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ABSTRACT: The discrete-time multi-agent system with a leader and nonlinear
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fectiveness of the obtained results. By example the necessity and sufficiency of the

obtained conditions are shown.
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1. INTRODUCTION

One of the most important topic in multi-agent systems is the consensus algorithm.

It is connected with the driving a team of agents to reach an agreement on a certain

issue by negotiating with their neighbors. In more details, each agent receives infor-

mation from the set of other agents in the group and then all agents adjust their own

information states depending on the information received from other agents. The goal

is to reach an agreement. This behavior is widespread in the nature. A consensus

algorithm describes the information transfers between agents and varies depending on

the application and the model. In the literature, many different consensus algorithms

have been proposed (see for example, [2], [3], [4], [5], [6], [7]). The virtual leader is a

special agent whose motion is independent of all the other agents and thus is followed

by all the other ones. Such a problem is commonly called leader-following consensus
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problem. Note, sometimes the multi-agent changes it behavior instantaneously, and

on finite interval of time there are interactions only between the each agent and leader

without interconnected interactions. Then the model is a new one. In this paper we

set up the discrete model of such kind of situation and we call it, similarly to the

continuous case, non-instantaneous impulsive model.

The main purpose of this paper is to study a discrete-time multi-agent system

consisting of agents and the leader. For the first time it is studied the case when

the control protocol is based on two interaction topologies. The first interaction

topology is modeling the interactions between all agents including the leader. The

second one is connecting only with the intervals on which any agent is interacting

only with the leader, i.e. in the so-called intervals of non-instantaneous impulses.

Sufficient conditions ensuring a leader-following consensus are obtained. By intensive

application of computer simulation the influence of the impulses on the discrete leader-

following consensus is illustrated and the necessity and effectiveness of the obtained

conditions is showed.

2. DESCRIPTION OF THE DISCRETE MODEL

WITH NON-INSTANTANEOUS IMPULSES

Let Z+ denote the set of all natural numbers. Let two increasing sequences {nk}
∞
k=1

and {mk}
∞
k=1

be given such that nk,mk ∈ Z+ and mk < nk+1 − nk, k = 1, 2, . . . ,

be given. We denote Z[a, b] = {z ∈ Z+ : a ≤ z ≤ b}, a, b ∈ Z+, a < b and

Ik = Z[nk +mk +1, nk+1], k = 0, 1, 2, . . . , and Jk = Z[nk +1, nk +mk], k = 1, 2, . . . ,

where m0 = n0 = 0.

The intervals Jk, k = 1, 2, . . . , will be called intervals of non-instantaneous im-

pulses.

In this paper, we consider a discrete-time multi-agent system consisting of N agents

and the leader. The dynamics of each agent labeled i, i = 1, 2, . . . , N, is given by the

difference equation

xi(n) = xi(n− 1) + f(n, xi(n− 1)) + ui(n− 1)

for n ∈ Z+, i = 1, 2, . . . , N,
(1)

where xi(n), ui(n) represent the state and the control input at time n, respectively.

Function f : Z+×R→ R describes the intrinsic, generally nonlinear, dynamics. The

leader, labeled as i = 0, for multi-agent system (1) is an isolated agent described by

x0(n) = x0(n− 1) + f(n, x0(n− 1)) for n ∈ Z+. (2)

Let the control protocol is based on two interaction topologies, G and P . The

graphs of both topologies represent the agent set and the edge set, respectively. The



MULTI-AGENT SYSTEM WITH IMPULSES 745

first interaction topology, G, is modeled by a graph which is connected with time

interval Ik. Any edge of the graph means that agent i receives information from

agent j. Communication graph can be represented by two matrices: the first is

connected with the interaction between the agents and it is a weighted adjacency

matrix A = {aij} with nonnegative entries, where aii = 0. The second matrix D is

the leader adjacency matrix with diagonal elements di, i = 1, . . . , N, where di > 0 if

agent i receives information from the leader and di = 0, otherwise.

The second interaction topology, P , is connected with the time intervals Jk when

each agent interacts only with the leader. Communication graph can be represented

by two leader adjacency matrix Bk and C. The matrix Bk has diagonal elements

Bi,k, i = 1, . . . , N, where Bi,k > 0 if agent i at time tk (the point of impulse) receives

information from the leader and Bi,k = 0, otherwise. The diagonal matrix C has

diagonal elements ci, i = 1, . . . , N, where ci > 0 if agent i at time n from the interval

of impulses receives information from the leader and ci = 0, otherwise.

Then the control protocol is defined by u(0) = 0 and:

ui(n) =
(

γ

N
∑

j=1

aij
(

xj(n)− xi(n)
)

+ γdi(x0(n)− xi(n))
)

∆(n)

(

ci(x0(n)− xi(n)) +Bi,k(x0(nk)− xi(nk)
)

δ(n)

for n ∈ Z+, i = 1, 2, . . . , N

(3)

where δ(n) = 1 and ∆(n) = 0 for n ∈ Jk, k = 1, 2, . . . and δ(n) = 0 and ∆(n) = 1

for n 6∈ Jk, k = 1, 2, . . . .

Then the system (1), (2), (3) could be written as a system of non-instantaneous

impulsive difference equations

x0(n) = x0(n− 1) + f(n, x0(n− 1)) for n ∈ Z+

xi(n) = xi(n− 1) + f(n, xi(n− 1))

+ γ

N
∑

j=1

aij
(

xj(n− 1)− xi(n− 1)
)

+ γdi(x0(n− 1)− xi(n− 1))

for n ∈

∞
⋃

k=0

Ik, i = 1, 2, . . . , N,

xi(n) = xi(n− 1) + f(n, xi(n− 1))

+ ci(x0(n− 1)− xi(n− 1)) +Bi,k(x0(nk)− xi(nk))

for n ∈ Jk, k = 1, 2, . . . , i = 1, 2, . . . , N,

xi(0) = x0
i , i = 0, 1, 2, . . . , N.

(4)
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Definition 1. Multi-agent system (1) and (2) under control law (3) (respectively,

the system (4)) is said to be achieved the leader-following consensus if any solution to

(1), (2), (3) satisfies lim
n→∞

(xi(n)− x0(n)) = 0 for i = 1, 2, . . . , N for any initial values

x0
i ∈ R, i = 0, 1, 2, . . . , N .

Denote ei(n) = xi(n)−x0(n), i = 1, 2, . . . , N, e0i = x0
i −x0

0, and rewrite the system

of difference equations (4) in the form

ei(n) = f(n, xi(n− 1))− f(n, x0(n− 1))

+ γ

N
∑

j=1

aijej(n− 1)− ei(n− 1)γ
N
∑

j=1

aij

+ (1 − γdi)ei(n− 1) for n ∈
∞
⋃

k=0

Ik, i = 1, 2, . . . , N,

ei(n) = (1− ci)ei(n− 1)−Bi,kei(nk)

+ f(n, xi(n− 1))− f(n, x0(n− 1)),

for n ∈ Jk, k = 1, 2, . . . , i = 1, 2, . . . , N,

ei(0) = e0i , i = 0, 1, 2, . . . , N.

(5)

Introduce the quadratic n dimensional matrix L with elements lii =
∑

j 6=i aij and

lij = −aij , i 6= j.

2.1. LEADER-FOLLOWING CONSENSUS OF (5)

Theorem 2. Let the following conditions be satisfied:

1. The function f : Z+ × R → R and there exists ε > 0 such that |f(n, u) −

f(n, v)| ≤ L|u− v| uniformly in n ∈ Z+ for any u, v ∈ R : |u− v| ≤ ε.

2. The inequality L+M < 1 holds where M = |γ|
√

|λmax|, λmax is the eigenvalue

of matrix C CT with the maximal modulus, C = L + D − 1

γ
I, I is the unit n

dimensional matrix.

3. There exists a positive constants ξ : ξ < M + L such that for all k = 1, 2, . . .

the inequality L+maxi=1,2,...,N |1− ci|+maxi=1,2,...,N |Bi,k| ≤ ξ holds.

Then under control law (3) multi-agent system (1) and (2) achieves the local leader-

following consensus.

Proof. Choose the initial values x0
i ∈ R such that |x0

i − x0
0| ≤ ε, i = 0, 1, 2, . . . , N

with ε defined in condition 1 of Theorem 2. Therefore, |ei(0)| ≤ ε, i = 1, 2, . . . , N
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and ||e(0)|| = max
i=1, 2, ... , N

|ei(0)| ≤ ε. We will prove that the corresponding solution to

(1), (2), (3) satisfies

|xi(n)− x0(n)| ≤ ε for all n ∈ Z+. (6)

According to (5) using that x0
i ∈ S(x0

0, ε) and condition 1 of Theorem 2 we get

|ei(1)| ≤ |f(1, xi(0))− f(1, x0(0))|

+ γ

N
∑

j=1

aij |ej(0)− ei(0)|+ |1− γdi| |ei(0)|

≤ L|xi(0)− x0(0)|

+ γ

N
∑

j=1

aij |ej(0)− ei(0)|+ |1− γdi| |ei(0)|

≤ (L +M)ε ≤ ε.

(7)

Using induction we prove inequality (6) holds for n ∈ I0. Similarly to inequality

(7) it follows that

||e(n)|| = max
i=1, 2, ... , N

|xi(n)− x0(n)| ≤ (L +M)||e(n− 1)||, n ∈ I0

or

||e(n)|| ≤ (L+M)n||e(0)||, n ∈ I0. (8)

Also, we obtain

|ei(n1 + 1)| ≤ (L+ |1− ci|+ |Bi,1|)|ei(n1)|

≤ (L+ max
i=1,2,...,N

|1− ci|+ max
i=1,2,...,N

|Bi,1|)|ei(n1)|
(9)

or

||e(n1 + 1)|| ≤ Ξ1||e(n1)|| ≤ (L+M)n1Ξ1||e(0)|| (10)

where

Ξk = L+ max
i=1,2,...,N

|1− ci|+ max
i=1,2,...,N

|Bi,k|, k = 1, 2 . . . .

Therefore, for n ∈ J1 using (8) for n = n1 we get

||e(n)|| ≤ Ξn−n1

1 ||e(n1)|| ≤ (L+M)n1Ξn−n1

1 ||e(0)||, n ∈ J1. (11)

As in the proof of inequality (8) using the inequalities (11) for n = n1+m1, M+L < 1

and m1 < n2 − n1 we get

||e(n)|| ≤ (L+M)n−n1−m1 ||e(n1 +m1)||

≤ (L+M)n−m1Ξm1

1 ||e(0)||, n ∈ I1.
(12)



748 K. STEFANOVA, S. HRISTOVA, AND A. GOLEV

Let n ∈ J2. Then using (12) for n = n2 and using the inequalities M +L < 1 and

m1 < n2 − n1 we obtain

||e(n)|| ≤ Ξn−n2

2 ||e(n2)|| ≤ (L+M)n2−m1Ξm1

1 Ξn−n2

2 ||e(0)||

≤ (L+M)n1Ξm1

1 Ξn−n2

2 ||e(0)||, n ∈ J2.
(13)

Let n ∈ I2. Then using the inequalities M + L < 1 and m2 < n3 − n2

||e(n)|| ≤ (L+M)n−n2−m2 ||e(n2 +m2)||

≤ (L+M)n+n1−n2−m2Ξm1

1 Ξm2

2 ||e(0)||, n ∈ I2.
(14)

Let n ∈ J3. Then

||e(n)|| ≤ Ξn−n3

3 ||e(n3)||

≤ Ξn−n3

3 (L+M)n3−m1−m2Ξm1

1 Ξm2

2 ||e(0)||, n ∈ J3.
(15)

Continue the induction process we obtain

||e(n)|| ≤







































||e(0)||(M + L)
n−

k∑

i=1

mi
( k
∏

i=1

Ξmi

i

)

for n ∈ Ik, k = 0, 1, 2, . . . ,

||e(0)||(M + L)
nk−

k−1∑

i=1

mi
( k
∏

i=1

Ξmi

i

)

for n ∈ Jk, k = 1, 2, 3, . . . .

Use the conditions 2 and 3 we obtain

||e(n)|| ≤



































||e(0)||(M + L)n
k
∏

i=1

(

ξ
M+L

)mi

for n ∈ Ik, k = 0, 1, 2, . . . ,

||e(0)||(M + L)nk+mk

k
∏

i=1

(

ξ
M+L

)mi

for n ∈ Jk, k = 1, 2, 3, . . . .

Applying conditions 2 and 3 of Theorem 2 it follows the validity of lim
n→∞

||e(n)|| =

0.

Theorem 3. Let the conditions 2 and 3 of Theorem 2 be satisfied and the function

f : N×R → R is Lipshitz with a constant L w.r.t. its second argument in R.

Then under control law (3) multi-agent system (1) and (2) achieves the leader-

following consensus.

The proof of Theorem 3 is similar to the one of Theorem 2 and we omit it.
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3. EXAMPLES

Let nk = 10k and mk = 3, k = 1, 2, . . . . Then mk < nk+1 − nk = 10. Therefore,

I0 = 1, 2, . . . .10, Ik = 10k + 4, 10k + 5, . . . , 10k + 10, Jk = 10k + 1, 10k + 2, 10k + 3

for k = 1, 2, . . . .

Now we will study a group of 4 followers and the leader with two interacting

topologies. The first one G is determining the interactions of the agents and the

leader on each intervals Ik, k = 1, 2, . . . , and the second one F is determining the

switching interactions with the leader on the impulsive interval Jk, k = 1, 2, . . . . Let

the weighted adjacency matrix A, the diagonal matrix D, giving the leader adjacency

matrix associated with G and the diagonal matrix Bk, giving the leader adjacency

switching matrix associated with F , are given by

A =











0 1.5 1 0

1.5 0 0 0

1 0 0 1

0 0 1 0











, D =











1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 2











,

Bk =











−0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 −0.5











, k = 1, 2, . . . ,

the intrinsic dynamics is described by f(n, x) = 0.01 ln(1 + x2) and the constant

γ = 0.4. Then L = 0.01 and M ≈ 0.95, i.e. conditions 1 and 2 of Theorem 1 are

satisfied.

We will study different case for this system illustrating the above theory.

Example 1. (Non-instantaneous changes of the behavior of the followers with

small jumps). Let the initial values be: x0
0 = 10, x0

1 = 3, x0
2 = 15, x0

3 = 5, x0
4 = 20.

Consider

x0(n) = x0(n− 1) + 0.01 ln(1 + x0(n− 1)2)

for n = 1, 2, . . . , 30

xi(n) = xi(n− 1) + 0.01 ln(1 + xi(n− 1)2)

+ 0.4

4
∑

j=1

aij
(

xj(n− 1)− xi(n− 1)
)

+ 0.4di(x0(n− 1)− xi(n− 1))

for n ∈

3
⋃

k=0

Ik, i = 1, 2, 3, 4,

(16)



750 K. STEFANOVA, S. HRISTOVA, AND A. GOLEV

Figure 1. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 30 (discretely).

Figure 2. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 30

(continuously).

xi(n) = xi(n− 1) + 0.01 ln(1 + xi(n− 1)2)

+ ci(x0(n− 1)− xi(n− 1)) +Bi,k(x0(nk)− xi(nk)),

for n ∈ Jk, k = 1, 2, 3, i = 1, 2, 3, 4,

xi(0) = x0
i , i = 0, 1, 2, 3, 4,

where Bi,k = −0.5, ci = 1.4, i = 1, 4 and Bi,k = 0.5, ci = 0.4, i = 2, 3, k = 1, 2, 3, . . . .

Then L + max
i=1,2,3,4

|1 − ci| + max
i=1,2,3,4

|Bi,k| = 0.01 + 0.4 + 0.5 = 0.91 < M + L =

0.96 < 1, i.e. conditions 2 and 3 of Theorem 2 are satisfied. According to Theorem 3

the leader-following consensus is achieved. The state trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 30 are shown in Figure 1 (discretely) and Figure 2 (continuously)

and its values for n = 1, 2, . . . , 12 are shown in Table 1. From Table 1 and Figures 1

and 2 it could be seen that the state trajectory xi(n) of any agent approaches the

state trajectory x0(n) of the leader.

Let’s change the initial conditions, i.e. x0
0 = 20, x0

1 = 13, x0
2 = 18, x0

3 = 15,

x0
4 = 27. The state trajectories xi(n), i = 0, 1, 2, 3, 4 and n = 0, 1, 2, . . . , 30 are shown

in Figures 3 and 4. Again the state trajectory xi(n) of any agent approaches the state

trajectory x0(n) of the leader.
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Figure 3. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 30 (discretely).

Figure 4. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 30

(continuously).

n x0 x1 x2 x3 x4

0 10.0000 3.0000 15.0000 5.0000 20.0000

1 10.0462 13.8230 5.8542 10.2326 6.0599

2 10.0924 6.1474 12.3479 10.0463 10.9543

3 10.1387 13.0419 7.7757 8.8962 9.9495

4 10.1852 7.1141 11.9218 11.0196 9.7256

5 10.2317 12.8288 8.3921 8.9879 10.6565

6 10.2783 7.6427 11.8326 11.2357 9.6966

7 10.3250 12.6889 8.7464 9.2313 10.8231

8 10.3717 8.0457 11.7869 11.2957 9.8356

9 10.4186 12.5627 9.0255 9.4602 10.8944

10 10.4656 8.3924 11.7492 11.3199 9.9880

11 10.5126 10.3010 10.6433 10.5996 10.4640

12 10.5598 9.6075 9.9966 10.1850 10.3403

Table 1. Values of xi(n), i = 0, 1, 2, 3, 4 and n = 0, 1, 2, . . . , 12.
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n x0 x1 x2 x3 x4

0 20.0000 13.0000 18.0000 15.0000 27.0000

1 20.0599 19.6514 15.8578 19.0542 16.6659

2 20.1199 17.3594 19.8701 18.3967 20.3928

3 20.1800 20.4421 18.5234 18.8385 19.4364

4 20.2401 18.6050 20.3957 19.7778 19.8515

5 20.3003 20.8611 19.3194 19.3979 20.1927

6 20.3605 19.1872 20.6960 20.3604 20.0210

7 20.4208 21.0902 19.7172 19.8157 20.4884

8 20.4812 19.5498 20.8821 20.6543 20.2257

9 20.5416 21.2230 19.9832 20.1016 20.6617

10 20.6021 19.8191 21.0104 20.8343 20.4022

11 20.6626 20.5835 20.7038 20.6860 20.6424

12 20.7232 20.3633 20.5438 20.6212 20.6313

Table 2. Values of xi(n), i = 0, 1, 2, 3, 4 and n = 0, 1, 2, . . . , 12.

Example 2. (Non-instantaneous changes of the behavior of the followers with at

least one large jump). Now we will consider the case when the followers at same times

change their behavior instantaneously, but at least one of them has a large jump.

Consider (16) with the same initial values as in Example 1 but changed both leader

adjacency matrices Bk and C to

Bk =











4 0 0 0

0 4 0 0

0 0 5 0

0 0 0 5











, C =











3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3











.

Then the condition 3 of Theorem 1 is not satisfied because the leader adjacency

coefficients are too large.

The state trajectories xi(n), i = 0, 1, 2, 3, 4 and n = 0, 1, . . . , 100 are shown in

Figure 5 (discretely) and Figure 6 (continuously) and its values for n = 1, 2, . . . , 12

are shown in Table 3. From Table 3 and Figures 5 and 6 it could be seen that the

state trajectory x4(n) of the agent with a large jumps does not approach the state

trajectory x0(n) of the leader. Therefore, the condition 3 of Theorem 2 is necessary

condition to achieve leader-following consensus.
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Figure 5. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 100

(discretely).

Figure 6. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 100

(continuously).

Figure 7. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 20 (discretely).

Figure 8. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 0, 1, 2, . . . , 20

(continuously).

Figure 9. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 70, 71, 72, . . . , 100

(discretely).

Figure 10. Graph of the state

trajectories xi(n), i = 0, 1, 2, 3, 4

and n = 70, 71, 72, . . . , 100

(continuously).
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n x0 x1 x2 x3 x4

0 10.0000 3.0000 15.0000 5.0000 20.0000

1 10.0462 13.8230 5.8542 10.2326 6.0599

2 10.0924 6.1474 12.3479 10.0463 10.9543

3 10.1387 13.0419 7.7757 8.8962 9.9495

4 10.1852 7.1141 11.9218 11.0196 9.7256

5 10.2317 12.8288 8.3921 8.9879 10.6565

6 10.2783 7.6427 11.8326 11.2357 9.6966

7 10.3250 12.6889 8.7464 9.2313 10.8231

8 10.3717 8.0457 11.7869 11.2957 9.8356

9 10.4186 12.5627 9.0255 9.4602 10.8944

10 10.4656 8.3924 11.7492 11.3199 9.9880

11 10.5126 22.9472 2.8134 4.5340 13.8552

12 10.5598 -6.0012 20.7986 18.2291 6.2684

Table 3. Values of xi(n), i = 0, 1, 2, 3, 4 and n = 0, 1, 2, . . . , 12.
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