 3oy a:Dghu(&). ,
v (0) =0, j=0,...,m—2; D2v(0)=0,
DP2o(1) = M b DE v (),

was investigated in paper [21]. We mention that the Green functions and the intervals
for the parameters obtained in [21] are different than those studied in the present
paper. Systems with fractional differential equations without p-Laplacian operator,
subject to various multi-point or Riemann-Stieltjes integral boundary conditions were
studied in the last years in [1], [2], [7], [13], [14], [15], [16], [17], [20], [22], [25], [28], [29],
[30], [31]. For various applications of the fractional calculus in different disciplines we
refer the reader to the books [6], [12], [18], [19], [24], [26], [27], and the papers [3], [4],
[5], (8], [9], [10], [23].

The paper is organized as follows. In Section 2, we investigate a linear system of
fractional differential equations with p-Laplacian subject to the boundary conditions
(BC), and we present some properties of the associated Green functions. In Section
3 we give two existence theorems for the positive solutions with respect to a cone for
our problem (S) — (BC), based on the Guo-Krasnosel’skii fixed point theorem (see
[11]). Section 4 contains nonexistence results for the positive solutions of (S) — (BC),

and in Section 5, an example is given to illustrate our main results.

2. PRELIMINARY RESULTS

We consider the system of fractional differential equations

D3 (r, (Dfu()) + h(t) = 0, £ € (0,1),
D3 (pra (Dj (1)) + k(1) = 0, t € (0,1),
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with the coupled multi-point boundary conditions (BC), where h, k € C[0,1].
If we denote by ¢, (Dgiu(t)) = z(t) and ¢, (Dgiv(t)) = y(t), then problem
(1) = (BC) is equivalent to the following three problems

0 Dgixz(t) +h(t) =0, 0<t <1,
z(0) =0,

(In Dgzy(t) +k(t) =0, 0<t <1,
and

Dgiu(t) = ¢, (2(t)), t € (0,1),

D([)?—U(t) = Pos (y(t))v le (Oa 1)7

with the boundary conditions

(II1)

N

u(0)=0, j=0,...,n—2; Dru(l) =) a;DFv(&),
=1
M

v@(0) =0, j=0,...,m—2 DFuv(l)=> bDEu(n,).

i=1
For the first two problems (I) and (I7), the functions
I .
o) = ~Ig2h(t) = ~grs; [ (=" h(e)ds, e 0.1 2)
and ,
_ (o) _ 1 ) _ o\az—1
t) = ~I52K0) = —gr [ (6= k) ds, e 0.1 3)
are solutions for (I) and (I7), respectively.
For the third problem (I17), if
N TG TN
F](VBI —p)l'(B2 — p21\21 LB — @) (B2 — q1)

x (Z aiffMl) (Z bm?“’“) #0,
i=1 =1

and z, y € C0,1], then by {[14], Lemma 2.2}, we deduce that the pair of functions
(u,v) € C[0,1] x C[0,1] given by

1 1
ut) = — / G1(t, 5)pon ((5)) ds — / Go(t, 5)p0s (4(3)) ds,
olt) = — / Gs(t, 5)pos (y(s)) ds — / Ga(t, $) 0 ((5)) ds,



694 R. LUCA

for all ¢ € [0, 1], is a solution of problem (I11). Here the Green functions G;,i =1, ..., 4
(see [14]) are defined by

B1—1 N M
Gi(t,s)=g1(t,s)+ %(X z‘&;ﬂz‘hl) (Zbigz(m,S)),
i=1
B1—1
Ga(t,s)= AtI‘ 621“_52 <Z aigs(&i, s ) : .
B2—1 M
G3(ta S):g4(t, 3) XI—‘(TPEB;Q)) <Z Bl == 1) (Z a;gs 57,7 ) )

tPz-1T
Galt, 8)—AF B = 61 <Zblgz N, S ) , Vi, s €10,1],

where
th=H1 —s)r—Pl (¢ — 5)frL,
g1 (t,s) = 0<s<t<1,
th=1(1-s)hrm-1 <t <s< 1,
tﬂ1*¢12*1(1 _ S)ﬂ1fp1*1 _ (t _ S)ﬂ1*¢12*17
g2(t,s) = =———— 0<s<t<l1,

F(ﬁl - C]2) tﬂl_(p—l(l _ S)ﬂl—Pl—l’ 0 S t S s S 1. (6)
) tﬂ2—(n—1(1 _ 5)52—172—1 _ (t _ S)B2—(11—17
gs(t,8) = = 0<s<t<l,
9= 16—

thz—a—1(1 —g)f2mpr2=l 0 <t < s < 1.
tﬂ2—1(1 _ S)ﬁz—m—l _ (t _ S)ﬁz—l,

9a(t,8) = === 0<s<t<l,
F(ﬁQ) Ba—1 Ba—pa—1
P (1 —s)Pem P2l 0 <t <s<1.

Therefore, by (2), (3) and (4) we obtain the following theorem.
Theorem 1. If A #0, then the pair of functions (u,v) € C[0,1] x C[0,1] given by
/GMQ%%%(%+/®tWM$Mﬂd

/%m%ﬂ%(%ﬁ/&HMMﬁww

for allt € 10,1], is a solution for problem (1) — (BC).

(7)

For some properties of the functions g;, ¢ = 1, ..., 4 given by (6), we refer the reader
o {[14], Lemma 2.3}. We present now some properties of the Green functions G,

i =1,...,4 that will be used in the next sections.

Theorem 2. ([14}]) Assume that A > 0, a; > 0 for alli =1,...,N, and b; > 0
for alli =1,...,M. Then the functions G;, i = 1,...,4, given by (5) satisfy the

inequalities
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a) G; :10,1] x [0,1] = [0,00), i = 1,...,4 are continuous functions;
b) Gi(t,s) < Ji(s), Y (t,s)€[0,1] x [0,1], where

M
Ji(s) = ha(s) + AT(Bs —q1) ﬁg — ) (Za T 1) (Zbigz(ﬂi,5)> ;
i=1

and hy(s) = F(ﬂ (1—s)hrP=1(1 - (1—-s)P), s€[0,1];
C) Gl(t7s) 2 b lJl( ) V( ) [0 1] [07 1]7'
d) Ga(t,s) < Ja(s), V(t,s) €[0,1] x [0, 1], where

JQ(S) AF 62 Za193 fza , Vs € [Oa 1]?

e) Go(t,s) = =1 Jy(s), V(t,s) €[0,1] x [0,1];
1) Gs(t,s) < Js(s), V(t,s) €[0,1] x [0,1], where

_ L(3) (o ) ( )
J3(s) = ha(s) + 72— i aig3(&i,s) |
N ) (Z " 2 o
~(1 — )22l (1 — (1 —s)P2), s € [0,1];
1 “Hs(s), V(t,s) €[0,1] x [0,1];
Ju(s), Y (¢, s) €[0,1] x [0,1], where

J4(S) = ZleQ 77%7 , Vs € [07 1];

AI‘ 61

i) Gu(t,s) = t%214(s), V(t,s) €[0,1] x [0,1];

3. EXISTENCE RESULTS FOR THE POSITIVE SOLUTIONS OF
(8) = (BC)

In this section we investigate the existence of positive solutions of problem (5)— (BC)
under some assumptions on the functions f and g, by establishing in the same time
various intervals for the positive parameters \ and pu.

We present the assumptions that we will use in the sequel.

(H1) a1, as € (0,1], 81 € (n—1,n], B2 € (m —1,m], n, m > 3, p1, p2, q1, 2 € R,
P11 € [1,77,— 2], P2 € [l,m— 2], q1 € [O,pg], q2 € [O,pl], 57 S R, a; > 0
forall: =1,....N (N e M), 0< & < - <&y <1, m € R, b; >0
foralli =1,....M (M e N), 0 <m < - <nmy <1, \,p>0 A=
T ~ TRt (Simwe? ™) (St ™) > 0
ri > 1, (pri(s) = |S Tiizs’ 90;51 = Poi» Oi = 7
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(H2) The functions f, g : [0,1] x [0, 00) x [0,00) — [0, c0) are continuous.

For [c1,¢2] C [0,1] with 0 < ¢1 < ¢2 < 1, we introduce the following extreme limits

L, . t,u,
f§ = limsup max f(iu,rv)_l’ gy = limsup max &ﬂ,
wpumot t€10.1] (u+0)"™ wtosot t€0.1] (U +v)72
u,v>0 u,v>0
i ta ) 1 .. . t, 5
5 = liminf min f(iuv)lv gy = liminf min g(iuv)l’
'u+'v;%+ teler,ea) (u+v)"1— u+v;%+ tefer,eo] (U +v)r2~
u,v2 u,v>
: f(t,u,v) . g(t, u,v)
5 = limsup max , g5 = limsup max ,
& "+"_>>8°pt€[07” (ut o)1 I u+v;5£)te[o,1] (u +v)r2=1
u’/vf u!/vi
f(tauvv) g(t,u,v)

0o ri—1°7 Joo " ro—1"
utv—oo t€[ey,c U+ v ut+v—oo t€[cy,c U+ v
u,v>0 [e1,c2] ( ) u,v>0 [e1,e2] ( )

By using Theorem 1 (relations (7)), a solution of the following nonlinear system

of integral equations

1
u(t) = Ao~ / Gr(t,8)p0r (122 £(s,u(s), v(s))) ds
1
pet / Golt, 8)pes (1929(5, u(s), v(s))) ds, t € [0,1],
o(t) = per? / Ga(t, )00y (122g(s, u(s), v(s)) ds

Aot / Galt, $)po, (120 f(s,u(s),0(s))) ds, t € [0,1],

is solution of problem (5) — (BC).
We consider the Banach space X = C|0, 1] with the supremum norm || - ||, and the
Banach space Y = X x X with the norm ||(u,v)|y = ||u| + ||v]. We define the cones

Pr={ueX, ult) >t u|, Yte0,1]} C X,
Py={veX, vt)>thY|, Vte[0,1]} C X,
and P=P, x P, CY.
We define now the operators Q1, Q2 : Y — X and Q : Y — Y by

1
Q1 (u,v)(t) =A"1‘1/ G1(t, 8)po, (I f (s, u(s), v(s))) ds
1 0

+M9271/0 Ga(t, s)pe, (157 g(s,u(s),v(s))) ds, t€0,1],

Qa(u, 0)(t) = 2! / Ga(t, )00y (122g(s, u(s), v(s)) ds
et / Galt, $)po, (120 f(s,u(s),0(s))) ds, t € [0,1],
0

and Q(u,v) = (Q1(u,v),Q2(u,v)), (u,v) € Y. Then if (u,v) is a fixed point of
operator @, then (u,v) is a solution of problem (S5) — (BC).
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Theorem 3. If (H1) — (H2) hold, then @ : P — P is a completely continuous
operator.

Proof. Let (u,v) € P be an arbitrary element. Because Q1 (u,v) and Q2 (u, v) satisfy
the problem (1)-(BC) for h(t) = Af(t,u(t),v(t)) and k(t) = pg(t, u(t),v(t)), t € [0,1],
then by Theorem 2 we obtain

1Q1(,0)] < Ao~ / J1(8) 00 (122 £ (s, u(s), v(s)) ds
et / To(8) 00 (122 g5, u(s), v(s))) ds,
0 1
1Qa(u,v) | < o= / T5(5)pen (122 g5, u(s), v(s))) ds

1
FAn—t / Ta(5)por (I3 f (5. u(s), v(s)) ds.

Therefore we conclude for all ¢ € [0, 1] that

Qi v)(t) > A ! / 114 () (5 £ (s, uls), 0(s))) ds

0
1
+u92*1/0 92 ()0 (152 9 (s, u(s), v(s))) ds = 177 H|Qu (u, v),

Qa(u, v)(t) > &2~ / 1215 (5) g0 (1295, u(s), () ds

1
oAt [ ), (02 F s uls) () ds = 5[ Qalu )],
0

Hence Q(u,v) = (Q1(u,v), Q2(u,v)) € P, and then Q(P) C P. By the continuity
of the functions f, g, G;, i = 1,...,4, and the Ascoli-Arzela theorem, we can show
that @1 and Q2 are completely continuous operators (compact operators, that is,
they map bounded sets into relatively compact sets, and continuous), and then @ is

a completely continuous operator. O

For [c1,¢2] C [0,1] with 0 < ¢1 < ¢2 < 1, we denote by

1 1
— ai(e1—1)
A (r(a1+1))m—1/0 s Ji(s) ds,
1 1
— az(g2—1)
B (F(ag—i—l))@?—l/o s Ja(s) ds, 8
. N (8)
C :—(P(ag + 1))92,1 /0 §%2 02 JB(S) dSa
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Agirmqfi»my[f®—0>“@1”J(@d&
gzirw2f1»my[f@—c)””2”J<ﬁd&
ézawmfnyrlcf@—mfﬂmluxﬁw,
57Nm:mmy[% e1) @ Jy(s) ds,

where J;, i =1,...,4 are defined in Theorem 2.
First, for f§, g5, fi, 9% € (0,00) and numbers 1, y2 € [0,1], 73, 72 € (0,1),

o0

a € [0,1] and b € (0, 1), we define the numbers
7‘1—1 _ 7‘1—1
L = max L < a%~> ,L, <w> ,
f& \06, A f& \ 005D
1 b%)”l 1<a—wm)”1
Ly =min{ — [ —= ,— | ———=— ,
’ {ﬁ(A s\ D
T’Q—l _ _ T’Q—l
L3 = max i (Ll _11)) ,i. <—(1 a)(1~ 72)) ,
5o 00, B 9o 00,C

1 /b\™* " 1 f1—p\"!
o () (5
? fo\A fo\ D
1o\ 1 f1=b\"""
L)) = min —(—) ,—(—> ;
! 95 \ B g%\ C

where 0; = clﬂrl, 0y = cfrl, 6 = min{6y,05}.

Theorem 4. Assume that (H1) and (H2) hold, [c1,¢2] C [0,1] with0 < ¢1 < c2 <1,
v, 72 € [0,1], v3, 74 € (0,1), a € [0,1] and b € (0,1).

1) If f5, 95, fios gb € (0,00), Ly < Lo and L3 < Ly, then for each X € (L1, Lo)
and p € (Ls, Ly4) there exists a positive solution (u(t),v(t)), t € [0,1] for (S)—(BC).

2)If f§ =0, g5, fi, g5 € (0,00) and Ly < LY, then for each A € (L1,00) and
w € (Ls, LYy) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

3) If g5 =0, f§, fi, gt € (0,00) and Ly < L}, then for each X € (L1, L%) and
w € (L3, 00) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

4)If f§ =95 =0, fi, g, € (0,00), then for each X € (L1,00) and p € (L3, 0)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

5) If £§, g5 € (0,00) and at least one of fi, g, is oo, then for each A € (0, L2)
and p € (0, Ly) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).
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6) If f§ =0, g5 € (0,00) and at least one of fi, g’ is oo, then for each X € (0, )
and p € (0, LY) there exists a positive solution (u(t),v(t)), t € 10,1] for (S) — (BC).

7) If f§ € (0,00), g5 = 0 and at least one of fi,, g' is oo, then for each X € (0, L)
and p € (0,00) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

8) If f§ = g5 = 0 and at least one of fi., gt is oo, then for each \ € (0,00) and
w € (0,00) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

Proof. We consider the above cone P C Y and the operators @1, Q2 and (). Because
the proofs of the above cases are similar, in what follows we will prove two of them,
namely Cases 1) and 7).

Case 1). We have 5, g5, fi, g’ € (0,00), L1 < Ly and L3 < Lg. Let A\ €
(L1, Ls) and p € (L3, Ly). We consider ¢ > 0 such that e < fi , e < g’ and

’1"171 _ ’1"171
x | 1 < a’yl~> ,, 1 <(1 al’m) <)
Ji —e\06,A Ji =€\ 06,D
< min{ —— (bﬂ)rll L ((1 —b)m)”l
- fo+e A ’fg +e€ D ’
7‘2—1 o T’Q—l
maxd — L <a(1 —11)> L 1 ((1—G)(1~ 72)) <
gzoo —€ 991B géo —€ 9920

n
<min{ggl+g (b(l;vg)yzlyggig ((1—b)é1—74)>rzl}.

By using (H2) and the definition of f§ and g5, we deduce that there exists R; > 0
such that

Fltu,v) < (f5 +e)(w+0)" 7 g(tu,v) < (g5 +€)(u+v)7,
for allt € [0,1] and u, v > 0, u+v < Ry.

We define the set Q1 = {(u,v) € Y, |[(u,v)|ly < Ri1}. Now let (u,v) € PN oQy,
that is (u,v) € P with ||(u,v)|ly = Ry, or equivalently ||u|| + ||[v]] = Ri. Then
u(t) +v(t) < Ry for all t € [0,1], and by Theorem 2, we obtain

1 1 S
a0 <2307 [ n6en (5 [ 6=t o) ar ) ds
0 [(ea) Jo
o[t 1 ° as—
wer [ neen (g [ 6= 0 atrauto), o ar ) ds
St / 360 (g [ =17 + ) 4 u(r)" Y
L(a1) Jo
=t [ ) (s [ =7 05+t + o)) ar ) s

01— S o1—1 1 ° _ \ai—1 T1—
<20(fg 4+ o) / T1(8)p0, (m [ =t + ol %h)ds
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bl et [ ' h(s)em (ﬁ / (s — 1) ful + ol dr) ds

0

1
1
—)\e1—1(¢fs o1—1 ai(e1—1)
A (f() 6) ||(U,U)||Y/O ‘]1(8) (P(Oll 1))91,18 ds

1
+M92*1(g(5) +E)g271||(uav)||y‘/0 JQ(S)W

=TS o) T A+ p T g5 + )T Bl (u, v)lly
<[bys +0(1 = 3]l (w, v)lly = bl[(w, v)[ly, V¢ €[0,1].

Therefore [|Qs (u, v)]| < bll(, v)]ly-
In a similar manner we conclude

Qo 0)(t) < 5~ (g8 + €)% (u,0) / Tlo); !

. [(ag +1))e2—1
1
o1—1(rs 01—1 _ ai(e1—1)
+)\ (f() +E) ||(U7U)||YA ‘]4(8) (P(Oll _’_1))91,18 ds

= [ g5 + )20+ 2 + )2 =D ()

<[ =0)(1 =) + (1 =)l (w, v) ]y, = 1 =) (w, 0) [y, VEel01].
Hence [[Q2(u, v)|[ < (1 = 0)[|(u, v)[[y-

Then for (u,v) € PN 0Qy, we deduce

1Q(u, )[ly = 1Q@1(u, v)|| + [[Q2(w, )| < bl[(w, v) [y + (1 = b)[|(w, v)[ly = [|(w, V)]
9)

s@2(e2—=1) g

Sa2(02—1) ds

By the definition of fI. and g’_, there exists Ry > 0 such that
Flt,u,0) > (fi =) (u+0)" 7Y g(tu,v) > (95 —e)(u+v) 7
for all t € [e1,co] and u, v >0, u +v > Ry.
We consider Ry = max{2R;, Ro/0} and we define the set Qs = {(u,v) € Y,
[[(w,v)||ly < Rz}. Then for (u,v) € P N0y, we obtain
u(t)+o(t) > min 57wl + min %27 ol = o lul| + o]
t€lcr,ea] te

[e1,c2]
= O[ull + O2f[v]| = Ol (u, v)|ly = 6R2 = Ry, Vi€ [c1,c2].
Therefore, by Theorem 2, we conclude

1
Q1(u,v)(c1) Z/\‘”_l/o AT () o (T f (s, uls),v(s))) ds

1
e [ ) U g ), (o)) ds
0 co
> AQl_lc'f / J1(s)

X Doy <FL)/%(S—T)Q11f(T,u(T),v(T))dT) ds

(a1

2
+ue el [ (s)

Cc1
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X Cos (% /(s - T)arlg(T,u(T),v(T))dT) ds

0&2)

> \er—leh 1/ Ji(s)
% (F(;) /(s P — ) () +v(7))”_1d7) ds

<o (g [ (5= 717 gk = ) u(r) + o)) ar ) s
=0 [
<o (g [ 6= " U = D00l ar ) ds

X e (ﬁ [ 6= gk = @l dr) s

Cc1

= 00,70 Hfs = e Hiw v)lly

1
_ e)r(en=1)
X Ja(s Tl 1))91_1(3 1) ds

)
+001122 7 (g5 — &) H[(u, 0) Iy
. / () (s — )@y
e (T2 + 1))t
= [0, A8V (f — )2 T A 4 00,022 (gl — €)1 B]||(u,v) ||y
> [ay +a(l = 7))l (w, 0)ly = all(u, )]y
So [|Q1(u,v) = Q1(u,v)(c1) = all(u,v)|ly-

In a similar manner, we deduce

Qa(u, v)(e1) 2 002002271 (g5, — )22 (w,v) ||y
C2 1

_ az(02—1)
[ PO (e e
002007 (f5, — )2 () |y

1 o1 (01—
“J, M T +1))e—t - (s — c1) @7 Dds

= 002127 (g1, — £)2271C + 00200 7 (fi, — )2 71D (u, 0) |y
Z [(1=a)(1 =92) + (1 = a)n]ll(w,v)lly = (1 = a)ll(u,v)]y-

So [|Q2(u, v)[| = Q2(u, v)(e1) = (1 = a)l[(w, v)|[y-
Hence for (u,v) € PN 0§y we obtain

1Q(u, )lly = 1Q1(u, v) || + [[Q2(w, v)|| = all(w, v)|[y + (1 = a)|[(w, v) [y = [[(u, v)]ly-
(10)

By using (9), (10), Theorem 3 and the Guo-Krasnosel’skii fixed point theorem, we
deduce that @ has a fixed point (u,v) € PN (Q2\ Q1) such that Ry < |lu| +||v] < Ro,
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u(t) > A7 ul|, v(t) > P2~ Y| for all t € [0,1]. If ||ul| > O then u(t) > 0 for all
t € (0,1] and if ||v|| > 0 then v(¢) > 0 for all ¢ € (0,1]. So (u,v) is a positive solution
for problem (S)-(BC).

Case 7). We consider here g§ = 0, f§ € (0,00) and g’y = co. Let A € (0, L)) and
€ (0,00). Instead of the numbers vz, v4 € (0,1) used in the first case, we choose
5 € (()\fg)gl’l%, 1) and 7, € (()\fg)gl’l%, 1). The choise of 73 and 74 is possible

1 byl 1 (1=b\1—1
because \ < 7 (Z) and \ < 7 (T) . Let € > 0 such that

, 1 3\ 1 fa=bF N\
A< it
mln{f§+€(A> ’f§+5( D )
1 T’Q—l
€ — <
(9013 =0

< min{é (@)Tﬂé <(1 —b)él —%))m_l}.

By using (H2) and the definition of fj and g§ we deduce that there exists R; > 0
such that

Fltuv) < (f5 +e)u+0) 7 gt u,v) <elutw)=

for allt € [0,1] and u, v > 0, u + v < R;.

We define the set Q1 = {(u,v) € Y, ||(u,v)|ly < Ri}. In a similar manner as in
the proof of Case 1), for any (u,v) € P N J€;, we obtain

Qu(u,v)(t) < N THS5 + o) T A+ p22 e B]||(u, )y

< 093+ b(1 =) (u, )y = bll(u, v) [y, Vit €0,1],

Qa(u,v)(t) < [u#2 e ™1 C + AT (f5 + )2 LD (w, v) |y
<A =0)(1 =73) + (1 = b)3al[(w, v) [y = (L = B)[|(w, )|y,

for all t € [0,1] and so ||Q(u,v)|ly < ||(u,v)|ly-

For the second part of the proof, by the definition of g¢_, there exists Rs > 0 such
that

g(t,u,v) >

™ | =

(w+v)27Y Vi€ e, e, u,v>0, utv> Ro.

We consider Ry = max{2R;, Ry/0} and we define Qs = {(u,v) € Y, ||(u,v)||y <
Ry}. Then for (u,v) € PNIQs, we deduce as in Case 1) that u(t) +v(t) > 0Ry > Ry
for all t € [e1, ¢a].
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Then by Theorem 2 we have
O1(u,0)(er) = Ao / BTy (152 (5, u(s), 0(5))) d
bt [ T R0 152005 v(5)
> et / D Ta(5) 0 (152 95 u(s), 0(5))) ds
S 0

X Cos (ﬁ /(s )02 Ty (), v(7)) dT> ds

Cc2

>pe =t [ a(s)

Doy (ﬁ /(s - T)arl%(um + U(T))T21d7> ds

Cc1

> w1 [ )
<o (00 / L Oy ) ds

e (5
x/ P e, +1_1))—92 (s — )l g
= 0012271 (1) [ (w,0) Iy B > [ (u, )y
So we conclude that ||Q1(u,v)| > Q1(u,v)(c1) > ||[(u,v)||y and ||Q(u,v)|y >

[Q1(w, )| = [|(w, vy

Therefore we deduce the conclusion of the theorem. O

In what follows, for f¢, g, f5, 95 € (0,00) and numbers 71, 2 € [0,1], v3, V4 €
(0,1), a € [0,1] and b € (0,1), we define the numbers

Tlfl _ ’1"171
El = max i ( G%N) ,i <m> ,
AN 1o 005D
1o\ 1 (A =b)ya !
L2 mln{E<%> ,E<7( D)M) }a
’1"271 _ _ Tgfl
s = max i(a(1—31)> 1 (A=a0 72)) 7
96 06, B 96 00,C
~ ) 1(b(1—v)\*" 1 (=01 —y)\™ !
Ly = (22T S (L9079
s gzo( B 95 C ’
~ 1 /b\"7h 1 1=\
! : . _ -
Lo =min g 7o <A) ’ oo( D ) ’
~ 1o\ 1 f1-p\"!
! : . _ -
Ly =ming oo (B> ’ggo( C ) '
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Using some similar arguments from the proof of Theorem 4, we also obtain the

next result.

Theorem 5. Assume that (H1) and (H2) hold, [c1,co] C [0,1] with0 < ¢ < g <1,
v, 72 € [0,1], v3, 74 € (0,1), a € [0,1] and b € (0,1).

1) If fi, g, £5, 95 € (0,00), Ly < Ly and Ly < Ly, then for each \ € (Ly, L)
and p € (Ls, Ly) there exists a positive solution (u(t),v(t)), t € [0,1] for (S)—(BC).

2) If fi, gi, 5 € (0,00), g5, = 0 and Ly < L, then for each A € (Ly,L}) and
1 € (L3, 00) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

3) If f&, g8, g5, € (0,00), f5 =0 and Ly < E;, then for each A € (L1,00) and
€ (Ls, L) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

4) If fi, g& € (0,00), f3, = g3, =0, then for each \ € (L1,00) and p € (Ls, o0)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

5) If f2, g5, € (0,00) and at least one of fi, gi is 0o, then for each A € (0, Ly)
and 1 € (0, Ly) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

6) If £, € (0,00), g5, = 0 and at least one of f§, g is oo, then for each \ € (O,E’Z)
and p € (0,00) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

7 If f3. =0, g5, € (0,00) and at least one of f&, gb is 0o, then for each A € (0, 00)
and p € (0, L)) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

8) If f3, = g3, = 0 and at least one of f&, g is 0o, then for each A € (0,00) and
w € (0,00) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

4. NONEXISTENCE RESULTS FOR THE POSITIVE SOLUTIONS OF
() = (BO)

In this section we present intervals for A and p for which our problem (S) — (BC) has

no positive solutions viewed as fixed points of operator Q.

Theorem 6. Assume that (H1) and (H2) hold. If there exist positive numbers
My, My such that

f(tou,v) < Mi(u+0)" 70 g(tu,v) < Ma(u+v)=7, (11)

for all t € [0,1], u, v > 0, then there exist positive constants Ao and po such that
for every A € (0, o) and p € (0, po) the boundary value problem (S) — (BC) has no

positive solution.

Proof. We define \g = min{Ml(d)rl_l, M1(4[1))T1—1} and po = min{m ,

W}’ where A, B, C, D are given in (8).
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We will prove that for every A € (0, A\¢) and p € (0, p10), problem (S) — (BC) has
no positive solution.

Let A € (0,X) and p € (0,p0). We suppose that (S) — (BC') has a positive
solution (u(t),v(t)), t € [0,1]. Then we obtain

u(t) = Qo)1) < 20 | Ch(s)
X0 (ﬁ /Os(s _ T)O‘l_lf(T,u(T),v(T))dT> ds

4t [ )

X g, <m /Os(s — 1) g(r,u(r),v(T)) d’T) ds

< el /01 J1(s)
1

P (m /Os(s — MM (u(r) + () dT) ds

et / Ja(s)
0

X g <@ /Os(s — )2 My (u(r) + (1)t dr) ds

gA@rleH/ Ji(s)
0

<o (e | ( =)l + ol )

+ue Mg [ gy(s)
0

1 ° -1 1 )
XPoy | = s—T)* ul| + [[v]))™?" " dr | ds
eor (g [, (5= 70"l + ol
= 2T A o)y + M B ) V€ 0,1),

Arquing as before we also find
v(t) < pe MO (u, 0) |y + AT ME T ID| (u0) |y, Vi€ [0,1].
Then we deduce

lull < A =1ME T A (u, )y + p&2 7 M2 Bl (u, 0) |y
<A TIME T A (w0) |y + T MR B (u,0) |y
< 1l o)lly + 1l (wv)lly = 3l (w,0)lly,

o]l < e ME2T1C Y (u, 0) |y + AP M T D (u, )y
< T ME O (wy ) [y 4+ A8 T M TID| () |y
< 3l o)y + 1l 0)lly = 3l (wv)]ly.

and so [[(u,v)|y = ||ul| + [|v]] < ||(w,v)|ly, which is a contradiction.

Therefore the boundary value problem () — (BC') has no positive solution. [
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Remark 1. If f§, g5, f5, 95, < oo, then there exist positive constants My, M,
such that relation (11) holds, and then we obtain the conclusion of Theorem 6.

Theorem 7. Assume that (H1) and (H2) hold. If there exist positive numbers c1, co
with 0 < ¢1 < cg <1 and my > 0 such that

f(t,u,v)Zml(u—Fv)rrl, YVt € e, ca], u, v >0, (12)

then there exists a positive constant Xo such that for every A\ > Xo and > 0, the

boundary value problem (S) — (BC) has no positive solution.

Proof. We define Ay = min{ml(eellﬁ)rrl’ ml(eezlﬁ)nfl }, where A and D are given
by (8).

We will show that for every A > Ao and z > 0 problem (S) — (BC) has no positive
solution. Let A > Ao and x> 0. We suppose that (S) — (BC) has a positive solution
(u(t),v(t)), t [0,1].

If 9111 > 025, then Xo = and therefore, we obtain

1
ml(éelg)’ﬁ*l ’

uer) = Qufw, v)(er)

> /\91—1/{) cf1_1J1(5)(Pgl (Igjf(s,u(s),v(s))) ds
Wngl/o LT (8) s (192 g (s, u(s), v(s))) ds

> A@rlcfﬂ/ Ji(s)
X P (ﬁ /%1 (s — T)alflf(T, u(T),v(T)) d’T) ds
> )\‘91_165171 J1(s)

c1

XGon (ﬁ /S(s — ) Uy (u(r) + (7)) dT) ds

c
1 o

> Agl_lcfl_lmfl_l J1(s)
Cc1

1 ® a;—1 r1—1

<o (i [ 0" O ) i
= (Am1)2 =100, Al (u, v)]|y-

Then we conclude

lull = u(er) = (Am1)er =100, Al (u, v) 1y
> (Aoma) 2 71001 A (u, 0) [y = [[(w,v) v,

and so [[(u,v)|ly = ||ull + [|v]] > |lu]| > ||(w,v)|ly, which is a contradiction.
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If 9111 < 025, then Xo = W, and therefore, we deduce
mi 2

ofer) = Qaluv)(cr)
> por-! / BTy (3) 00 (1029 (5, u(s), 0(5)) ds

o [ s (5 (). 0()) ds

> A@rlcfrl/ Ja(s)
X P (ﬁ /%1 (s — T)alflf(T, u(T),v(T)) d’T) ds
> )\917165271 J4(s)
1 ‘15 01171 7‘171
X g, (I‘(al) /C1 (s :) ma(u(T) + v(1)) d’T) ds
> Agl_lcfrlmfl*l/ Ju(s)

<o (g [ =" Ol ar ) ds

¢y

= (Am1)@ 71002 D||(u,v)]y-
Then we conclude

lol| = v(er) = (Am1)2 1002 Dl (u, v)ly

> (Aom1)@ =005 D||(u, 0) |y = [|(u,0)]| v

and so [[(u,v)|ly = ||ull + [|v]| > ||v|| > ||(u,v)||y, which is a contradiction.

Therefore the boundary value problem (S) — (BC') has no positive solution.

707

O

Remark 2. If for ¢y, co with 0 < ¢; < ¢ < 1, we have fi, fi > 0and f(¢,u,v) >
0 for all ¢ € [e1, 2] and u, v > 0 with u + v > 0, then the relation (12) holds, and we

obtain the conclusion of Theorem 7.

In a similar manner as we proved Theorem 7 we obtain the next theorem.

Theorem 8. Assume that (H1) and (H2) hold. If there exist positive numbers c1, co

with 0 < ¢ < ¢ <1 and mo > 0 such that

g(t,u,v) > ma(u+v)27t, Vit e [e1, o], u, v >0,

(13)

then there exists a positive constant fio such that for every p > po and XA > 0, the

boundary value problem (S) — (BC) has no positive solution.

1

In the proof of Theorem 8 we define jip = min { T e

iz > where B and C are given by (8).
mo 2
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Remark 3. If for ¢1, c2 with 0 < ¢1 < ¢a < 1, we have g, g°, > 0 and g(¢,u,v) >
0 for all t € [e1, 2] and u,v > 0 with u + v > 0, then the relation (13) holds, and we

obtain the conclusion of Theorem 8.

Theorem 9. Assume that (H1) and (H2) hold. If there exist positive numbers c1, co
with 0 < ¢1 < co <1 and mq, ma > 0 such that

Fltuv) > mi(u+o)" 7 g(tu,v) > ma(u+v)= (14)

for all t € [c1,¢2), u, v > 0, then there exist positive constants o and [0 such that
for every X > Ao and > fig, the boundary value problem (S) — (BC') has no positive
solution.

Proof. We define \y = and g = where A and C' are

given by (8). Then for every A > A\g and p > fig, problem (S) — (BC) has no positive
solution. Indeed, let A > Ag and p > fig. We suppose that (S) — (BC) has a positive
solution (u(t),v(t)), t € [0,1]. In a similar manner as that used in the proofs of

Theorems 7 and 8, we obtain

ull > u(er) > (Ama)e =001 Al (u,v)|y,
o]l > v(er) > (uma)e2 10050 (u,v)] v,
and so
[(w, 0)ly = Jull + o]l N
my)? 71001 Al (u, v)|ly + (pm2) 106> (u, v) ||y
0m1)t 1001 Al (u, v)[ly + (from2)?2~1002C | (u, v)[|y

= 3ll(uw.v)lly + 5ll(u, 0)lly = [ (w, )]y,

> (A
> (A

which is a contradiction. Therefore the boundary value problem (S) — (BC') has no
positive solution.
where B and D

We can also define ;\6 = and ff, =

are given by (8). Then for every A > Aj and p > fif,, problem (S) — (BC) has no
positive solution. Indeed, let A > X, and p > ;. We suppose that (S) — (BC) has a
positive solution (u(t),v(t)), ¢t € [0,1]. In a similar manner as that used in the proofs

of Theorems 7 and 8, we obtain

loll > w(e1) = (Ama)2r 1002 D[ (u, )|,
lull > u(er) = (umz)e2=1001 Bl|(u, v)lly,

and so
[[(w, o)y = [lull + ]l B
> (Am1)91*1092D~|| (u,v)|ly + (umg)grlﬁelBMu,v)Hy
> (Mm ) =100, D (u, )y + (ihmz)e==266, B (u, v) |y

= 3l v)lly + 5ll(u, 0)lly = [ (w, )]y,
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which is a contradiction. Therefore the boundary value problem (S) — (BC') has no

positive solution. [l

Remark 4. If for ¢, co with 0 < ¢; < ¢ < 1, we have f, fi, gé, g', > 0 and
flt,u,v) >0, g(t,u,v) >0 for all t € [¢1,¢z] and w,v > 0 with u 4+ v > 0, then the
relation (14) holds, and we obtain the conclusion of Theorem 9.

5. AN EXAMPLE

Let oy = 1/3, aa = 1/4, 1 =7/2, n =4, B2 = 14/3, m = 5, p1 = 4/3, p2 = 5/2,
G =5/4,q2=2/3, N=2,& =1/4,&% =3/5,a1 =2,a2=1/3, M =1, m =1/2,
by = 4,71 =5, 01 = 5/4, ¢r,(5) = s|s>, @p(s) = s|s|*3/4, ro = 3, 02 = 3/2,
ra(5) = 515, 0o (5) = ss| 712

We consider the system of fractional differential equations

s D™ (s (D3 u(t)) ) + Mt 4+ 17 (1) +0°(1)) = 0,
' DY (i3 (Do) ) + (2 — 1) (eO+207 _1) =0

for ¢t € (0, 1), with the coupled multi-point boundary conditions

u(0) = w/(0) = u”(0) = 0, D/ u(0) =
DEPu(1) = 2D v (1) + 4 D5/4 (g)
v(0) = v/(0) = v” <o>—v"'<o>—07 DyYv(0) =0,

DY Pu(1) = 4D (1),

(BCo)

where a, b>0.

Here we have f(t,u,v) = (t +1)%(u® +v°), g(t,u,v) = (2 — t)g(e(“‘“’)z —1) for all
t €10,1] and u, v > 0. Then we obtain A ~ 39.98272963 > 0, and so the assumptions
(H1) and (H?2) are satisfied. In addition, we deduce

. t9/2(1—8)7/0 — (t — )72, 0<s<t <1,
91(t,8) = w773y
P2 ) #9/2(1—9)7/6, 0<t<s<1,
11/6(1 _ \7/6 _ (+ _ <\11/6
paltos) — [ SO ) 0S5 <E <,
T(17/6) t11/6(1—8)7/6, 0<t<s<1,
129/12(1 — §)7/6 _ (+ —5)29/12 0 <s<t<1,
93(t78):%
(41/12) t29/12(1_8)7/67 0<t<s<l1,
11/3(1 _ &\7/6 _ (+ _ &\11/3
galtos) = 1 t 4(1 s) (t—s)tt/3, 0<s<t <1,
T(14/3) t11/3(1—s)7/6, 0<t<s<1,
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Grlt3) =) + Sritig [2(0)™ 45 ()7 a3,
Galtr) = “artiagey” (295 (35) + 30 (2.9)].
Gs(t,s) = ga(t,s) + 4t11/32(;{123/2.§2)1 295 (3,5) + 393 (2.9)] ,
Galt,s) = T2 g, (L5), Vi,s € [0,1].

For the functions h; and J;, i = 1,...,4, we obtain

hi(s) = prims (1 — 9)7/9(1 = (1 - 5)4/3),
ha(s) = rrrry (1= )70 = (1= )27%),
hs(s) = oy (1= 9)7/0(1 = (1 - 5)/4),
ha(s) = by (1 — 9)7/0(1 = (1 — 5)7/2),

ram (1= 8)70(1 = (1 —5)%)
+A11:((1441//31)2) { 29/12 +1 (%)29/12

i (s) = X TTT76) {(%)H/G( — )76 — (5 - 5)11/6} , 0<s< i,
ey (L —8)7f(1— (1~ 8)4/ )
+anty [2()7 +3 gfg/ﬂ
XF(lé/ﬁ) (l)u/ﬁ (1 - 8)7/6, % <s<l1

L(14/3) {4292/12 [(1 —8)T/6 (1 45)29/12]

AT(13/6)T(41/12)
+W [329/12(1 — 5)7/6 — (3 — 55)29/12]} |
0<s< iv
r(14/3
Ja(s)= AF(13/(6>é(411/12) {gorm (1= 8)"/% + gy [3%9/12(1 = 5)7/0

—(3=5s)2/12]} L <s< 3
I'(14/3) |:2 (i)29/12 T 1 (%)29/12} (1 N 8)7/67

AT(13/6)[(41/12) 3
3<s<,
kg (L= )75 — (1 - 5)2)
r(7/2)2/6 2
+Ar(1(7/6))r(41/12) {429/12 [(1- §)7/% — (1~ 45)29/12]

+3.5219/12 [329/12(1 _ 8)7/6 - (3-— 55)29/12] }7 0<s< i

—F(l}l/g) (1— 81)/2/6(1 —(1—5)%/?2)
_ [(7/2)2 2
Js(s)= T AT(T7/6)r@1/12) {429/12 (1—s)70

+3.5219/12 [329/12(1 _ 5)7/6 -3- 55)29/12] }7 i <s< %’

F(l}l/?,) (1— 1)/6/6(1 (1 - )32 /
(7/2)2 29/12
AT /o T (429/12 +3(3) ) (1— )70,
3<s<1
5 — — )
[(7/2)2'/6
J4(8): W [(1 — 5)7/6 _ (1 25 )11/6] L 0<s<
1
arazorare (970 3 <s <1
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Now we choose ¢; = 1/4 and ¢y = 3/4, and then we deduce ; = (1/4)%/2,

0y = (1/4)'1/3 and 0 = 6. In addition, we have f§ = 0, fi, = oo, g5 = 2°, g’ = oo,
B ~ 0.00564278, B ~ 0.00325593, C' ~ 0.01653798, C' ~ 0.0102111.

By Theorem 4 6), if we consider b = 1/2, then for any A € (0,00) and p € (0, L))
with L) = 2—15 (%)2, the problem (Sp) — (BCp) has a positive solution (u(t),v(t)), t €
[0,1]. For example, if b = 1 we obtain L} ~ 457.0303.

We can also use Theorem 8, because g(t,u,v) > mao(u + v)? for all ¢t € [1/4,3/4]
and u, v > 0, with mg = (5/4)5. If b = 1, we deduce fip = m ~ 2.0097701 x 1012,
and then we conclude that for every A > 0 and p > i, the boundary value problem

(So) — (BCy) has no positive solution.
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