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of variational inequality systems, we study semilinear second order elliptic coupled

inequality systems of S-contractive type with demicontinuous operators and constant
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1. INTRODUCTION

Since the increasing applications of mathematics in biology is inevitable as biology

becomes more quantitative [1-5], the study of realistic mathematical models in ecol-

ogy, especially the research of the interactions between species and their environment,

has become a very popular and interesting topics for mathematicians as well as biol-

ogists, and has long been and will continue to be one of the dominant themes in both

ecology and mathematical ecology because of its universal existence and importance

[6-10]. Recently, there are many different kinds of predator-prey models with different

functional responses or (and) harvesting in the literature to be refined so as to better

reflect the specific characteristics of the different populations or economical require-

ment. For more details, we refer the reader to [6, 11-14] and the references therein.

Further, we give the following semilinear elliptic predator-prey coupled inequality sys-

tem of Holling-III type with predator harvesting rates: Find (u, v) ∈ R
+ × R

+ such

that






−∆u(x) ≥ ru(x)

(

1− u(x)

K

)

− u2(x)v(x)

b + u2(x)

−∆v(x) ≥ v(x)

(

−d+ au2(x)

b+ u2(x)

)

− γ

for a.e.x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

(1)

where a.e. means almost every, ∆ is the Laplace operator, Ω is a bounded open set

in R
n (n > 2) with meas(Ω) > 0 and smooth boundary ∂Ω, u and v respectively de-

note prey and predator densities, r,K, a, b, d, γ are positive constants which stand for

prey intrinsic growth rate, carrying capacity (the upper limit of population growth),

conversion rate, half capturing saturation, the death rate of the predator, the har-

vesting rate of the predator, respectively. The predator-prey model (1) assumes that

the prey grows logistically with intrinsic growth rate r and carrying capacity K in

the absence of predation. The predator consumes the prey according to the Holling

type-III functional response
u2

b+ u2
and contributes to its growth with rate

au2

b+ u2
.

Constant γ in (1) describes the effect of harvesting on the predators. This type

of harvesting have been proposed as constant-yield harvesting (see [13]), which is

described by a constant independent of the size of the population under harvest.

Recently, when the constant harvesting γ is present, Wang et al. [14] provided a

bifurcation analysis by choosing the death rate and the harvesting rate of the predator

as the bifurcation parameters and proved that system (1) with n = 1 can undergo

the Bogdanov-Takens bifurcation. Applying the forward Euler scheme to system (1)

with n = 1, He and Li [12] obtained and investigate the corresponding discrete-time

predator-prey system of Holling-III type. Further, if γ = 0, K = 1 and v(x) ≡ 0 for

x ∈ Ω, then the predator-prey system (1) becomes to the Laplacian elliptic inequality
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with logistic rates arising in mathematical biology as follows:

{

−∆u(x) ≥ ru(x) (1− u(x)) for a.e. x ∈ Ω,

u(x) = 0 on ∂Ω,
(2)

where u(x) denotes the population density of one species at location x, the term

u(x) (1− u(x)) represents the logistic growth rate. In view of studying the Laplace

elliptic equations connected with (2), one can refer to [15, 16] and references therein.

As pointed out in [17], the study of nonlinear partial differential inequalities is

based on a special choice of test functions associated with the considered nonlinear

problems. In recent years, the issue of the nonexistence of a nonzero positive solution

or, in other words, the necessary conditions for the existence of a nonzero positive so-

lution has received considerable attention, and significant progress has been achieved

for the solutions of nonlinear partial differential equations and inequalities. See, for

example, [18-28] and the references therein.

In 2011, under superlinear and sublinear assumptions to continuous functions and

some growth conditions, Zhang and Chang [28] applied fixed point index theory to

prove the existence of at least one component-wise positive solution for the following

semilinear elliptic system:







∆u = ϕ1(x, u, v)

∆v = ϕ2(x, u, v)
in Ω,

u = v = 0 on ∂Ω,

(3)

where Ω ⊂ R
n (n > 3) is a smooth bounded domain. The key ingredient of the proof

consists in working with a cone K1×K2, which is the Cartesian product of two cones

belonging to C(Ω̄). This allows the authors to overcome the difficulty, resulting from

the different features of the nonlinearities, of working in the usual cone. We note that

if the nonlinear function ϕi (i = 1, 2) is especially chosen, then one can see that (3)

includes the following semilinear elliptic system in bounded domains Ω:







−∆u+ u = ψ(x, v)

−∆v + v = φ(x, u)
in Ω,

u = v = 0 on ∂Ω,

(4)

which was considered by Yang [27]. The existence of solutions for (4) is usually investi-

gated by finding critical points of a related functional. Typical features of the problem

are that firstly, the related functional is strongly indefinite. Secondly, the growths of φ

in u and ψ in v at infinity may not be ‘symmetric’, and lastly, Sobolev embeddings in

general are not compact, then the Palais-Smale condition may not be satisfied. Fur-

ther, by using the fixed point index theory in cones, the sub-supersolutions method,

Leray-Schauder degree theory and a priori estimates technique, Chang and Zhang [18]
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studied the global existence of positive solutions for the following multi-parameter

system of second-order elliptic equations:







−∆u = λf̂1(x, u)ĝ1(x, v)

−∆v = µf̂2(x, v)ĝ2(x, u)
in Ω,

u = v = 0, on ∂Ω,

(5)

with respect to parameters λ, µ ∈ R
+ = [0,+∞), f̂i, ĝi ∈ C

(
Ω × R

+, R+
0

)
(i = 1, 2),

Ω is the same as in (3) and R
+
0 = (0,+∞). In particular, (5) can be considered as a

nonlinear eigenvalue problem on the system of second-order elliptic equations.

Moreover, as all we know that the nonexistence theorems constitute an important

part of the theory of partial differential equations, which was initiated by the well-

known Liouville theorem for harmonic functions [17]. And an open question proposed

by Lions in [25] is whether the following system of Laplace equations

{

∆zi(x) = f̃i(z(x)) for a.e. x ∈ Ω,

zi(x) = 0 on ∂Ω,

where f̃i ∈ C
(
R

+ × · · · × R
+

︸ ︷︷ ︸

n

,R+
)
, i = 1, 2, · · · ,m, z(x) = (z1(x), · · · , zn(x)) and

Ω is a bounded open set in R
n(n ≥ 2) with smooth boundary ∂Ω, has a nonzero

positive solution under sublinear or superlinear conditions which involve the principal

eigenvalues of the corresponding linear systems (see [25, question (c) in Section 4.2]).

For some general equation systems and related works, one can see [18, 21, 28] and the

references therein.

On the other hand, by using the coincidence degree theory due to Mawhin [29],

Zhu [30] introduced and studied the variational inequality system involving the linear

operators of finding (u, v) ∈ K ×K such that

{

〈Au, x− u〉 ≥ 〈g(v), x− u〉, ∀x ∈ X,

〈Bu, y − u〉 ≥ 〈h(v), y − u〉, ∀y ∈ K,
(6)

whereK is a nonempty closed convex subset of reflexive Banach space X with its dual

X∗, and A,B : X → X∗ and g, h : K → X∗ are nonlinear operators. Further, the

author proved some existence results of positive solutions for the inequality system

(6) and gave an example as an application of the results. In 2006, Ding et al. [31]

introduced and studied a new system of generalized nonlinear co-complementarity

problems with set-valued mappings and constructed an iterative algorithm for ap-

proximating the solutions of the system of generalized co-complementarity problems.

Laptev [23] considered and studied the absence of locally bounded global non-negative
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solutions for the following semilinear elliptic inequality system







−∆u ≥ vq

−∆v ≥ up
in cone K ⊂ R

N ,

u|∂K = v|∂K = 0,

where p, q > 1 are constants.

Recently, by employing the ideas of Granas’ topological transversality, which was

little applied to study variational inequalities of nonlinear mappings, Lan [20] de-

veloped a new theory for the following variational inequality for demicontinuous S-

contractive mapping in a Hilbert space H:

〈u−Au, u− v〉 ≤ 0, ∀v ∈ K ⊂ H,

which is a special case of (6). As applications of such a new theory, the author

studied the existence of positive weak solutions for the following semilinear second-

order elliptic inequality

{

−∆u(x) ≥ φ(x, u(x)) for a.e. x ∈ Ω,

u(x) = 0, on ∂Ω,
(7)

where nonlinear Carathéodory function φ : Ω×R
+ → R satisfies suitable lower bound

conditions involving the critical Sobolev exponent. Furthermore, some illustrations

were given and some new results on the existence of nonzero positive solutions and

eigenvalues for variational inequalities with respect to (7) are explored in a new cone

K smaller than P =
{
u ∈ H1

0 : u(x) ≥ 0 for a.e. Ω
}
. We note that the new theory

and the existence in [20] have been little discussed for such elliptic inequalities in the

literature, and the elliptic inequality (7) and equations arise in the study of Newtonian

fluids and population models of one species in mathematical biology. However, as all

we know, the interactions among Newtonian fluids and the competition among species

are objective, and so the existence of nonzero positive weak solutions for semilinear

elliptic inequality system is worth investigating.

Motivated and inspired by the above works, in this paper, for solving the semilinear

elliptic inequality system (1), we shall consider the following semilinear second order

elliptic coupled inequality system:







−∆u(x) ≥ f(x, u(x), v(x))

−∆v(x) ≥ g(x, v(x), u(x)) − γ
for a.e. x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

(8)

where f, g : Ω×R
+×R

+ → R are two nonlinear functions, γ is a harvesting constant,

Ω is a bounded open set in R
n (n > 2) with meas(Ω) > 0 and smooth boundary ∂Ω.
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Remark 1. (i) If f(·, u, v) = ru
(

1− u

K

)

− u2v

b+ u2
and g(·, v, u) = v

(

−d+ au2

b + u2

)

for each u, v ∈ R
+, then (8) reduces to the system (1).

(ii) Furthermore, for appropriate and suitable choices of u, v, f, g and γ, one can

see that a number of known second order nonlinear elliptic equations and systems,

nonlinear elliptic inequalities and systems can be unified into the special cases of

the problem (8), which provide us a general and unified framework for studying a

wide range of interesting and important problems arising in engineering and applied

mathematics such as fluid mechanics, fluid dynamics, quantum mechanics, elasticity,

chemical reactor theory, magneto hydrodynamics and reaction diffusion process, etc..

For more details, see [1-5, 15-17, 22, 24, 32, 33] and the references therein.

This work is organized as follows: By using the ideas of Granas’ topological

transversality and generalizing the definition of essential operators related to vari-

ational inequalities due to Lan [20] from a single operator to coupled operators, we

develop a new theory of variational inequality systems of S-contractive type with

demicontinuous operators in Hilbert spaces in section 2. In section 3, based on the

preliminaries and results presented in section 2, a class of semilinear second order

elliptic coupled inequality systems of S-contractive type with demicontinuous opera-

tors and constant harvesting rates is introduced and studied, and existence of nonzero

positive weak solutions under more general suitable upper conditions and eigenvalue

problems for the semilinear elliptic inequality system is proved. Further, we obtain

the existence theorem for a class of systems of semilinear elliptic inequalities involv-

ing the specific Holling’s type III functional response with predator harvesting rates

arising the interactions between two species in mathematical biology. Moreover, some

concluding remarks are given in section 4.

2. PRELIMINARIES

Throughout this paper, let H be a Hilbert space endowed with norm ‖ · ‖ and inner

product 〈·, ·〉, respectively. Let K1 and K2 be two closed convex subsets of H, and

D1 and D2 be bounded open sets in H such that Di
K := Di ∩Ki 6= ∅ for i = 1, 2. For

i = 1, 2, we denote by D̄i
K and ∂Di

K the closure and the boundary of Di
K relative to

Ki, respectively. For some properties among these sets, we refer to [34]. We recall

that a closed convex set K is said to be a wedge if λx ∈ K for λ ≥ 0 and x ∈ K. If a

wedge K also satisfies K ∩ (−K) = {0}, then K is called a cone. If a wedge satisfies

K ∩ (−K) 6= {0} and K 6= −K, then K is said to be a proper wedge. We note that

a proper wedge is a wedge which is neither a cone nor a subspace of H.

In the sequel, we first give the following result on the equivalence between a
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variational inequality system of A and B

{

〈x−Ay, x− z〉 ≤ 0, ∀z ∈ K1,

〈y −Bx, y − w〉 ≤ 0, ∀w ∈ K2,
(9)

and a system of complementary problem for A and B

{

〈x−Ay, x〉 = 0 and 〈x−Ay, z〉 ≥ 0, ∀z ∈ K1,

〈y −Bx, y〉 = 0 and 〈y −Bx,w〉 ≥ 0, ∀w ∈ K2.
(10)

Lemma 2. Let Ki ⊂ H be a wedge for i = 1, 2 and A : D2 ⊂ H → H and

B : D1 ⊂ H → H be two nonlinear operators. Then the following assertions are

equivalent:

(i) (x, y) ∈ D1 ×D2 is a solution of the variational inequality system (9).

(ii) (x, y) ∈ D1 ×D2 is a solution of the system of complementary problem (10).

(iii) (x − Ay, z) = (y − Bx,w) = 0 for all z × w ∈ K1 × K2, that is, x − Ay is

orthogonal to K1 and y −Bx is orthogonal to K2, when K1 and K2 are subspaces of

H.

Proof. It is easy to see that problem (9) is equivalent to the following system of

co-complementary problem: find x ∈ D1 and y ∈ D2 such that

{

x−Ay ∈ (K1 − {x})∗,
y −Bx ∈ (K2 − {y})∗,

which is rewritten as

{

x−Ay ∈ K∗
1 , 〈x−Ay, x〉 = 0,

y −Bx ∈ K∗
2 , 〈y −Bx, y〉 = 0,

where K∗
1 is the polar cone of K1 , i.e.

K∗
1 = {u ∈ H : 〈u, v〉 ≥ 0, ∀v ∈ K1}.

This implies that (i) holds. For more detail, see, for example, [24, 31].

Let the symbols → and ⇀ indicate strong and weak convergence, respectively.

Next, we give some concepts and properties on demicontinuous S-contractive opera-

tors in H.

Definition 3. A nonlinear operator T : D ⊂ H → H is said to be

(i) compact if,

(a) T is continuous and T (Q) is precompact for every bounded set Q ⊂ D,
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(b) or T is completely continuous on D, that is, {yn} ⊂ D with yn ⇀ y ∈ D

implies Tyn → Ty;

(ii) pseudo-monotone if, xn ⇀ x∗ together with

lim sup
n→∞

〈Txn, xn − x∗〉 ≤ 0

implies that

〈Tx∗, x∗ − x〉 ≤ lim inf
n→∞

〈Txn, xn − x〉 ≤ 0, ∀x ∈ D;

(iii) k-dissipative if, there exists a constant k < 1 such that

(Tx− Ty, x− y) ≤ k‖x− y‖2, ∀x, y ∈ K;

(iv) demicontinuous if,

{xn} ⊂ D and xn → x ∈ D ∈ H together imply Txn ⇀ Tx;

(v) of S+-type if,

{yn} ⊂ D with yn ⇀ y ∈ H and lim sup(yn − Tyn, yn − y) ≤ 0

together imply yn → y;

(vi) S-contractive if I − T is of S+-type.

Remark 4. (i) In Definition 3, D need not to be convex. This enables us to develop

our theory for operators whose domains are arbitrary subsets of H.

(ii) The class of S-contractive operators is a convex set (see [35]) and contains

compact operators, k-dissipative operators with constant k ∈ [0, 1) and the sum of

the two type operators as special cases [34] and is a special class of the so-called

PM-operators studied by Lan and Webb [35] and references therein.

Lemma 5. Let Ki(i = 1, 2) be a bounded closed convex set in H. Suppose that

A : K2 ⊂ H → H and B : K1 ⊂ H → H are two demicontinuous S-contractive

operators. Then (9) has a solution in K1 ×K2.

Proof. Since A and B are two demicontinuous S-contractive operators, I − A and

I−B are demicontinuous pseudo-monotone operators (see [35, Proposition 2.4]). Note

that, in a Hilbert space, a net can be replaced by a sequence. Hence, the example

(III) in [31] can be applied to A and B when S(x, y) = x−Ay and T (x, y) = y −Bx

for all x, y ∈ H. Therefore, the result holds.

If Ki(i = 1, 2) is unbounded in Lemma 5, then the following result can be a

generalization of Lemma 5.
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Theorem 6. Let Ki(i = 1, 2) be an unbounded closed convex set in H. Assume

that A : K2 ⊂ H → H and B : K1 ⊂ H → H are two demicontinuous S-contractive

operators, and there exists x0 ∈ K1 and y0 ∈ K2 such that

lim sup
(x,y)∈K1×K2,‖x‖→∞

〈Ay, x− x0〉
‖x‖2 < 1,

lim sup
(x,y)∈K1×K2,‖y‖→∞

〈Bx, y − y0〉
‖y‖2 < 1.

(11)

Then the system (9) has a solution in K1 ×K2.

Proof. Let r0 > ‖x0‖ and ς0 > ‖y0‖ be such that K1
r0 = {x ∈ K1 : ‖x‖ < r0} 6= ∅,

K2
ς0 = {y ∈ K2 : ‖y‖ < ς0} 6= ∅, and let r ≥ r0 and ς ≥ ς0. By [35, Theorem 3.1],

now we know that there exists (zr, wς) ∈ K̄1
r × K̄2

ς such that

〈zr −Awς , zr − z〉 ≤ 0, ∀z ∈ K̄1
r ,

〈wς −Bzr, wς − w〉 ≤ 0, ∀w ∈ K̄2
ς .

(12)

Next, we show that {zr : r ≥ r0} and {wς : ς ≥ ς0} are bounded, that is,

sup{‖zr‖ : r ≥ r0} < M and {‖wς‖ : ς ≥ ς0} < L for some M > 0 and L > 0. In

fact, if not, there exists {zrn} ⊂ {zr : r ≥ r0} and {wςn} ⊂ {wς : ς ≥ ς0} such that

rn → ∞, ςn → ∞, ‖zrn‖ → ∞ and ‖wςn‖ → ∞. It follows from (12) that for rn ≥ r0

and ςn ≥ ς0,

〈zrn −Awςn , zrn − x0〉 ≤ 0,

〈wςn −Bzrn , wςn − y0〉 ≤ 0,

which imply that ‖zrn‖2 ≤ 〈Awςn , zrn − x0〉+ ‖zrn‖‖x0‖ and ‖wςn‖2 ≤ 〈Bzrn , wςn −
y0〉+ ‖wςn‖‖y0‖. Hence, we have

lim sup
〈Awςn , zrn − x0〉

‖zrn‖2
≥ 1, lim sup

〈Bzrn , wςn − y0〉
‖wςn‖2

≥ 1,

which contradict the condition inequalities (11). Let r ≥ max{r0,M} and ς ≥
max{ς0, L}, and take z ∈ K1 and w ∈ K2. Since ‖zr‖ < r, ‖wς‖ < ς , and K1,K2 are

convex, there exist t0, s0 ∈ (0, 1) such that ut : = tzr + (1 − t)v ∈ K̄1
r for t ∈ [t0, 1]

and ωs : = ςs+ (1 − s)ν ∈ K̄2
ς for s ∈ [s0, 1]. Hence, from (12), it follows that

〈zr −Awς , zr − ut〉 ≤ 0, ∀t ∈ [t0, 1]

〈wς −Bzr, wς − ωs〉 ≤ 0, ∀s ∈ [s0, 1].

This imply that

〈zr −Awς , zr − v〉 ≤ 0, ∀v ∈ K1

〈wς −Bzr, wς − ν〉 ≤ 0, ∀ν ∈ K2.

It completes the proof.
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We denote by V (D1
K × D2

K ,H × H) the set of all demicontinuous S-contractive

operators A : D̄K2 → H and B : D̄K1 → H such that the system (9) has no solutions

on ∂D1
K×∂D2

K . Following Granas et al. [11] and Lan [34], we generalize the definition

of essential operators related to variational inequalities in [20] from a single operator

to coupled operators.

Definition 7. Mapping (B,A) ∈ V (D1
K × D2

K ,H × H) is said to be essential on

D1
K × D2

K if for each operator (ϕ, ψ) ∈ V (D1
K × D2

K ,H × H) with ϕ(y) = Ay for

y ∈ D2
K and ψ(x) = Bx for x ∈ D1

K , the variational inequality system of ϕ and ψ has

a solution in D1
K ×D2

K .

Lemma 8. ([34]) An operator A : D ⊂ H → H is S-contractive on D if and only if

{yn} ⊂ D with yn ⇀ y ∈ H and lim sup ‖yn − y‖2 > 0 together imply

lim sup(Ayn, yn − y) < lim sup ‖yn − y‖2.

The following result provides the existence of nonzero positive solutions of the

system of complementary problem (10).

Lemma 9. For i = 1, 2, let Ki be a wedge in H and Ei, Di ⊂ H be bounded open

sets such that 0 ∈ EiK := Ei ∩ Ki and EiK ⊂ Di
K . Assume that A : D2

K → H
and B : D1

K → H are bounded demicontinuous S-contractive operators satisfying the

following conditions:

(LSS) There exist x0 ∈ D2
K and y0 ∈ D1

K such that the variational inequality system

of tA + (1 − t)x̂0 and ιB + (1 − ι)ŷ0 has no solutions on ∂D2
K × ∂D1

K for all

t, ι ∈ (0, 1), where û(x) = u ∈ Di
K for x ∈ D̄i

K and i = 1, 2.

(E1S) For i = 1, 2, there exists ei ∈ Ki with ‖ei‖ = 1 such that the variational

inequality system of S+β1ê1 and T +β2ê2 has no solutions on ∂D1
K×∂D2

K for

each βi > 0, where (S, T ) ∈ V (D1
K ×D2

K ,H×H).

Then (10) has a solution on D̄1
K × D̄2

K \ E1
K × E2

K .

Proof. Based on the results from Theorems 3.1 and 3.2, and Lemma 3.1 in [20], it

follows from Definition 7, Theorem 6, and (i) and (ii) of Lemma 2.1 that the proof is

similar to that of [20, Theorem 3.3] and so it is omitted.

3. EXISTENCE RESULTS

In this section, we shall apply the results obtained in the previous section to study

the existence of nonzero positive weak solutions for the following semilinear second
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order elliptic inequality system:







−∆u(x) ≥ f(x, u(x), v(x))

−∆v(x) ≥ g(x, v(x), u(x)) − γ
for a.e. x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

(13)

where Ω is a bounded open set in R
n (n > 2) with ν := meas(Ω) ∈ (0,∞) and

f, g : Ω×R
+×R

+ → R are two Carathéodory functions. That is, find (u, v) ∈ P ×P

such that for all w,̟ ∈ P ,

(u−Av, u− w)H1
0
≤ 0 and (v −Bu, v −̟)H1

0
≤ 0, (14)

where P is a standard positive cone in the Sobolev space H1
0 := H1

0 (Ω) with the

standard norm

‖u‖H1
0
=

(∫

Ω

|∇u(x)|2dx
)1/2

(15)

with ∇u(x) =
(
∂u

∂x1
, · · · , ∂u

∂xn

)

, and the operators A,B : P → P are defined by

(Av,w)H1
0
=

∫

Ω

f(x, u(x), v(x))w(x)dx,

for every fixed u(x) ∈ R
+,

(Bu,̟)H1
0
=

∫

Ω

[g(x, v(x), u(x)) − γ]̟(x)dx,

for each fixed v(x) ∈ R
+.

(16)

It is well known that H1
0 , equipped with the H1 scalar product, is a Hilbert space.

The system of semilinear second order elliptic inequalities (13) and equations

arise in the study of Newtonian fluids, and in predator-prey system with monotonic

functional response when n = 1 (see [12]). Further, and the generalizations of (13)

arise in the study of non-Newtonian fluids, non-Newtonian filtration, subsonic motion

of gases, plasma physical models, population dynamics and some chemical reactions,

see [17, 26, 32, 36] and the references therein.

In the sequel, we first give the following assumptions for convenience:

(H1) f, g : Ω × R
+ × R

+ → R meet the Carathéodory conditions, i.e., f(·, u, v) and
g(·, v, u) are measurable for each fixed u, v ∈ R

+, and f(x, ·, ·) and g(x, ·, ·) are
continuous for a.e. x ∈ Ω.

(H2) For each r, s > 0, there exist κr, τs ∈ L1
+(Ω) = {x ∈ L1(Ω) : x(t) ≥ 0 a.e. on Ω}

such that for a.e. x ∈ Ω and any u ∈ [0, r] and v ∈ [0, s],

|f(x, u, v)| ≤ κr(x), |g(x, v, u)| ≤ τs(x). (17)
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Remark 10. In the assumption (H2), the upper bound of |f(x, u, v)| and that of

|g(x, v, u)| do not depend on (u, v) and (v, u), respectively. Thus, it is more gen-

eral than those used in [20], where f(·, u) satisfies suitable lower and upper bound

conditions with respect to u.

Definition 11. A function (u, v) ∈ H1
0 × H1

0 is called a positive weak solution of

the semilinear elliptic inequality system (13) if (u, v) ∈ P × P satisfies the following

co-complementarity system:

∫

Ω

∇u(x)∇u(x) =
∫

Ω

f(x, u(x), v(x))u(x)dx,

∫

Ω

∇v(x)∇v(x) =
∫

Ω

[g(x, v(x), u(x)) − γ]v(x)dx

(18)

and
∫

Ω

∇u(x)∇w(x) ≥
∫

Ω

f(x, u(x), v(x))w(x)dx,

∫

Ω

∇v(x)∇̟(x) ≥
∫

Ω

[g(x, v(x), u(x)) − γ]̟(x)dx.

(19)

Since P is a cone in H1
0 , by Lemma 2, (16) and Definition 11, now we know that

(u, v) ∈ H1
0 × H1

0 is a positive weak solution of (13) if and only if (u, v) ∈ P × P

and (u, v) satisfies (18) and (19). In other words, the co-complementary systems (18)

and (19) is equivalent to the semilinear elliptic variational inequality system related

to P × P of finding (u, v) ∈ P × P such that

∫

Ω

∇u(x)∇(u(x) − w(x))

−
∫

Ω

f(x, u(x), v(x))(u(x) − w(x))dx ≤ 0,

∫

Ω

∇v(x)∇(v(x) −̟(x))

−
∫

Ω

[g(x, v(x), u(x)) − γ](v(x) −̟(x))dx ≤ 0.

(20)

Under suitable conditions which will be given below, the operators A and B defined

in (16) map P into H1
0 . Hence, (20) is written as (14).

By Theorems 7.10, 7.22 and (7.8) of [33, page 139], one can known that the

following lemma holds.

Lemma 12. (i) H1
0 ⊂ L2n/(n−2).

(ii) ‖u‖L2n/(n−2) ≤ c0‖u‖H1
0
for all u ∈ H1

0 , where c0 =
2(n− 1)

(n− 2)
√
n
. (iii) If {uk} ⊂

H1
0 with uk ⇀ u ∈ H1

0 , then uk → u strongly in Lq for each q ∈ [1, 2n/(n− 2)].
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Let r > 0 and take Pr = {u ∈ P : ‖u‖H1
0
< r} and ∂Pr = {u ∈ P : ‖u‖H1

0
= r}.

Now, we prove the following result which shows that the operatorsA and B defined

in (16) are compact.

Lemma 13. Under the hypotheses (H1) and (H2), the operators A and B defined

in (16) map P into H1
0 and are compact or S-contractive.

Proof. Let r, s > 0 and let u, v ∈ L
2n/(n−2)
+ in L2n/(n−2) with ‖u‖L2n/(n−2) ≤ r. By

(H2), there exist κr, τs ∈ L1
+(Ω) such that (17) holds. Hence, for a.e. x ∈ Ω̄,

|f(x, u(x), v(x))| ≤ κr(x) and |g(x, v(x), u(x))| ≤ τs(x). (21)

Firstly, we prove that the Nemytskii operator F defined by

F(u, v)(x) = f(x, u(x), v(x))

maps L
2n/(n−2)
+ × L

2n/(n−2)
+ to L1 and is continuous. In fact, letting u ∈ L

2n/(n−2)
+

with r = ‖u‖L2n/(n−2), then it follows from (H1), measurability of f(·, u(·), v(·)) and

(21) that

∫

Ω

|f(x, u(x), v(x))|dx ≤
∫

Ω

κr(x)dx <∞ (22)

and F(u, v) ∈ L1 for all u, v ∈ L
2n/(n−2)
+ . Take {uk}, {vk} ⊂ L

2n/(n−2)
+ with uk → u

and vk → v, that is, ‖uk − u‖L2n/(n−2) → 0 and ‖vk − v‖L2n/(n−2) → 0. Then

uk(x) → u(x) and vk(x) → v(x) for any x ∈ Ω̄ and by (H1), we get

f(x, uk(x), vk(x)) → f(x, u(x), v(x)) for a.e.x ∈ Ω̄. (23)

Letting r = sup{‖uk‖L2n/(n−2)}, ‖u‖L2n/(n−2)}, then one can know that r <∞. By

(21), for a.e. x ∈ Ω̄, we have

|f(x, uk(x), vk(x)) − f(x, u(x), v(x))|
≤ |f(x, uk(x), vk(x))|+ |f(x, u(x), v(x))|
≤ 2κr(x).

This, together with (23) and the Lebesgue dominated convergence theorem, implies

that

lim
k→∞

‖F(uk, vk)− F(u, v)‖L1

= lim
k→∞

∫

Ω

|f(x, uk(x), vk(x)) − f(x, u(x), v(x))|dx

=

∫

Ω

lim
k→∞

|f(x, uk(x), vk(x)) − f(x, u(x), v(x))|dx = 0.
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Hence, F : L
2n/(n−2)
+ ×L2n/(n−2)

+ → L1 is continuous. Similarly, one can know that the

Nemytskii operator G defined by G(v, u)(x) = g(x, v(x), u(x)) also maps L
2n/(n−2)
+ ×

L
2n/(n−2)
+ to L1 is continuous.

Secondly, we show that A and B map P into H1
0 and are compact. In fact, let

u, v ∈ P and w,̟ ∈ H1
0 . From (i) and (ii) of Lemma 12, (16) and (22), it follows

that for x ∈ Ω̄,

w(x) ≤ ‖w‖L2n/(n−2) ≤ c0‖w‖H1
0
, ̟(x) ≤ ‖̟‖L2n/(n−2) ≤ c0‖̟‖H1

0
,

where c0 is the same as in (ii) of Lemma 12, and

|(Av,w)| ≤
∫

Ω

|f(x, u(x), v(x))| · |w(x)|dx

≤ c0‖w‖H1
0

∫

Ω

|f(x, u(x), v(x))|dx <∞,

|(Bu,̟)| ≤
∫

Ω

[|g(x, v(x), u(x))| + γ] · |̟(x)|dx

≤ c0‖̟‖H1
0

[∫

Ω

|g(x, v(x), u(x))|dx + νγ

]

<∞,

which show that Av and Bu are well defined. Let wn, ̟n, w,̟ ∈ H1
0 with wn → w

and ̟n → ̟. Then, from (ii) of Lemma 12, we have

‖wn − w‖L2n/(n−2) → 0, ‖̟n −̟‖L2n/(n−2) → 0.

Since

|(Av,wn)− (Av,w)| ≤
∫

Ω

|f(x, u(x), v(x))| · |wn(x) − w(x)|dx

≤ ‖wn − w‖L2n/(n−2)

∫

Ω

|f(x, u(x), v(x))|dx

and

|(Bu,̟n)− (Bu,̟)|

≤
∫

Ω

(|g(x, v(x), u(x))| + γ) · |̟n(x)−̟(x)|dx

≤ ‖̟n −̟‖L2n/(n−2)

[∫

Ω

|g(x, v(x), u(x))|dx + νγ

]

,

we obtain (Av,wn) → (Av,w), (Bu,̟n) → (Bu,̟), Av ∈ H1
0 and Bu ∈ H1

0 .

Therefore, A and B map P into H1
0 . It follows from (iii) of Lemma 12 that A,B :

P → H1
0 are completely continuous and are compact.

Next, we prove the operators A and B are S-contractive. Since A,B : P → H1
0

are completely continuous, by (15), (ii) of Lemma 12 and the proof of first result, now

we have

‖Avk −Av‖H1
0
≤ c0‖F(uk, vk)− F(u, v)‖L1,
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‖Buk −Bu‖H1
0
≤ c0‖G(vk, uk)− G(v, u)‖L1 .

Thus, it follows that

(Avk −Av, vk − v)

=

∫

Ω

[f(x, u(x), vk(x)) − f(x, u(x), v(x))](vk − v)dx

≤
∫

Ω

2κr(x)(vk − v)dx

≤ 2‖κ‖L1‖vk − v‖L2n/(n−2) ,

(Buk −Bu, uk − u)

=

∫

Ω

[g(x, vk(x), uk(x)) − g(x, v(x), u(x))](uk − u)dx

≤
∫

Ω

2τs(x)(uk − u)dx

≤ 2‖l‖L1‖uk − u‖L2n/(n−2),

where

‖κ‖L1 = lim sup
x∈L2n/(n−2)

κr(x), ‖l‖L1 = lim sup
x∈L2n/(n−2)

τs(x).

This implies

lim sup(Avk, vk − v)H1
0
≤ 0 < lim sup ‖vk − v‖2H1

0
,

lim sup(Buk, uk − u)H1
0
≤ 0 < lim sup ‖uk − u‖2H1

0
.

By Lemma 8, we know that A and B defined in (16) are S-contractive. It completes

the proof.

In order to show that the fixed point index of A and B are zero, we need to employ

the first eigenvalue, denoted by νm, of the following homogeneous Dirichlet boundary

value problem involving the Laplacian operator −∆ ([37, Lemma 2.7 and Remark

2.1]): For any m ∈ L∞
+ (Ω), there exists ξm ∈ H1

0 ∩ (L
2n/(n−2)
+ \{0}) such that

{

∆ξm(x) = νmm(x)ξm(x) for a.e. x ∈ Ω,

ξm(x) = 0 on ∂Ω
(24)

for any given

νm = inf

{ ∫

Ω |∇u(x)||∇v(x)|dx
∫

Ω
m(x)|u(x)||v(x)|dx : u, v ∈ (H1

0 )+(Ω̄)\{0}
}

. (25)

For related work on studying such eigenvalue problems, we refer to [37, 38] and the

references therein.

Now, we are in a position to give our main results on the existence of positive

weak solutions for (13).
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Theorem 14. Suppose that (H1), (H2) and the following conditions hold:

(i) There exist r0, s0 > 0, ǫ ∈ (0, νζr0 ), ε ∈ (0, νφs0
) and ζr0 , φs0 ∈ L∞

+ (Ω)\{0} such

that for a.e. x ∈ Ω̄, and all u ∈ [r0,∞) and v ∈ [s0,∞),

f(x, u, v) ≤ vζr0(x)(νζr0 − ǫ), g(x, v, u) ≤ uφs0(x)(νφs0
− ε). (26)

(ii) There exist ρ0, ̺0 > 0, ǫ, ε > 0 and ϕρ0 , ψ̺0 ∈ L∞
+ (Ω)\{0} such that for a.e.

x ∈ Ω̄, and any u ∈ [0, ρ0] and v ∈ [0, ̺0],

f(x, u, v) ≥ vϕρ0(x)(νϕρ0
+ ǫ),

|g(x, v, u)− γ| ≥ uψ̺0(x)(νψ̺0
+ ε).

(27)

Then (13) has a nonzero positive weak solution in P × P .

Proof. It follows from Lemma 13 that A,B : P → H1
0 are compact. By (H2), for

the r0 and s0 given in the condition (i), there exist κr0 ∈ L1
+(Ω) and τs0 ∈ L1

+(Ω),

respectively, such that

|f(x, u, v)| ≤ κr0(x), |g(x, v, u)| ≤ τs0(x)

for a.e. x ∈ Ω̄ and any u ∈ [0, r0], v ∈ [0, s0], where r0 and s0 are the same as in the

condition (i). It follows from (26), we have for a.e. x ∈ Ω̄ and each u, v ∈ R
+,

|f(x, u, v)| ≤ κr0(x) + vζr0(x)(νζr0 − ǫ),

|g(x, v, u)| ≤ τs0 (x) + uφs0(x)(νφs0
− ε).

(28)

Taking

r > max






ρ0,

c0‖κr0‖L1 + (γ + c0‖τs0‖L1)
(

1− ǫν−1
ζr0

)

ǫν−1
ζr0

+ εν−1
φs0

− ǫε(νζr0νφs0
)−1






,

s > max






̺0,

γ + c0‖τs0‖L1 + c0‖κr0‖L1

(

1− εν−1
φs0

)

ǫν−1
ζr0

+ εν−1
φs0

− ǫε(νζr0νφs0
)−1






,

(29)

we show that the variational inequality system of tA and ιB has no solutions on

∂Ps × ∂Pr for t, ι ∈ [0, 1]. Indeed, if not, there exist u ∈ ∂Ps, v ∈ ∂Pr, t ∈ [0, 1] and

ι ∈ [0, 1]] such that

(u− tAv, u− w) ≤ 0, (v − ιBu, v −̟) ≤ 0 ∀w,̟ ∈ P.

From (10), we have

(u, u) = (tAv, u) = t

∫

Ω

f(x, u(x), v(x))u(x)dx,

(v, v) = (ιBu, v) = ι

∫

Ω

[g(x, v(x), u(x)) − γ]v(x)dx.

(30)
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It follows from (15) and (25) that

νζr0

∫

Ω

ζr0(x)u(x)v(x)dx ≤ ‖u‖H1
0
‖v‖H1

0
,

νφs0

∫

Ω

φs0(x)u(x)v(x)dx ≤ ‖u‖H1
0
‖v‖H1

0
.

(31)

Combining (28), (30), (31) and (ii) of Lemma 12 with (u, u) = ‖u‖2
H1

0
for each u ∈ H1

0 ,

we obtain

‖u‖2H1
0

= (u, u) = t

∫

Ω

f(x, u(x), v(x))u(x)dx

≤
∫

Ω

|f(x, u(x), v(x))| u(x)dx

≤
∫

Ω

κr0(x)u(x)dx + (νζr0 − ǫ)

∫

Ω

ζr0(x)u(x)v(x)dx

≤ ‖u‖L2n/(n−2)‖κr0‖L1 + (νζr0 − ǫ)ν−1
ζr0

‖u‖H1
0
‖v‖H1

0

≤ c0‖κr0‖L1‖u‖H1
0
+
(

1− ǫν−1
ζr0

)

‖u‖H1
0
‖v‖H1

0

and

‖v‖2H1
0
= (v, v) = ι

∫

Ω

[g(x, v(x), u(x)) − γ]v(x)dx

≤
∫

Ω

[|g(x, v(x), u(x))| + γ]|v(x)dx

≤
∫

Ω

τs0(x)v(x)dx + (νφs0
− ε)

∫

Ω

φs0(x)u(x)v(x) + γ

∫

Ω

v(x)dx

≤ ‖v‖L2n/(n−2)‖τs0‖L1 + (νφs0
− ε)ν−1

φs0
‖u‖H1

0
‖v‖H1

0
+ γ

∫

Ω

v(x)dx

≤ (c0‖τs0‖L1 + γ) ‖v‖H1
0
+
(

1− εν−1
φs0

)

‖u‖H1
0
‖v‖H1

0
.

From (29), these imply that

r = ‖u‖H1
0
≤
c0‖κr0‖L1 + (γ + c0‖τs0‖L1)

(

1− ǫν−1
ζr0

)

ǫν−1
ζr0

+ εν−1
φs0

− ǫε(νζr0 νφs0
)−1

< r,

s = ‖v‖H1
0
≤
γ + c0‖τs0‖L1 + c0‖κr0‖L1

(

1− εν−1
φs0

)

ǫν−1
ζr0

+ εν−1
φs0

− ǫε(νζr0 νφs0
)−1

< s,

which are contradictive. Hence, B and A satisfy Lemma 9 (LSS) on D1
K := ∂Pr and

D2
K := ∂Ps.

Let 0 < ρ < min
{
r, c−1

0 ρ0
}
and 0 < ̺ < min

{
s, c−1

0 ̺0
}
, where r and s are the

same in (29). It follows from (ii) of Lemma 12 and (27) that for x ∈ Ω,

u(x) ≤ ‖u‖L2n/(n−2) ≤ c0‖u‖H1
0
= c0ρ < ρ0, ∀u ∈ Pρ,
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v(x) ≤ ‖v‖L2n/(n−2) ≤ c0‖v‖H1
0
= c0̺ < ̺0, ∀v ∈ P̺

and for x ∈ Ω and all u ∈ Pρ, v ∈ P̺,

f(x, u(x), v(x)) ≥ (νϕρ0
+ ǫ)ϕρ0(x)v(x),

|g(x, v(x), u(x)) − γ| ≥ (νψ̺0
+ ε)ψ̺0(x)u(x).

(32)

Taking

e1(x) = ψ̺0(x), e2(x) = ϕρ0 (x) for x ∈ Ω̄,

where ψ̺0 and ϕρ0 satisfy (24) with m = ψ̺0 and m = ϕρ0 , respectively, then we get

(e1, w) = νψ̺0

∫

Ω

ψ̺0 (x)e1(x)w(x)dx for w ∈ P,

(e2, ̟) = νϕρ0

∫

Ω

ϕρ0(x)e2(x)̟(x)dx for ̟ ∈ P.

(33)

Now we prove that the variational inequality system of A+β1ê1 and B+β2ê2 have no

solutions on ∂P̺ × ∂Pρ for each βi > 0 (i = 1, 2). In fact, if not, there exist u ∈ ∂Pρ,

v ∈ ∂P̺ and βi > 0 (i = 1, 2) such that

(u −Av − β1e1, w) ≥ 0 for w ∈ P,

(v −Bu− β2e2, ̟) ≥ 0 for ̟ ∈ P.
(34)

By (32), we see that f(x, u(x), v(x)) ≥ 0 and |g(x, v(x), u(x))− γ| ≥ 0 for a.e. x ∈ Ω̄,

u ∈ ∂Pρ and v ∈ ∂P̺. Hence,

(Av,w) =

∫

Ω

f(x, u(x), v(x))w(x)dx ≥ 0

for u ∈ ∂Pρ, v ∈ ∂P̺, w ∈ P,

(Bu,̟) =

∫

Ω

|g(x, v(x), u(x)) − γ|̟(x)dx ≥ 0

for u ∈ ∂Pρ, v ∈ ∂P̺, ̟ ∈ P,

which, together with (34), imply that

(u,w) ≥ (Av,w) + (β1e1, w) ≥ (β1e1, w) for w ∈ P,

(v,̟) ≥ (Bu,̟) + (β2e2, ̟) ≥ (β2e2, ̟) for ̟ ∈ P.

Thus, we have

u(x) ≥ β1e1(x), v(x) ≥ β2e2(x) for a.e. x ∈ Ω. (35)

Letting

δ = sup
{
ς > 0 : (u(x), v(x)) ≥ ς(e1(x), e2(x)) for a.e. x ∈ Ω

}
, (36)
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then it follows from (35) that 0 < βi ≤ δ <∞ (i = 1, 2) and

(u(x), v(x)) ≥ δ(e1(x), e2(x)) for a.e. x ∈ Ω. (37)

From (32), (37) and (33), we have for all w,̟ ∈ P ,

(u,w) ≥ (Av,w) + (β1e1, w)

≥ (Av,w) =

∫

Ω

f(x, u(x), v(x))w(x)dx

≥ (νϕρ0
+ ǫ)

∫

Ω

ϕρ0(x)v(x)w(x)dx

≥ (νϕρ0
+ ǫ)δ

∫

Ω

ϕρ0(x)e2(x)w(x)dx

= θ(e2, w) = (θe2, w),

(v,̟) ≥ (Bu,̟) + (β2e2, ̟)

≥ (Bu,̟) =

∫

Ω

|g(x, v(x), u(x)) − γ|̟(x)dx

≥ (νψ̺0
+ ε)

∫

Ω

ψ̺0(x)u(x)̟(x)dx

≥ (νψ̺0
+ ε)δ

∫

Ω

ψ̺0(x)e1(x)̟(x)dx

= ϑ(e1, ̟) = (ϑe1, ̟),

where θ = ν−1
ϕ̺0

(νϕρ0
+ ǫ)δ > δ and ϑ = ν−1

ψρ0
(νψ̺0

+ ε)δ > δ. Hence, we get

u(x) ≥ θe2(x), v(x) ≥ ϑe1(x) for a.e. x ∈ Ω.

Set e(x) := min{e1(x), e2(x) for a.e. x ∈ Ω}. Then, by (36), we know that

δ(e(x), e(x)) ≥ (u(x), v(x)) ≥ (θe(x), ϑe(x))

≥ δ(e(x), e(x)) for a.e. x ∈ Ω.

This is a contradiction. Therefore, B and A satisfy (E1S) in Lemma 9 on E1
K×E2

K :=

∂Pρ×∂P̺. By Lemma 9, now we know that (13) has a nonzero positive weak solution

in P × P . This completes the proof.

Let

Υ(u, v) = inf
x∈Ω̄

{
f(x, u, v)

v
,
|g(x, v, u)− γ|

u

}

,

Υ(u, v) = sup
x∈Ω̄

{
f(x, u, v)

v
,
|g(x, v, u)− γ|

u

}

,

Υ0 = lim inf
(u,v)→(0+,0+)

Υ(u, v), Υ∞ = lim sup
(u,v)→(∞,∞)

Υ(u, v),

As a special case of Theorem 14, we have the following result.
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Corollary 15. Let ν1 = νm ∈ (0,∞) with m ≡ 1 be given by (25). If

Υ∞ < ν1 < Υ0,

Then (13) has a nonzero positive weak solution in P × P .

By Theorem 14, we prove a result on existence of nonzero positive weak solutions

in H1
0 × H1

0 of (1), which is an illustration and easily verified in applications when

the nonlinearity is independent of the variable x.

Theorem 16. Suppose that lim(u,v)→(0+,0+)
u

v
= σ, a ≥ d and b > 0. Then (1) has

a nonzero positive weak solution in P ×P for rσ ∈ (ν1,∞), where ν1 = νm ≥ σ(a−d)
with m ≡ 1 is given by (25).

Proof. Since for γ > 0 and all x ∈ Ω,

lim
(u,v)→(0+,0+)

f1(u, v)

v
= r lim

(u,v)→(0+,0+)

[
u

v
·
(

1− u

K

)

− u2

b+ u2

]

= rσ > ν1,

lim
(u,v)→(0+,0+)

|g1(v, u)− γ|
u

= lim
(u,v)→(0+,0+)

∣
∣
∣
∣

(

−d · v
u
− γ

u
+

auv

b+ u2

)∣
∣
∣
∣

=
d

σ
+∞ > ν1

and

lim
(u,v)→(∞,∞)

f1(u, v)

v

= r lim
(u,v)→(∞,∞)





u

v
·
(

1− u

K

)

− 1

b

u2
+ 1






= −∞− σ ≤ ν1,

lim
(u,v)→(∞,∞)

|g1(v, u)− γ|
u

= lim
(u,v)→(∞,∞)

∣
∣
∣
∣
∣
∣
∣




−d · v

u
− γ

u
+

a · v
u

b

u2
+ 1






∣
∣
∣
∣
∣
∣
∣

= σ(a− d) ≤ ν1,

it follows from Theorem 14 that the results hold. This completes the proof.
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As an application of Corollary 15, we consider the following eigenvalue problem

of second order elliptic inequality system:






−∆u(x) ≥ λ1f(x, u(x), v(x))

−∆v(x) ≥ λ2g(x, v(x), u(x)) − γ̂
for a.e.x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω.

(38)

Corollary 17. Assume that

0 ≤ Υ∞ < Υ0 ≤ ∞.

Then for each λi ∈
(
ν1
Υ0

,
ν1
Υ∞

)

(i = 1, 2), the eigenvalue problem (38) has a nonzero

positive weak solution in P × P .

Proof. Since for each λi ∈
(
ν1
Υ0

,
ν1
Υ∞

)

(i = 1, 2),

λiΥ0 > ν1 and λiΥ
∞ < ν1 for i = 1, 2,

the result follows from Corollary 15 with γ̂ = λ2γ, where γ is the harvesting rate in

(13).

Remark 18. Similarly, under some suitable conditions, we can consider existence of

nonzero positive weak solutions for the following eigenvalue problems on variational

inequality systems:







−∆u(x) ≥ f(x, u(x), v(x)) + λ1η1(x, v(x))

−∆v(x) ≥ g(x, v(x), u(x)) + λ2η2(x, u(x))− γ
for a.e. x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

where ηi : Ω× R
+ → R are two nonlinear functions for i = 1, 2.

4. CONCLUDING REMARKS

In this paper, we considered and studied the semilinear second order elliptic coupled

inequality system of finding (u, v) ∈ P × P such that







−∆u(x) ≥ f(x, u(x), v(x))

−∆v(x) ≥ g(x, v(x), u(x)) − γ
for a.e.x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

(39)

where P is a standard positive cone in the Sobolev space H1
0 (Ω), which has been

hardly discussed in the literature. By using the ideas of of Granas’ topological
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transversality, a theory of the following variational inequality system for demicon-

tinuous S-contractive operators in Hilbert spaces:

{

〈x−Ay, x− z〉 ≤ 0 ∀z ∈ K1,

〈y −Bx, y − w〉 ≤ 0 ∀w ∈ K2

was first developed. Then, the existence of nonzero positive weak solutions and eigen-

value problems for the semilinear second order elliptic inequality system (39) was

studied based on variational technique with the theory of variational inequality sys-

tems. Finally, we obtain results on the existence of nonzero positive weak solutions

for the following semilinear elliptic predator-prey coupled inequality system of the

specific Holling’s type III functional response with predator harvesting rates arising

the interactions between two species in mathematical biology:







−∆u(x) ≥ ru(x)

(

1− u(x)

K

)

− u2(x)v(x)

b+ u2(x)

−∆v(x) ≥ v(x)

(

−d+ au2(x)

b+ u2(x)

)

− γ

for a.e. x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

Moreover, we remark that if the conditions in Theorem 14 are changed as those

in Theorem 2.1 of [21], one can obtain the results on the existence of nonzero positive

weak solutions for the system (39) and the general system of second order elliptic

variational inequality problems to find z = (z1, z2, · · · , zn) ∈ ∏n
i=1 P such that for

i = 1, 2, · · · , n,
{

−∆zi(x) ≥ fi(x, z(x)) for a.e. x ∈ Ω,

z(x) = 0 on ∂Ω.
(40)

Further, the second argument z(x) of fi in (40) can be replaced by

z(i)(x) =







(z1(x), z2(x), · · · , zn(x)) for i = 1,

(zi(x), z1(x), z2(x), · · · , zi−1(x), zi+1(x), · · · , zn(x))
for i = 2, 3, · · · , n− 1,

(zn(x), z1(x), z2(x), · · · , zn−1(x)) for i = n,

that is, zi(x), the ith component of z(x), is always placed in the first component of

z(i)(x) for i = 1, 2, · · · , n. Results on eigenvalue problems of such elliptic systems can

be similarly derived and generalize some previous results on the eigenvalue problems

of systems of Laplacian elliptic equations in the literature.
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