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1. INTRODUCTION

The major difficulty with the simulation of solutions of stochastic differential equation

is that the double stochastic integrals cannot be easily expressed in terms of simpler

stochastic integrals when the Wiener process is multi-dimensional. In the multi-

dimensional case, the Fourier series expansion of Wiener process has been used to

represent the double integrals in [6], [8], and [7]. However, several random variables

should be generated each time, and therefore the computation requires a large amount

of time; moreover, this method is difficult to extend to higher order.a new method

developed by Davie is investigated [5] that uses coupling and has order-one strong

convergence for stochastic differential equations (SDEs). There are several numerical

methods for solving SDEs. Also Davie in [10] applied the Vaserstein bound to solutions
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of vector SDEs and used the Komlós, Major, and Tusnády theorem to obtain order-

one approximation under a non-degeneracy assumption.

The remainder of this paper is organized as follows. In Section 2, certain results

concerning SDEs are reviewed, and Davies method [5] is introduced. In Section 3, the

idea of bounds using two-level coupling is presented. In section 4, the method of exact

coupling is considered, and the main theorem is proved. In the last section, a numer-

ical example is provided to demonstrate the convergence behavior for 2-dimensional

SDEs using derivative coefficients.

2. STOCHASTIC DIFFERENTIAL EQUATIONS(SDES)

2.0.1. DEFINITION

Let {W (t)}t≥0 be a d -dimensional standard Brownian motion on a probability space

(Ω,F ,P) equipped with a filtration F = (Ft)t≥0, a = a(t , x ) be a d -dimensional vec-

tor function(called drift coefficient) and b = b(t , x ) a d × d -matrix function(called

diffusion coefficient).

The stochastic processX = X (t), considered in this paper can be described by stochas-

tic differential equations

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), t ∈ [0,T] (2.1)

Let the initial condition X(0) = x be an F0-measurable random vector in R
d. An

Ft-adapted stochastic process X = (X(t))t≥0 is called a solution of equation (2.1) if

X(t) = X(0) +

∫ t

0

a(s,X(s))ds+

∫ t

0

b(s,X(s))dW (s), (2.2)

holds a.s.

The conditions that the integral processes
∫ t

0 a(s,X(s))ds,
∫ t

0 b(s,X(s))dW (s),

are well-defined are required for(2.2) to hold and for the functions a(s,X(s)) and

b(s,X(s)) we have the following conditions that E
∫ t

0 b
2(s,X(s))ds < ∞, and almost

surely for all t ≥ 0,
∫ t

0
|a(s,X(s))|ds < ∞ and they are well defined. For more details

on stochastic integral see [6].

2.1. CONVERGENCE

Let (Ω,F ,P) be a probability space satisfying the following, Ω is the set of continuous

functions with the supremum metric on the interval [0, T ], F is the σ-algebra of Borel

sets and P is the Wiener measure. We consider an approximate solution xh of (2.1)

which uses a subdivision of the interval [0, T ] into a finite number N of subintervals
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which we assume to be of length h = T
N . Also we assume the approximate solutions

xh are random variables on Ω. Now we say that the discrete time approximation xh

with the step-size h converges strongly of order γ at time T = Nh to the solution

X(t) if

E|xh −X(T )|p ≤ Chγp, h ∈ (0, 1)

where the strong convergence will be in Lp space and X(T ) is the solution to the

stochastic differential equation. C is a positive constant and C independent of h.

Lemma 2.1. Let X and Y be random variables with E(Y |X) = 0. Then, for p ≥ 2

we have

(

E|X + Y |p
)2/p

≤

(

E|X |p
)2/p

+ C

(

E|Y |p
)2/p

, (2.3)

where C is a constant depending only on p.

Proof. See lemma 2.1 in [3]

Consider the Milstein scheme,

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik(jh, x
(j))∆W

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))B

(j)
kl , (2.4)

So if there is a scheme

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+
∑

bik(jh, x
(j))X

(j)
k

+
∑

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl), (2.5)

where the increments X
(j)
k are independent N(0, h) random variables, then it is the

same as scheme (2.4) with ∆W
(j)
k replaced byX

(j)
k , and ∆W

(j)
k = X

(j)
k is not assumed.

Furthermore,

Zi :=
∑

bik(jh, x
(j))X

(j)
k +

∑

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl)

is assumed to be a good approximation to Yi, that is, the joint distribution of the

random vectors (∆W
(j)
k , A

(j)
kl ) and (X

(j)
k ) should be determined, so that they have

the required marginal distribution with bound E(Yi−Zi)
2 = O(h3). Now a two-level

bound for scheme (2.5) will now be proved as described in Davie’s study (Section 8).

For simplicity, in (2.5), bik(x) will be assumed to depend only on x; moreover, the

drift term is assumed to be zero. Thus,

x
(j+1)
i = x

(j)
i +

∑

bik(x
(j))X

(j)
k +

∑

ρikl(x
(j))(X

(j)
k X

(j)
l − hδkl). (2.6)
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For step-size h(r) = T
2r there are 2rd independent random variables X

(r,j)
k . Then,

at two consecutive levels, that is, from level r to level r + 1, r ∈ N, a coupling

between X
(r,j)
k should be found that is N(0, h(r)), so that (X

(r+1,2j)
k , X

(r+1,2j+1)
k ) are

independent and N(0, h(r+1)). If x̃
(r,j)
i is a solution of 2.6 at level r, then for fixed

time j, by comparing x̃
(r,j+1)
k at level r with x̃

(r+1,2j+2)
k at level r + 1, we have

x̃
(r,j+1)
i = x̃

(r,j)
i +

d
∑

k=1

bik(x̃
(r,j))X

(r,j)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r,j))(X

(r,j)
k X

(r,j)
l − h(r)δkl),

(2.7)

and y is defined as follows,

y = x̃
(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl).

(2.8)

Moreover,

x̃
(r+1,2j+1)
i = x̃

(r+1,2j)
i +

d
∑

k=1

bik(x̃
(r+1,2j))X

(r+1,2j)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k X

(r+1,2j)
l − h(r+1)δkl). (2.9)

x̃
(r+1,2j+2)
i = x̃

(r+1,2j+1)
i +

d
∑

k=1

bik(x̃
(r+1,2j+1))X

(r+1,2j+1)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j+1))(X

(r+1,2j+1)
k X

(r+1,2j+1)
l − h(r+1)δkl). (2.10)

It should be mentioned that the notation X = O(M) for the random variable X refers

to the Lp bound, i.e., (E|X |p)1/p ≤ CM . We now have

bik(x̃
(r+1,2j+1)) = bik(x̃

(r+1,2j)) + ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k ) +O(h) (2.11)

and ρikl(x̃
(r+1,2j+1)) = ρikl(x̃

(r+1,2j)) +O(h).

Using these relations in (2.10) and combining it with (2.9), we obtain

x̃i
(r+1,2j+2) = x̃i

(r+1,2j) +

d
∑

k=1

bik(x̃i
(r+1,2j))(X

(r+1,2j)
k +X

(r+1,2j+1)
k )

+

d
∑

l,k=1

ρikl(x̃
(r+1,2j))X

(r+1,2j+1)
k X

(r+1,2j)
l

+
1

2

d
∑

l,k=1

ρikl(x̃
(r+1,2j))(X

(r+1,2j)
k X

(r+1,2j)
l
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+X
(r+1,2j+1)
k X

(r+1,2j+1)
l − h(r)δkl) + λ, (2.12)

where λ = O((h(r))3/2).

Let now (cij) be the inverse matrix of
(

bik(x̃
(r+1,2j))

)

, so that
∑

j cijbik(x̃
(r+1,2j)) =

δik. Then, by Equations (2.8) and (2.12), the local error y−x̃
(r+1,2j+2)
k = O((h(r))3/2)

requires the coupling to satisfy

X
(r,j)
i = X

(r+1,2j)
i +X

(r+1,2j+1)
i

+

d
∑

k,l=1

τikl(X
(r+1,2j+1)
k X

(r+1,2j)
l −X

(r+1,2j+1)
l X

(r+1,2j)
k ) +O((h(r))3/2), (2.13)

where τikl =
1
2

∑

j cijρikl. Equation (2.13) is now reformulated by scaling. r is fixed,

and let ǫ = (h(r))1/2, X
(r,j)
i = ǫVi, X

(r+1,2j)
i = ǫYi, and X

(r+1,2j+1)
i = ǫZi. Then

V1, · · · , Vd are independent and N(0, 1), whereas (Y1, · · · , Yd, Z1, · · · , Zd) are inde-

pendent and N(0, 1/2). A coupling should now be found between (Vi) and (Yi, Zi) so

that

Vi = Yi + Zi + ǫ

d
∑

k,l=1

τikl(ZkYl − ZlYk) +O(ǫ2). (2.14)

Let Ui = Yi + Zi and U∗
i = Yi − Zi, so that Ui and U∗

i are independent and N(0, 1).

We have U∗
l Uk − U∗

kUl = 2(YlZk − ZlYk); thus, Equation (2.14) yields

Vi = Ui + ǫ

d
∑

k,l=1

τikl(U
∗
l Uk − U∗

kUl) +O(ǫ2). (2.15)

Therefore, a coupling between (V1, · · · , Vd) and (U1, · · · , Ud, U
∗
1 , · · · , U

∗
d ) is required,

where all the random variables are N(0, 1), (V1, · · · , Vd) are mutually independent,

(U1, · · · , Ud, U
∗
1 , · · · , U

∗
d ) are also mutually independent, and (2.15) holds.

Lemma 2.2. Let U and α be independent random variables, where U is N(0, 1) and

α takes the values ±1 each with probability 1
2 , and let b and c be fixed real numbers

with |b| < 1. Moreover, let Y = U + α(bU + c) and V = Φ−1(F (Y)), where F (y) is

the c.d.f. of Y, i.e.,

F (y) =
1

2

{

Φ

(

y − c

1 + b

)

+Φ

(

y + c

1− b

)}

.

Here Φ is the c.d.f. of the standard normal distribution Then V is N(0, 1); otherwise,

V is independently generated to be N(0, 1). It follows that

E(V − Y)p ≤ K(b2 + c2)p, (2.16)

where K is a constant independent of b and c.
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Proof. See lemma 5 in [2]

From lemma (2.2),

E(V ′
1 − Y)p ≤ Cpa

2pǫ2p. (2.17)

Thus,

Lemma 2.3. The error obtained in (2.17) implies that the local error is

(E|x̃
(r+1,2j+2)
i − y|p)2/p ≤ Cpa

4h3.

Proof. See lemma 5.1 in [3]

Theorem 2.1. Let bik(x) be an invertible matrix that is twice differentiable with

respect to x. Moreover, bik(x) and its second derivative are bounded by a constant.

The boundedness of the inverse of the matrix bik(x) is also assumed. Then

(E|x̃
(r+1,2j)
i − x̃

(r,j)
i |p)2/p ≤ k2h

2eTL, (2.18)

where x̃
(r,j)
i and x̃

(r+1,2j)
i are defined as in (2.7), (2.9), and (2.10) where the expla-

nation of the generation of the random variables X has been shown in the coupling

summary.

Proof. Let

max
i

(E(|x̃
(r+1,2j)
i − x̃

(r,j)
i |p))2/p = ej .

Then

(E|x̃
(r+1,2j+2)
i − x̃

(r,j+1)
i |p)2/p = (E|(y − x̃

(r,j+1)
i ) + (x̃

(r+1,2j+2)
i − y)|p)2/p

= (E|(x̃
(r+1,2j)
i − x̃

(r,j)
i ) + (y − x̃

(r+1,2j)
i )

− (x̃
(r,j+1)
i − x̃

(r,j)
i ) + (x̃

(r+1,2j+2)
i − y)|p)2/p

≤ ej + C1[|(E(x̃
(r+1,2j)
i − x̃

(r,j)
i )|x̃

(r+1,2j)
i − x̃

(r,j)
i |(p−2)

(y − x̃
(r+1,2j)
i )− (x̃

(r,j+1)
i − x̃

(r,j)
i ) + (x̃

(r+1,2j+2)
i − y))|]2/p

+ C2[(E|(y − x̃
(r+1,2j)
i )− (x̃

(r,j+1)
i − x̃

(r,j)
i )

+ (x̃
(r+1,2j+2)
i − y)|p)]2/p.

Here, Lemma (2.1) is used with X = (x̃
(r+1,2j)
i − x̃

(r,j)
i ) and

Y = (y − x̃
(r+1,2j)
i )− (x̃

(r,j+1)
i − x̃

(r,j)
i ) + (x̃

(r+1,2j+2)
i − y)

= (

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl)))
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− ((

d
∑

k=1

bik(x̃
(r,j))X

(r,j)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r,j))(X

(r,j)
k X

(r,j)
l − h(r)δkl)) + (x̃

(r+1,2j+2)
i − y). (2.19)

Furthermore,

E(Y |X) = E[(

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl)))

− ((

d
∑

k=1

bik(x̃
(r,j))X

(r,j)
k +

1

2

d
∑

k,l=1

ρikl(x̃
(r,j))(X

(r,j)
k X

(r,j)
l − h(r)δkl))

+ (x̃
(r+1,2j+2)
i − y)|(x̃

(r+1,2j)
i − x̃

(r,j)
i )] = 0. (2.20)

Therefore,

(E|x̃
(r+1,2j+2)
i − x̃

(r,j+1)
i |p)2/p ≤ ej + C2[(E|(y − x̃

(r+1,2j)
i )− (x̃

(r,j+1)
i − x̃

(r,j)
i )

+ (x̃
(r+1,2j+2)
i − y)|p)]2/p

≤ ej + C3[(E|(y − x̃
(r+1,2j)
i )− (x̃

(r,j+1)
i − x̃

(r,j)
i )|p]2/p

+ C4E[|(x̃
(r+1,2j+2)
i − y)|p)]2/p

= ej + C3[(E|(

d
∑

k=1

bik(x̃
(r+1,2j))X

(r,j)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r+1,2j))(X

(r,j)
k X

(r,j)
l − h(r)δkl))

− (

d
∑

k=1

bik(x̃
(r,j))X

(r,j)
k

+
1

2

d
∑

k,l=1

ρikl(x̃
(r,j))(X

(r,j)
k X

(r,j)
l − h(r)δkl))|

p]2/p

+ C4E[|(x̃
(r+1,2j+2)
i − y)|p)]2/p

≤ ej + C5[E|

d
∑

k=1

(bik(x̃
(r,j))− bik(x̃

(r+1,2j)))X
(r,j)
k |p]2/p

+ C6[E|
1

2

d
∑

k,l=1

(ρikl(x̃
(r,j))− ρikl(x̃

(r+1,2j)))

(X
(r,j)
k X

(r,j)
l − h(r)δkl)|

p]2/p + C4E[|(x̃
(r+1,2j+2)
i − y)|p)]2/p, (2.21)

where C1, C2, C3, and C4 are constants depending only on p. As bik(x) is twice
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differentiable with respect to x and its second derivative is bounded by a constant,

the Lipschitz condition holds, and there is a constant A > 0 such that

|bik(x)− bik(y)| ≤ A |x− y| and
∣

∣

∣
bik(x)

∂bik(x)
∂x − bik(y)

∂bik(y)
∂y

∣

∣

∣
≤ A |x− y| for all

t ∈ [t0,T] and x , y ∈ ℜ. Therefore,

C3[E|
d

∑

k=1

(bik(x̃
(r,j))− bik(x̃

(r+1,2j)))X
(r,j)
k |p]2/p ≤ L2hej

and

C3[E|
1

2

d
∑

k,l=1

(ρikl(x̃
(r,j))− ρikl(x̃

(r+1,2j)))(X
(r,j)
k X

(r,j)
l − h(r)δkl)|

p]2/p ≤ L2
1h

2ej .

Hence, lemma (2.3) implies the local error

(E|x̃
(r+1,2j+2)
i − y|p)2/p ≤ Cpa

4h3.

By hypothesis, |a|4 is bounded by a constant c1, i.e., |a|
4 ≤ c2. Then

(E|x̃
(r+1,2j+2)
i − x̃

(r,j+1)
i |p)2/p ≤ ej + hL2ej + L2

1h
2ej + Cpa

4h3.

As this estimate holds for all i, it holds for the maximum i as well. Therefore, putting

the estimates together, the following recurrence inequality is obtained:

ej+1 ≤ ej + hL2ej + L2
1h

2ej + Cpa
4h3 ≤ ej + hL2ej + L2

1hej + Cpa
4h3

≤ ej + hLej +K1h
3 ≤ (1 + hL)ej +R,

where R = K1h
3.

Noting that (j + 1)h ≤ T for j < N and e0 = 0, we have

ej ≤ R

j−1
∑

k=0

(1 + hL)k ≤ R

N−1
∑

k=0

(1 + hL)k

= R
(1 + hL)N − 1

hL
=

(

K1h
3
)( (1 + hL)N − 1

hL

)

≤ K2h
2eTL.

3. IMPLEMENTATION OF EXACT COUPLING IN

TWO-DIMENSIONAL SDES WITH DIFFUSION AND

DERIVATIVE COEFFICIENTS

Let the following 2-dimensional invertible SDE be considered:

dX1(t) = (sin(X2(t)))
2dW1(t)−

1

1 +X2
1 (t)

dW2(t),

dX2(t) =
1

1 +X4
2 (t)

dW1(t) + (cos(X1(t)))
2dW2(t),

for 0 ≤ t ≤ 1, with X1(0) = 2 and X2(0) = 0

(3.1)
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where W1(t) and W2(t) are independent standard Brownian motions. To apply a

numerical method to this SDE, solutions (for the same Brownian path) should be

simultaneously simulated by using two different step sizes (h and h/2). The Matlab

implementation for this SDE using the exact coupling will demonstrate the result

of the absolute value of the difference between two solutions with step size h and

h/2. To conduct this experiment, the error and the convergence order of the exact

coupling method will be calculated for decreasing values of the step size h(n). This

will be repeated with different step size using (for example, R = 1000) independent

simulations. Then the order of convergence of this method between two approximate

solutions should be 1. For the SDE, Matlab code is used to estimate the absolute

error ǫ = 1
R

∑R
i=1 |x

(i)
h −x

(i)
h/2| for the approximate solution xh, where each simulation

is for the same Brownian path. The Matlab code will run with different number of

steps (50, 100, 200, 400, and 800) over a large number of paths.

Step size error(ǫ)

0.02 0.0208

0.01 0.0109

0.005 0.0056

0.0025 0.0028

0.00125 0.0014

Table 1: Error results for Exact coupling with derivative coefficients

Figure 1: Plot for the convergence of the exact coupling with derivative

coefficients

Table (1) and the plot in Figure (1) show the implementation of the approximate

solutions of the previous 2-dimensional SDEs with different number of steps (50, 100,

200, 400, and 800). Running the code for 1000 simulations yields a value for the
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estimator ǫ equal to 0.0208 with step size 0.02, i.e.,

ǫ =
1

1000

1000
∑

i=1

|x
(i)
h − x

(i)
h/2| = 0.0208,

0.0109 with step size 0.01, and the corresponding values for other step sizes. This

implies that if the number of steps increases, which results in a smaller step size, then

the error estimate ǫ is O(h), as can be seen in Table (1). Moreover, Figure (1) is a plot

of the log of the estimator ǫ, i.e., log ǫ against the log of the step-size h, i.e., log(h),

which has a slope of 0.96906, again indicating a strong convergence of O(h) for the

stochastic differential equation (3.1). Therefore, it can be seen that good agreement

is obtained between the theoretical bound and the implementation results.

CODING

The M-file (exatcouplinginvertible.m) in listing 2 is used to examine the strong conver-

gence of scheme (2.5) with exact coupling for the SDE (3.1). 1000 different Brownian

paths are computed. For each path, scheme (2.5) with exact coupling is applied with

different step sizes (50, 100, 200, 400, and 800). Thus, running the code for 1000

simulations yields the value of its estimator ǫ for different step sizes, i.e.,

ǫ =
1

1000

1000
∑

i=1

|x
(i)
h − x

(i)
h/2|

Moreover, for each path, the exact coupling in the M-file (coupling.m) in listing 1

should be computed. Above this M-file (coupling.m), there are explanatory remarks

about the code.

4. APPENDIX: THE COUPLING CODE

(1) Generating some normal distributions N(0, 1) variables U ′
1, U

′
2, Q,R

(2) α taking the value ±1 with probability 1
2 each.

(3) Then set V ′
2 = U ′

2, Ũ1 = αQ and Ũ2 = αR

(4) b = ǫaR , c = −ǫaQU ′
2 and define Y = U ′

1 + α(bU ′
1 + c)

(5) F (y) = 1
2

{

Φ(y−c
1+b ) + Φ(y+c

1−b )
}

is the cumulative distribution function of Y ( here

Φ is the c.d.f of N(0, 1)

(6) V ′
1 = Φ−1(F (Y ))

(7) V = RθV
′. (8) U = RθU

′. (9) U∗ = RθŨ .

(10) Ui = Yi + Zi and U∗
i = Yi − Zi

The below code for calculating the exact coupling method
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Listing 1: calculating multilevel with exact coupling

func t i on [ Z1 , Z2 , Y1 , Y2 , V1 , V2 ] = coupl ing ( aa , a1 , a2 , s ) ;

UB1=randn ; UB2=randn ; Q=randn ; R=randn ;

% gene ra t ing some normal d i s t r i b u t i o n as in (1 )

u=rand ; i f u<0.5 zz=1; e l s e zz=−1;

% Here we c a l c u l a t e (2 )

end

UU1=zz∗Q; UU2=zz∗R; VB2=UB2;

% We s e t some d e f i n i t i o n in (3 )

Mn=s∗aa∗R; c=−s∗aa∗Q∗UB2; Y=UB1+zz ∗(Mn∗UB1+c ) ;

% Here we c a l c u l a t e b and c and Y as in (4 )

Er1=e r f ( (1/ s q r t ( 2 ) ) ∗ ( (Y−c )/(1+Mn) ) ) ;

A1=1/2∗(1+Er1 ) ;

% to c a l c u l a t e the c . d . f f o r the F(y ) in (5 )

Er2=e r f ( (1/ s q r t ( 2 ) ) ∗ ( (Y+c)/(1−Mn) ) ) ;

A2=1/2∗(1+Er2 ) ;

% to c a l c u l a t e the c . d . f f o r the F(y ) in (5 )

Fy=1/2∗(A1+A2 ) ;

% to c a l c u l a t e F(y ) in (5 )

VB1=sq r t (2 )∗ e r f i n v (2∗Fy−1);

% Here we f i nd V 1ˆ\prime in (6 )

V1=(a1/aa )∗VB1−(a2/aa )∗VB2;

% we c a l c u l a t e V in (7 )

V2=(a2/aa )∗VB1+(a1/aa )∗VB2;

% we c a l c u l a t e V in (7 )

U1=(a1/aa )∗UB1−(a2/aa )∗UB2;

% we c a l c u l a t e U in (8 )

U2=(a2/aa )∗UB1+(a1/aa )∗UB2;

% we c a l c u l a t e U in (8 )

US1=(a1/aa )∗UU1−(a2/aa )∗UU2;

% we c a l c u l a t e Uˆ∗ in (9 )

US2=(a2/aa )∗UU1+(a1/aa )∗UU2;

% we c a l c u l a t e Uˆ∗ in (9 )

Z1=(1/2)∗(U1−US1 ) ; Z2=(1/2)∗(U2−US2 ) ;

% we c a l c u l a t e Z in (10)

Y1=(1/2)∗(U1+US1 ) ; Y2=(1/2)∗(U2+US2 ) ;

% we c a l c u l a t e Y in (10)

end
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Listing 2: calculating the SDEs (3.1)

func t i on AAA=ex a t c o up l i n g i n v e r t i b l e (YA, x0 ,T,N)

h=T/N; hh=T/(2∗N) ; s=sq r t (T/N) ; s s=sq r t (T/(2∗N) ) ; RR=1000;

q=0;

f o r r=1:RR, x=x0 ; y=x0 ;

f o r m=1:N;

[UU, XX, GG]= exa c t l a s t on e (YA, ss ,m, h , x ) ;

a1=GG(1 , 2 , 1 ) ;

a2=GG(1 , 2 , 2 ) ;

aa=(a1ˆ2+a2 ˆ2 )ˆ ( 1 / 2 ) ;

[ Z1 , Z2 , Y1 , Y2 , V1 , V2 ] = coupl ing ( aa , a1 , a2 , s ) ;

wL=s∗Y1 ; wr=s ∗Z1 ; w=s∗V1 ; vL=s∗Y2 ; vr=s ∗Z2 ;

v=s∗V2 ; B1=1/2∗wL∗vL ;

B2=1/2∗wr∗vr ; B=1/2∗w∗v ;

x=x+UU∗ [wL; vL]+XX( : , : , 1 ) ∗ [ 1 / 2 ∗ (wL.ˆ2−hh ) ; B1 ]

+XX( : , : , 2 ) ∗ [ B1 ; (1/2 )∗ (vL.ˆ2−hh ) ] ;

[UU, XX]= exa c t l a s t on e (YA, ss ,m, h , x ) ;

x=x+UU∗ [ wr ; vr ]+XX( : , : , 1 ) ∗ [ 1 / 2 ∗ ( wr.ˆ2−hh ) ; B2 ]

+XX( : , : , 2 ) ∗ [ B2 ; (1/2 )∗ ( vr .ˆ2−hh ) ] ;

[UU, XX]= exa c t l a s t on e (YA, s ,m, h , y ) ;

y=y+UU∗ [w; v]+XX( : , : , 1 ) ∗ [ 1 / 2 ∗ (w.ˆ2−h ) ; B]

+XX( : , : , 2 ) ∗ [B; (1/2 )∗ (v.ˆ2−h ) ] ;

end

q=q+abs (x(1)−y(1))+abs (x(2)−y ( 2 ) ) ;

end

AA=q ; AAA=q/RR

end
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