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ABSTRACT: In this article we will consider the possibility of approximating the

input function s(t) (the nutrient supply for cell growth in a continuous bioreactor)

with the Lindley type correction.

We prove upper and lower estimates for the one–sided Hausdorff approximation of

the shifted Heaviside function ht∗(t) by means of the general solution of the differential

equation y′(t) = ky(t)s(t) with y(t0) = y0.

We will illustrate the advances of the solution y(t) for approximating and modelling

of: ”data on the development of the Drosophila melanogaster population”, published

by biologist Raymond Pearl in 1920 (see, also Alpatov, Pearl [32]), ”cancer data” (see,

[33]–[34]), ”data on the development of Saccharomyces culture in nutrient medium”,

published by biologist T. Carlson in 1913 (see, also [67], [69]), ”growth data (mean

height) of sunflower plants” [69] and ”data on the growth of population of Rhizapertha

in wheat” by Crombie in 1945 [68].

We also define a new parametric activation function based on ”amendments” of

”Lindley - type”.

Numerical examples using CAS Mathematica, illustrating our results are given.
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1. INTRODUCTION

Sigmoidal functions find multiple applications to population dynamics, biostatistics,

analysis of nutrient supply for cell growth in bioreactors, controllability of tumor

growth, population survival functions, classical predator–prey models, neural net-

works, debugging and test theory and others [37]–[66].

The Verhulst model can be considered as a prototype of models used in bioreactor

modelling.

In batch growth, the rate of biomass production is given by dx
dt

= κx, where: x =

biomass concentration; κ = specific growth rate; t = time. The rate κ is a function

of nutrient supply and therefore can be a function of time (i.e., if nutrient supply is

changing with time.)

In general, κ = F (S, P, I, X, T, osmotic pressure); S = substrate concentration;

P = product concentration; I = inhibitor concentration.

There, especially in the case of continuous bioreactor, the nutrient supply is con-

sidered as an input function s(t) as follows:

dy(t)

dt
= ky(t)s(t) (1)

where s is additional specified.

To the role and choice of nutrient supply for cell growth in bioreactors are devoted

to a number of studies [1]–[12].

Some concepts of multiple–nutrient–limited growth of microorganisms and its ap-

plication in biotechnological processes can be found in [3].

In [13], the author consider the following hyper–logistic equation:

dy(t)
dt

= ky(t)
2e−pt

1 + e−pt

y(t0) = y0,

(2)

where k > 0 and p > 0 with general solution:

y(t) = y0e
2k(t− t0) +

2k

p
ln(1 + ept0)−

2k

p
ln(1 + ept)

.

For other results, see [14].

In this paper we will consider the possibility of approximating the input function

s(t) in the equation (1) with the Lindley type correction.

Some results for Lindley [15]–[16], power Lindley distribution, discrete Poisson–

Lindley distribution, modified discrete Lindley distribution, generalized Lindley dis-

tribution, exponential modified discrete Lindley distribution, quasi Lindley distri-
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bution, Kumaras–wamy–Lindley distribution and transmuted Kumaraswamy quasi

Lindley distribution are given in [17]–[31].

Following the ideas given in [13] we consider the following new logistic equation:

dy(t)
dt

= ky(t)
1 + θ + θt

1 + θ
e−θt

y(t0) = y0

(3)

where θ > 0.

We prove upper and lower estimates for the one–sided Hausdorff approximation

of the shifted Heaviside function ht∗(t) by means of the general solution of this dif-

ferential equation.

We will illustrate the advances of the solution y(t) for approximating and modelling

of:

- ”data on the development of the Drosophila melanogaster population”, published

by biologist Raymond Pearl in 1920 (see, also Alpatov, Pearl [32]);

- ”cancer data” (see, [33]–[34]);

- ”data on the development of Saccharomyces culture in nutrient medium”, pub-

lished by biologist T. Carlson in 1913 (see, also [67], [69]);

- ”growth data (mean height) of sunflower plants” [69];

- ”data on the growth of population of Rhizapertha in wheat” by Crombie in 1945

[68].

2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

ht∗(t) =























0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗.

(4)

Definition 2. [35], [36] The Hausdorff distance (the H–distance) ρ(f, g) between

two interval functions f, g on Ω ⊆ R, is the distance between their completed graphs

F (f) and F (g) considered as closed subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (5)
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wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

3. MAIN RESULTS

3.1. A NEW MODEL

The general solution of the differential equation (3) is of the following form:

y(t) = y0e
−

k(2 + θ + θt)

θ(1 + θ)
e−θt +

k(2 + θ + θt0)

θ(1 + θ)
e−θt0

. (6)

It is important to study the characteristic - ”supersaturation” of the model to the

horizontal asymptote.

In this Section we prove upper and lower estimates for the one–sided Hausdorff

approximation of the Heaviside step–function ht∗(t) by means of families (6).

Without loss of generality, we consider the following class of this family for:

t0 = 0; y0 = e
−

k(2+θ)
θ(1+θ)

M(t) = e
−

k(2 + θ + θt)

θ(1 + θ)
e−θt

. (7)

The function M(t) and the ”input function” s(t) are visualized on Fig. 1.

Denoting by t∗ the unique positive solution of the nonlinear equation:

(2 + θ + θt∗)e−θt∗ −
θ(1 + θ) ln 2

k
= 0. (8)

Evidently, M(t∗) = 1
2 .

The one–sided Hausdorff distance d between the function ht∗(t) and the sigmoid

- (7) satisfies the relation

M(t∗ + d) = 1− d. (9)

The following theorem gives upper and lower bounds for d

Theorem 1. Let
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Figure 1: The functions M(t)–(red) and s(t)–(green) for k = 24.3; θ = 5.9.

α = − 1
2 ,

β = 1 + k(1+θ+θt∗)
2(1+θ) e−θt∗

γ = 2.1β.

(10)

For the one–sided Hausdorff distance d between ht∗(t) and the sigmoid (7) the

following inequalities hold for the condition - γ > e1.05:

dl =
1

γ
< d <

ln γ

γ
= dr. (11)

Proof. Let us examine the function:

F (d) = M(t∗ + d)− 1 + d. (12)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = α+ βd. (13)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).
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Figure 2: The functions F (d) and G(d) for k = 68.3; θ = 15.9.

In addition G′(d) > 0.

Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

Approximations of the ht∗(t) by model (6) for various k and θ are visualized on

Fig. 3–Fig. 4.

4. SOME APPLICATIONS

The proposed model can be successfully used to approximating data from Population

Dynamics.

4.1. APPROXIMATING THE ”DATA ON THE DEVELOPMENT OF

THE DROSOPHILA MELANOGASTER POPULATION”

We will illustrate the advances of the solution y(t) for approximating and modelling

of ”data on the development of the Drosophila melanogaster population”, published

by biologist Raymond Pearl in 1920 (see, also [32]).

We consider the following data:
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Figure 3: The model (7) for k = 68.3; θ = 15.9; t∗ = 0.124959; Hausdorff

distance d = 0.114808; dl = 0.076393; dr = 0.196472.

Figure 4: The model (7) for k = 105.1; θ = 24.5; t∗ = 0.0788398; Hausdorff

distance d = 0.0861885; dl = 0.0518027; dr = 0.153352.



594 N. KYURKCHIEV, A. ILIEV AND A. RAHNEV

Figure 5: The fitted model M∗(t).

data Pearl

:= {{9, 39}, {12, 105}, {15, 152}, {18, 225}, {21, 390}, {25, 547},

{29, 618}, {33, 791}, {36, 877}, {39, 938}}.

After that using the model

M∗(t) = ωe
−

k(2+θ+θt)
θ(1+θ) e−θt

for ω = 1162.27, k = 0.383217 and θ = 0.115 we obtain the fitted model (see, Fig. 5).

4.1.1. SOME COMPARISONS BETWEEN THE NEW LOGISTIC

MODEL AND THE CLASSICAL LOGISTIC MODEL OF

VERHULST–PEARL.

The classic model of Verhulst -Pearl for the data Pearl looks like this (see, for exam-

ple, [69]):

M∗

V P (t) =
1035

1 + e4.27−0.17t

and is illustrated in Fig. 6
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Figure 6: The fitted model M∗

V P (t).

Of the accompanying illustrations see Fig. 5 and Fig. 6, it can be concluded that

the proposed model M∗(t) (7) is reliable.

4.2. APPLICATION OF THE NEW CUMULATIVE SIGMOID FOR

ANALYSIS OF THE ”CANCER DATA”

.

We will illustrate the advances of the solution y(t) for approximation and modelling

of ”cancer data” (for some details see, [33]–[34]).

days 4 7 10 12 14 17 19 21

R(t) 0.415 0.794 1.001 1.102 1.192 1.22 1.241 1.3

Table 1: The ”cancer data” [33]–[34]

Consider the model M∗(t) = ωe
−

k(2+θ+θt)
θ(1+θ)

e−θt

.

The model M∗(t) based on the data from Table 1 for the estimated parameters:

ω = 1.32845; θ = 0.268; k = 0.306626

is plotted on Fig. 7.
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Figure 7: The model M∗(t) based on the ”cancer data”.

4.3. APPROXIMATING THE ”DATA ON THE DEVELOPMENT OF

SACCHAROMYCES CULTURE IN NUTRIENT MEDIUM”

We will now analyze a sample of experimental data obtained by the biologist T.

Carlson in 1913 about the development of Saccharomyces culture in nutrient medium

(see, for example [67], [69]:

data Carlson

:= {{5, 19.1}, {6, 174.6}, {7, 257.3}, {8, 350.7}, {9, 441},

{10, 513.3}, {11, 559.7}, {12, 594.8}, {13, 629.4}, {14, 640.8},

{15, 651.1}, {16, 655.9}, {17, 659.6}}.

After that using the model M∗(t) for θ = 0.47, k = 2.9600117 and ω = 673.513

we obtain the fitted model (see, Fig. 8).

4.4. APPROXIMATING THE ”GROWTH DATA (MEAN HEIGHT)

OF SUNFLOWER PLANTS”

We analyze experimental growth data (mean height) of sunflower plants (DSP) (see,

for example [69]):
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Figure 8: The fitted model M∗(t).

data DSP

:= {{14, 36.4}, {28, 98.1}, {49, 205.5}, {56, 228.3}, {70, 250.5},

{84, 254.5}}.

For θ = 0.08, k = 0.176917 and ω = 262.988 we obtain the fitted model (see, Fig.

9).

4.5. APPROXIMATING THE DATA: ”THE GROWTH OF

POPULATION OF RHIZAPERTHA IN WHEAT”

We analyze a experimental data obtained by the Crombie in 1945 [68]:

data Crombie

:= {{0, 2}, {14, 2}, {28, 2}, {35, 3}, {42, 17}, {49, 65}, {63, 119},

{77, 130}, {91, 175}, {105, 205}, {119, 261}, {133, 302},

{147, 330.6}, {161, 315}, {175, 333}, {189, 350}, {203, 332},

{231, 333}, {245, 335}, {259, 330}}.

After that using the model M∗(t) for θ = 0.036, k = 0.113865 and ω = 343.284



598 N. KYURKCHIEV, A. ILIEV AND A. RAHNEV

Figure 9: The fitted model M∗(t).

we obtain the fitted model (see, Fig. 11).

As should expected, the experiments conducted (see, Sections 4.1 - 4.5) show a very

good approximation of data from the field of population dynamics, with suggested in

this article, modified logistic model.

4.6. THE NEW ACTIVATION FUNCTION BASED ON

”AMENDMENTS” OF ”LINDLEY - TYPE”

Definition 3. The sign function of a real number t is defined as follows:

sgn(t) =











−1, if t < 0,

0, if t = 0,

1, if t > 0.

(14)

Definition 4. The new parametric activation function based on ”amendments” of

”Lindley - type” is defined as follows

A(t) =
e
−

k(2+θ+θt)
θ(1+θ)

e−θt

− e
−

k(2+θ+θt)
θ(1+θ)

eθt

e
−

k(2+θ+θt)
θ(1+θ)

e−θt

+ e
−

k(2+θ+θt)
θ(1+θ)

eθt
. (15)

Approximation of the sgn(t) by function A(t) for k = 10.1 and θ = 2.5 is visualized

on Fig. 12.
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Figure 10: The fitted model by Crombie [68].

Figure 11: The fitted model M∗(t).
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Figure 12: Approximation of the sgn(t) by A(t) for k = 10.1 and θ = 2.5.

We will note that the study of the Hausdorff’s approximation of the sign function

by means of this new family can be done in a way given in [60] and we will omit it.

Similarly to the article cited above, recursively generable families of higher order

activation functions can also be constructed.

5. CONCLUSION

A special choice of nutrient supply for cell growth in a continuous bioreactor with the

Lindley type correction is introduced.

We prove upper and lower estimates for the one–sided Hausdorff approximation of

the shifted Heaviside function ht∗(t) by means of the general solution of the differential

equation y′(t) = ky(t)s(t) with y(t0) = y0, where s(t) is the correction of Lindley type.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of functions.

The module offers the following possibilities:

- calculation of the H-distance between the ht∗ and the model M(t) (7);

- generation of the functions under user defined values of the parameters k and θ;

- numerical solution of the differential model (3) and opportunities for comparison

with other logistics models;

- software tools for animation and visualization.

We will explicitly note that similar approximation and modeling results associated

with the use of ”input function” S(t) in the differential model (1) with Sen, Maiti
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and Chandra–type [70]:

S(t) =
1 + θ + θt+ 0.5θ2t2

1 + θ
e−θt

and also with Yousof, Korkmaz and Sen–type [71]:

S(t) =
1 + θ + θtb + 0.5θ2t2b

1 + θ
e−θtb

can be obtained with the mathematical apparatus outlined in this article and here we

will miss them.
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