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ABSTRACT: In this paper we study a new class of sigmoidal functions. We will

consider the possibility of approximating the function

κ(t) =

{
0, 0 ≤ t < 1

[0, 1], t = 1

by new family with respect to Hausdorff distance. Some applications in the theory

of impulse technics, filter synthesis and debugging theory are given. We analyze also

the ”real wealth data” and ”actual data to estimate the number of software residual

faults” by the new sigmoid. Some visualizations of the typical emitting charts are

also given. We will consider also the possibility of approximating the function

v(t) =






0, −1 ≤ t ≤ − 2β
m

1
2 , −

2β
m
< t < 2β

m

1, 2β
m

≤ t ≤ 1

by the new generalized Yun’s activation function. Approximating of this function is

related to the analysis of electric steps and chains. Numerical examples using CAS

Mathematica, illustrating our results are presented.
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1. INTRODUCTION AND PRELIMINARIES

Sigmoidal functions (also known as ”activation functions”) find multiple applications

to population dynamics, artificial neural networks, antenna–feeder technique, debug-

ging theory and others [1]–[11], [21]–[35].

Definition 1. The κ function is defined by

κ(t) =





0, 0 ≤ t < 1

[0, 1], t = 1
(1)

Definition 2. [12] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

Definition 3. The new class of sigmoid functions in the interval [0, 1) is defined by:

M(t) = 1−




1+d
1

m

1−d
1

m

− tβ

1+d
1

m

1−d
1

m

+ tβ




m

. (3)

We will explicitly point out that the functions of type
(

αβ+tβ

αβ−tβ

)k

have been used

substantially by Dombi, Jonas, Toth and Arva in generating the proposed new ”omega

probability distribution” [10] (see, also [36]).

It is known that for the value of the best Hausdorff approximation of the function

κ∗(t) =

{
0, 0 ≤ t ∈ [−1, 1)

1, t = 1

by algebraic polynomial of degree less than n

P (t) = δTn

(
2t+ δ

2− δ

)

(Tn(t) is the Chebyshev polynomial, see, Fig. 1) the following is valid [12]:
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Figure 1: The polynomial of the best Hausdorff distance; n = 19; En(κ
∗) =

0.02571612 (see, [11].

Figure 2: The impulse function v(t) for β = 11; m = 32.

δ = 2

(
lnn

n

)2

+O

(
lnn

n2

)
.

Definition 4. The typical example of impulse function v(t) is the following (see,

Fig. 2)

v(t) =





0, −1 ≤ t ≤ − 2β
m

1
2 , −

2β
m
< t < 2β

m

1, 2β
m

≤ t ≤ 1.

(4)

Approximating of this function is related to the analysis of electric steps and
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Figure 3: The sigmoid M(t) for β = 2; d = 0.0001; m = 1.5.

chains.

Definition 5. We define the following generalized Yun’s activation function [7]–[8]

by:

W (t) =
(1 + tβ)m

(1 + tβ)m + (1− tβ)m
(5)

where β is odd and 2β
m
< 1.

The basic approaches for approximation of functions and point sets of the plane

by algebraic and trigonometric polynomials with respect to Hausdorff distance (H–

distance) are connected to the work and achievements of Bl. Sendov who established

a Bulgarian school in Approximation theory, particularly developing the theory of

Hausdorff approximations.

For some basic results about H–continuous functions and their application to prob-

lems in abstract areas such as Real Analysis, Approximation Theory and Set–valued

Analysis see, [13]–[19]. For other applications of Hausdorff distance, see [52].

2. MAIN RESULTS

2.1. SOME PROPERTIES OF THE FUNCTION M(T )

As long as the function M(t) can be considered as an ”activation function” in the

interval [0, 1) (see for instance Fig. 3), in this article we will consider the possibility of

approximating the function κ(t) with the new family in respect of Hausdorff distance.

The Hausdorff distance d between the κ(t) and the sigmoidal function M(t) sat-

isfies (see, Fig. 4 – Fig. 6)

M(1) = 1− d (6)
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Figure 4: The sigmoid M(t) for m = 14; β = 17.0138; H–distance d = 0.14.

Figure 5: The sigmoid M(t) for m = 2; β = 28.3028; H–distance d = 0.1.

Figure 6: The sigmoid M(t) for m = 2; β = 76.0654; H–distance d = 0.05.

M(1− d) = 1−




1+d
1

m

1−d
1

m

− (1− d)β

1+d
1

m

1−d
1

m

+ (1− d)β




m

= d. (7)

Obviously, equality (6) is fulfilled. At set values of parameters m and β, the

value d searched is calculated from the nonlinear equation (7). With some constraints
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Figure 7: The function W (t) for m = 24; β = 3; H–distance d = 0.104791.

imposed on these parameters, it can be shown that the nonlinear equation (7) has a

positive root for d. A precise result can be found in Section 4. Approximations of the

κ(t) by family M(t) for various m and β are visualized on Fig. 4 – Fig. 6.

2.2. SOME PROPERTIES OF THE GENERALIZED YUN’S

ACTIVATION FUNCTION W (T )

For the one–sided Hausdorff distance between v(t) and W (t) is valid:

W

(
β

m
+ d

)
= 1− d. (8)

At set values of parameters m and β, the value d searched is calculated from the

nonlinear equation (8).

Approximations of the v(t) by family W (t) for various m and β are visualized on

Fig. 7 – Fig. 9.

From Figures 7 – 9, we see that the ”saturation” is faster.

3. SOME APPLICATIONS

3.1. APPROXIMATING THE ”REAL WEALTH DATA”

For example the appropriate lest–square fitting of the real wealth data by the model

M∗(t) = ωM(t) (9)

yields for m = 68; β = 16.0979, d = 1.× 10−14, ω = 27638.4 (see, Fig. 10).
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Figure 8: The function W (t) for m = 24; β = 7; H–distance d = 0.0734997.

Figure 9: The function W (t) for m = 52; β = 21; H–distance d = 0.0394412.

3.2. APPLICATION IN THE THEORY OF IMPULSE TECHNICS

The results have independent significance in the study of issues related to neural

networks and impulse technics.

For example, after the substitution t = kl cos θ + a, where
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Figure 10: The fitted model M∗(t).

– k = 2π
λ
, λ is the wave length;

– a is the phase difference;

– θ is the azimuthal angle;

– l is the distance between the emitters (l = λ
2 is fixed),

the our model gives typical emitting chart of antenna factor (see, Fig. 11 – Fig. 12).

Of course, the question of the practical realization of the activation functions which

are generated as emitting charts remains open.

Remark. In many cases it is important for the specialists working in this field to

pre-set the magnitude d associated with the ”noise in the antenna”.

In this setting and fixed parameters: a, m; λ, the unknown quantity β can be

calculated as the root of the nonlinear equation (7).

3.3. APPROXIMATING THE ”ACTUAL DATA TO ESTIMATE THE

NUMBER OF SOFTWARE RESIDUAL FAULTS”

We analyze the following data [37]–[38] (see, Fig. 13)

After that using the model M∗(t) for ω = 5186, m = 10, d = 0.97 and β = 1.1752

we obtain the fitted model (see, Fig. 14).

3.4. FILTERS, DESIGNED BY APPROXIMATION OF THE

FUNCTION κ

For the first time similar problem was discussed by Sendov, Shinev and Kyurkchiev

in [39] as a natural research continuation of the possibility for design of Hausdorff

type diagram functions and examination of linear antenna grids.

Details could be found in [40]–[43].
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Figure 11: Typical emitting chart for β = 14; a = 0.02; m = 1; d = 0.001.

Figure 12: Typical emitting chart for β = 8; a = −0.0001; m = 4; d =

0.00005.

The polynomial of the best Hausdorff approximation of the function κ, is used in

practice for different goals in the field of filter synthesis [44]–[45].



798 N. KYURKCHIEV AND G. NIKOLOV

Figure 13: the ”actual data to estimate the number of software residual

faults” [37]–[38].

Figure 14: The fitted model M∗(t).

For example a typical filter with a ”pass-band” in the interval [0, 1− d] is shown

on the Fig. 15.

Consider the function

D(t) = 1−M(t). (10)
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Figure 15: A typical filter with a ”pass-band” in the interval [0, 1 − d] (see,

for example [44]–[45]).

Figure 16: A typical ”prototype filter” – D(t) for β = 30; m = 2; d = 0.001.

A typical ”prototype filter” – D(t) is plotted on Fig. 16.

3.5. APPROXIMATING THE SPECIFIC ”CANCER STEM CELL

DATA”

We conclude that, the proposed model M(t) has three free parameters leading to

greater flexibility in modeling various data types.

We will demonstrate this with another example - approximating the specific ”Can-
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Figure 17: The fitted model M∗(t).

cer Stem Cell data” (see, [51]):

Empirical cdf :=

{{0.3253, 0}, {0.58, 0}, {0.5964, 0.013}, {0.73, 0.013}, {0.747, 0.031},

{0.76, 0.031}, {0.7711, 0.048}, {0.79, 0.048}, {0.91, 0.084},

{0.9277, 0.093}, {1.035, 0.1022}, {1.036, 0.111}, {1.11, 0.1289},

{1.127, 0.1422}, {1.23, 0.1422}, {1.3012, 0.2356}, {1.3614, 0.2356},

{1.4819, 0.2844}, {1.5422, 0.4756}, {1.6084, 0.5244}, {1.6386, 0.6178},

{1.699, 0.7911}, {1.7831, 0.8756}, {1.8916, 0.9511}, {2.006, 0.9822},

{2.2349, 0.9822}, {2.241, 1}, {2.4458, 1}}.

After that using the model M∗(t) for ω = 1, m = 8, d = 0.95 and β = 5.99671 we

obtain the fitted model (see, Fig. 17).

Remark. When β is even, the model W (t) can be used to approximate the

impulse function shown in Fig. 18.

For β = 10 and m = 30 for the Hausdorff distance we get d = 0.0655016 (see, Fig.

19).

4. APPENDIX.

Recall that the sigmoid functions in the interval [0, 1) are of the form

M(t) = 1−




1+d
1

m

1−d
1

m

− tβ

1+d
1

m

1−d
1

m

+ tβ




m

. (11)
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Figure 18: The impulse function v(t) for β = 8; m = 26.

Figure 19: The functionW (t) for m = 30; β = 10; H–distance d = 0.0655016.

We assume in what follows that parameters d, m and β obey the restrictions

d ∈ (0, 1/2) ,

m > 0 ,

β > 0 .

(12)

It follows from (11) thatM(1) = 1−d for all admissiblem and β, and we are interested

in the behavior of parameters m and β ensuring the equation (7),

M(1− d) = d . (13)

We shall prove the following statement.

Theorem 6. (i) For any fixed d ∈ (0, 1/2) and m > 0 there exists a unique

β = β(d,m) > 0 such that equation (13) holds true;
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(ii) β(d,m) is a monotonically increasing function of m and

β(d,m) <
ln
(

ln(1−d)
ln d

)

ln(1 − d)
=: β̃ . (14)

For 0 < m ≤ 1, a sharper upper bound for β(d,m) is given by

β(d,m) <

ln

(
1−(1−d)

1

m

1+(1−d)
1

m

)

ln(1− d)
=: β(d,m) . (15)

Before proving Theorem 6, let us mention that (13) is equivalent, under assump-

tions (12), to the equation

(1 − d)β =

1− (1−d)
1

m −d
1

m

1−
[
d(1−d)

] 1

m

1 + (1−d)
1

m −d
1

m

1−
[
d(1−d)

] 1

m

=:
1− g(d,m)

1 + g(d,m)
. (16)

We shall need the following

Lemma 7. (i) For every fixed m > 0,

g(d,m) =
(1− d)

1

m − d
1

m

1−
[
d(1− d)

] 1

m

is a monotonically decreasing function of d in the interval (0, 1/2). Moreover,

0 < g(d,m) < (1 − d)
1

m < 1 ; (17)

(ii) For every fixed d ∈ (0, 1/2), g(d,m) is a monotonically increasing function of

m in the interval (0,∞) and

0 = lim
m→0+

g(d,m) < g(d,m) <
ln d− ln(1 − d)

ln d+ ln(1 − d)
< 1 . (18)

Proof. (i) The monotonicity of g with respect to d is obvious, and only the upper

bound in (17) needs to be proved; it follows from the inequality

y − x

1− xy
≤ y , 0 < x < y < 1 ,

which is easily verified.

(ii) Let us set y = 1− d, x = d, α = 1/m, then we need to show that

ϕ(α) =
yα − xα

1− xαyα
, 0 < x < y < 1,
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is a monotonically decreasing function in (0,∞). After differentiation and some sim-

plification we get

ϕ′(α) =
(1− x2α)(1− y2α)

(1− xαyα)2

[ yα

1− y2α
ln y −

xα

1− x2α
lnx

]
,

hence it suffices to show that

ψ1(x) =
xα

1− x2α
lnx

is a decreasing function in (0, 1). We have

ψ′

1(x) =
xα−1(1 + x2α)

1− x2α)2

[1− x2α

1 + x2α
+ α lnx

]
=:

xα−1(1 + x2α)

1− x2α)2
ψ2(x) .

Since ψ2(1) = 0 and

ψ′

2(x) =
α(1 − x2α)2

x(1 + x2α)2
> 0 , 0 < x < 1, α > 0 ,

it follows that ψ2(x) < 0 for x ∈ (0, 1), and therefore ψ′

1(x) < 0 for x ∈ (0, 1).

Consequently, ϕ(α) is decreasing in (0,∞), whence g(d,m) is an increasing function of

m in (0,∞). Now the upper bound in (18) follows from g(d, ;m) < limm→+∞ g(d,m)

and application of the L´Hospital rule to the right-hand side. �

Corollary 8. For every fixed d ∈ (0, 1/2), the function

h(d,m) =
1− g(d,m)

1 + g(d,m)

is a monotonically decreasing function of m in the interval (0,∞). Moreover,

1 > h(d,m) >
ln(1− d)

ln d

and

h(d,m) >
1− (1− d)

1

m

1 + (1− d)
1

m

.

Proof of Theorem 6. Assume that d ∈ (0, 1/2) and m > 0 are fixed. Since

f(β) = (1− d)β

is a continuous and strictly monotonically decreasing function in (0,∞), with f(0) = 1

and limβ→+∞ f(β) = 0, it follows from Corollary 8 and the Weierstrass theorem that

there exists a unique β = β(d,m) > 0 such that f(β) = h(d,m). Thus, equation (16),

and thereby (13), has a unique solution β = β(d,m) > 0.
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Using again Corollary 8, we conclude that if 0 < m1 < m2, then h(d,m1) >

h(d,m2). Since f(β) is monotonically decreasing, it follows that β(d,m1) < β(d,m2),

thus β(d,m) is a monotonically increasing function of m.

To derive the upper bounds for β(d,m) in (14) and (15), we consider the equations

f(β) =
ln(1 − d)

ln d
and f(β) =

1− (1− d)
1

m

1 + (1− d)
1

m

,

whose solutions are respectively

β̃(d) =
ln
(

ln(1−d)
ln d

)

ln(1 − d)
and β(d,m) =

ln

(
1−(1−d)

1

m

1+(1−d)
1

m

)

ln(1− d)
.

According to Corollary 8, the right-hand sides of the above equations are lower bounds

for h(d,m). Since f is a decreasing function of β, it follows that β(d,m) < β̃(d) and

β(d,m) < β(d,m). �

Remark 9. It can be seen that β̃(d) provides a good approximation to β(d,m)

when m is large, while when m is small (i.e., close to 0) a very good approximation

to β(d,m) is furnished by β(d,m).

5. CONCLUSION

In this paper we study the possibility of approximating the functions κ(t) and v(t)

with the new families with respect to Hausdorff distance.

Some applications are also given.

We further plan to extend the Distributed Platform for e-Learning (DisPeL) [46]–

[50] with specialized modules for simulation of Hausdorff type diagram functions and

prototype filters.
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