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ABSTRACT: The exact solutions of most nonlinear difference equations cannot

be obtained theoretically sometimes. Therefore, a massive number of researchers pre-

dict the long behaviour of most difference equations by investigating some qualitative

properties of these equations. In this article, we aim to analyze the asymptotic stabil-

ity, global stability, periodicity of the solution of an eighth-order difference equation.

Moreover, closed form solution of some special cases of the governing equation will

be presented in this paper.
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1. INTRODUCTION

This paper deals with the solution behaviour of the difference equation
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sn+1 = αsn−3 ±
βsn−3sn−7

γsn−3 ± δsn−7
, n = 0, 1, ... (1)

where the initial conditions s−7, s−6, s−5, s−4, s−3, s−2, s−1, s0, are arbitrary

positive real numbers and δ, α, β, γ are constants. Also we obtain the form of

solution of some special cases.

Many problems in Probability give rise to difference equations[33, 34]. Such as

hypergeometric, binomial and poison distributions also in Gambler’s Ruin [35] and

Two state systems (Neural Networks) [36]. Difference equations relate to differential

equations as discrete mathematics relates to continuous mathematics[37]. Anyone

who has made a study of differential equations will know that even supposedly ele-

mentary examples can be hard to solve. By contrast, elementary difference equations

are relatively easy to deal with. Aside from Probability, Computer Scientists take an

interest in difference equations for a number of reasons [38]. For example, difference

equations frequently arise when determining the cost of an algorithm in big-O nota-

tion. Since difference equations are readily handled by program, a standard approach

to solving a nasty differential equation is to convert it to an approximately equiva-

lent difference equation. The study and solution of asymptotic stability of non-linear

rational difference equation of high order is quite challenging and rewarding. It is ex-

tremely useful in the behavior analysis of mathematical models in various biological

systems and other applications. In recent years, the global asymptotic behavior of the

difference equations of rational form has been one of the main topics in the theory of

difference equations [10]. Moreover, diverse nonlinear trend occurring in science and

engineering can be modeled by such equations and the solution about such equations

offer prototypes towards the development of the theory, see for example[5-9].

In [11] E. M. Elsayed investigated the solution of the following non-linear difference

equation.

zn+1 = azn +
bz2n

czn + dz2n−1

, n = 0, 1, ....

Elabbasy et al. [12] studied the boundedness, global stability, periodicity character

and gave the solution of some special cases of the difference equation.

Φn+1 =
.αΦn−l + βΦn−k

AΦn−l +BΦn−k

.

Elabbasy et al. [13] investigated the global stability, periodicity character and gave

the solution of some special cases of the difference equation

Ψn+1 =
aΨn−lΨn−k

bΨn−p + cΨn−q

.

Yalçınkaya et. al [14] has studied the following difference equation

xn+1 = α+
xn−m

xk
n

.
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Saleh et. al [15]study the solution of difference

yn+1 = A+
yn

yn−k

Keratas et. al [16]gave the solution of the following difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

See also [17,18,19]. Other related work on rational difference equations see in

refs. [30,31,32]. Motivated by the aforementioned study, our goal in this paper is

to investigate the qualitative behavior of positive solutions of the rational difference

equation of seventh order.

sn+1 = αsn−3 +
βsn−3sn−7

γsn−3 + δsn−7
, n = 0, 1, ...

Here, we recall some basic definitions and some theorems that we need in the

sequel.

Let I be some interval of real numbers and let

ξ : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions

z−k, z−k+1, ...,z0 ∈ I, the difference equation

zn+1 = ξ(zn, zn−1, ..., zn−k), n = 0, 1, ..., (2)

has a unique solution {zn}
∞

n=−k.

Definition 1. (Equilibrium Point) A point z ∈ I is called an equilibrium point of

Eq.(2) if

z = ξ(z, z, ..., z).

That is, zn = z for n ≥ 0, is a solution of Eq.(2), or equivalently, z is a fixed point of

f .

Definition 2. (Periodicity) A Sequence {zn}
∞

n=−k is said to be periodic with period

p if zn+p = zn for all n ≥ −k.

Definition 3. (Stability) (i) The equilibrium point z of Eq.(2) is locally stable if for

every ǫ > 0, there exists δ > 0 such that for all z−k, z−k+1, ..., z−1,z0 ∈ I with

|z−k − z|+ |z−k+1 − z|+ ...+ |z0 − z| < δ,

we have

|zn − z| < ǫ for all n ≥ −k.
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(ii) The equilibrium point z of Eq.(2) is locally asymptotically stable if z is locally

stable solution of Eq.(2) and there exists γ > 0, such that for all z−k, z−k+1, ..., z−1,

z0 ∈ I with

|z−k − z|+ |z−k+1 − z|+ ...+ |z0 − z| < γ,

we have

lim
n→∞

zn = z.

(iii) The equilibrium point z of Eq.(2) is global attractor if for all z−k, z−k+1, ..., z−1,

z0 ∈ I, we have

lim
n→∞

zn = z.

(iv) The equilibrium point z of Eq.(2) is globally asymptotically stable if z is locally

stable, and z is also a global attractor of Eq.(1.6).

(v) The equilibrium point z of Eq.(2) is unstable if z is not locally stable.

(vi) The linearized equation of Eq.(2) about the equilibrium z is the linear difference

equation

υn+1 =

k
∑

i=0

∂F (z,z,...,z)
∂zn−i

υn−i.

Theorem A [2]: Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

zn+1 + pzn + qzn−k = 0, n = 0, 1, ... .

The following theorem will be useful for the proof of our results in this paper.

Theorem B [1]: Let [α, β] be an interval of real numbers and assume that ξ :

[α, β]2 → [α, β], is a continuous function and consider the following equation

zn+1 = ξ(zn, zn−1), n = 0, 1, .... (*)

satisfying the following conditions:

(a) ξ(l, x) is non-decreasing in l ∈ [α, β] for each fixed x ∈ [α, β] and g(l, x) is

non-increasing in x ∈ [α, β] for each fixed l ∈ [α, β]

(b) If (λ, µ) ∈ [α, β]× [α, β] is a solution of the system

µ = ξ(µ, λ) and λ = ξ(λ, µ),

So λ = µ. Then Eq.(*) has a unique equilibrium z ∈ [α, β] and every solution of

Eq.(1.16) converges to z.
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2. LOCAL STABILITY OF THE EQUILIBRIUM POINT OF EQ.(1)

In this section we study the local stability character of the equilibrium point of.(1).

The equilibrium points of Eq.(1) are given by the relation

s = αs+
βs2

γs+ δs
.

or

s2(1− α)(γ + δ) = βs2

If (1− α)(γ + δ) 6= β, then the unique equilibrium point is s = 0

Let f : (0,∞)2 −→ (0,∞) be a continuously differentiable function defined by

f(u, v) = αu+
βuv

γu+ δv
. (3)

Therefore it follows that

fu(u, v) = α+
βδv2

(γu+ δv)
2 , fv(u, v) =

βδu2

(γu+ δv)2
,

so, at s

fu(s, s) = α+
βδ

(γ + δ)
2 ,

fv(s, s) =
βδ

(γ + δ)2

Then the linearized equation of (1) about s is

yn+1 −

(

α+
βδ

(γ + δ)
2

)

yn−3 +

(

βδ

(γ + δ)2

)

yn−7 = 0. (4)

Theorem 1. Assume that β < (γ + δ)(1 − α), α < 1 then the equilibrium

point s = 0 of (1) is locally asymptotically stable.

Proof. It is follows by Theorem A that, (4) is asymptotically stable if
∣

∣

∣

∣

∣

α+
βδ

(γ + δ)
2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

βδ

(γ + δ)2

∣

∣

∣

∣

< 1,

or

α+
βδ

(γ + δ)
< 1,
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Figure 1: Attracting trajectories toward zero for α = 0.8325, β = 0.1751,

γ = 0.8798 and δ = 0.2796.

Figure 2: Repelling trajectories away from zero for α = 0.9157, β = 0.1010,

γ = 0.1358 and δ = 0.8583.

and so

β < (γ + δ)(1 − α)

which completes the proof.

For any initial values taken from the neighbourhood of the equilibrium zero with

the parameters α = 0.8325, β = 0.1751, γ = 0.8798 and δ = 0.2796, all the trajectories

are converging to the origin (0) as shown in the Fig. 1.

On the other hand, for arbitrary initial values taken from the neighbourhood of

the origin (0), all the trajectories are going away from the equilibrium zero for the

parameters α = 0.9157, β = 0.1010, γ = 0.1358 and δ = 0.8583 as shown in Fig. 2.
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3. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF

EQ.(1)

In this section we investigate the global attractivity character of solutions of Eq.(1).

Theorem 2. The equilibrium point s = 0 of Eq.(1) is global attractor if (γ+δ)(1−

α) 6= β.

Proof. Let α, β are real numbers and assume that ξ : [α, β]2 → [α, β],be a function

defined by (3), then we can easily see that ξ is increasing in u, v.

Suppose that (λ, µ) is a solution of the system

µ = g(µ, µ) and λ = g(λ, λ).

Then from Eq.(1), we see that

µ = αµ+
βµ2

γµ+ δµ
, λ = αλ+

βλ2

γλ+ δλ
,

Therefore

µ2(1− α) =
βµ2

γµ+ δµ
, λ2(1− α) =

βλ2

γλ+ δλ
,

or,

(δ + γ)(1 − α)(µ2 − λ2) = β(µ2 − λ2), (δ + γ)(1− α) 6= β

thus

µ = λ

It follows by the Theorem B that s is a global attractor of (1) and then the proof is

completed.

If the parameters α, β, γ and δ satisfy the equation (γ + δ)(1 − α) = β then for

any initial values trajectories are unbounded as seen in the Fig. 3.

4. BOUNDEDNESS OF SOLUTIONS OF (1)

In this section we study the boundedness of the solution of the rational difference

equation (1)

Theorem 3. Every solution of the rational difference equation Eq.(1) is bounded if

(α+ β
γ
) < 1.

Proof. Let {sn}
∞

n=−5 be a solution of Eq.(1). It follows from Eq.(1) that

sn+1 = αsn−3 +
βsn−3sn−7

γsn−3 + δsn−7
≤ αsn−3 +

βsn−3sn−7

δsn−7
= (α+

β

δ
)sn−3
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Figure 3: Unbounded solutions of the Eq. (1.1) when (γ + δ)(1 − α) = β.

Figure 4: Parameters space (α, β, δ) such that the solutions of the Eq. (1)

are bounded.

Then

sn+1 ≤ sn−3, for all n ≥ 0

Then the sub-sequence {s4n}
∞

n=0, {s4n−1}
∞

n=0, {s4n−2}
∞

n=0, and {s4n−3}
∞

n=0 are de-

creasing and so are bounded from above by M = max {s−7, s−6, s−5, s−4, s−3,

s−2, s−1, s0}.

Here we list out a set of positive parameters α, β and δ such that (α + β
δ
) < 1.

The three dimensional plot of the parameter subspace (α, β, δ) ⊂ R
3 is given in Fig.

4.

5. CLOSED FORM SOLUTION OF SOME SPECIAL CASES OF (1)

In this section our goal is to find the explicit form of solution of some special cases of

Eq.(1) and give numerical examples in each case supposing the constants α, β, γ, δ are

integer numbers.
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5.1. FIRST EQUATION

In this section we study the following special case of Eq.(1)

sn+1 = sn−3 +
sn−3sn−7

sn−3 + sn−7
, n = 0, 1, ... (5)

where the initial conditions s−7, s−6, s−5, s−4, s−3, s−2, s−1, s0 are arbitrary

positive real numbers.

Theorem 4. Let {sn}
∞

n=−7 be a solution of Eq(5) then for n = 0, 1, 2, ....

s4n = g

n
∏

i=1

(

Uig+2Vih
Vig+Uih

)

, s4n−1 = t

n
∏

i=1

(

Uit+2Vik
Vit+Uik

)

,

s4n−2 = m

n
∏

i=1

(

Uim+2Vir
Vim+Uir

)

, s4n−3 = l

n
∏

i=1

(

Uil+2Vip
Vil+Uip

)

.

where s−7 = p, s−5 = r, s−5 = k, s−4 = h, s−3 = l, s−2 = m, s−1 = t, s0 =

g ,

{Um}∞m=1 = {1, 3, 7, 17, 41, ...}, {Vm}∞m=1 = {1, 2, 5, 12, 29, ...} i.e. Um−2+2Um−1 =

Um, Vm = 2Vm−1 + Vm−2, m ≥ 1, U−1 = −1, U0 = 1, V−1 = 1, V0 = 0 (or Um =

2Vm−1 + Um−1, Vm = Vm−1 + Um−1, m ≥ 0, U−1 = −1, v−1 = 1)

1. Proof. For n = 0 result holds now suppose that n > 0 and that our assumption

hold for n− 1, n− 2 That is,

s4n−4 = g

n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

, s4n−5 = t

n−1
∏

i=1

(

Uit+2Vik
Vit+Uik

)

,

s4n−6 = m

n−1
∏

i=1

(

Uim+2Vir
Vim+Uir

)

, s4n−7 = l

n−1
∏

i=1

(

Uil+2Vip
Vil+Uip

)

.

s4n−8 = g

n−2
∏

i=1

(

Uig+2Vih
Vig+Uih

)

, s4n−9 = t

n−2
∏

i=1

(

Uit+2Vik
Vit+Uik

)

s4n−10 = m

n−2
∏

i=1

(

Uim+2Vir
Vim+Uir

)

, s4n−11 = l

n−2
∏

i=1

(

Uil+2Vip
Vil+Uip

)

Now, it follows from (5) that,

s4n = s4n−4 +
s4n−4s4n−8

s4n−4 + s4n−8

= g

n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

+

g
n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

g
n−2
∏

i=1

(

Uig+2Vih
Vig+Uih

)

g
n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

+ g
n−2
∏

i=1

(

Uig+2Vih
Vig+Uih

)
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Figure 5: Unbounded trajectories of the special Eq. (5) for any initial values.

= g

n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

+

g
n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

(

Un−1g+2Vn−1

Vn−1g+Un−1h

)

+ 1

= g

n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

+

g
n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)

(Vn−1g + Un−1h)

Ung + Vnh

= g

n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)(

1 + Vn−1g+Un−1h

Ung+Vnh

)

= g

n−1
∏

i=1

(

Uig+2Vih
Vig+Uih

)(

Ung+2Vnh
Vng+Unh

)

Since from the sequences Un, Vn we can easily see that Vn + Vn−1 = Un, Un +

Un−1 = 2Un.

Therefore,

s4n = g

n
∏

i=1

(

Uig+2Vih
Vig+Uih

)

.

Other relations can be found in similar way. Hence, the proof is completed.

It is observed that for any initial values with (α = β = γ = δ = 1), the trajectories

are diverging as shown in Fig. 5. This observation is evident since α + β
γ
< 1 is not

valid.
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5.2. SECOND EQUATION

In this section we solve the special form of the Eq(1) when (α = β = γ = 1, and

δ = −1)

sn+1 = sn−3 +
sn−3sn−7

sn−3 − sn−7
, n = 0, 1, ... (6)

where the initial conditions s−7, s−6, s−5, s−4, s−3, s−2, s−1, s0 are arbitrary

positive real numbers with conditions s−7 6= s−3, s−2 6= s−6, s−1 6= s−5, s0 6= s−4

Theorem 5. Let {sn}
∞

n=−7 be a solution of Eq(6) then for n = 0, 1, 2, ....

s8n =
t2n+1

(r(t− r))n
, s8n−1 =

s2n+1

(p(ω − p))n
, s8n−2 =

h2n+1

(m(h−m))n
,

s8n−3 =
k2n+1

(l(k − l))
n , s8n−4 =

t2n

rn−1(t− r)n
, s8n−5 =

s2n

pn−1(ω − p)n
,

s8n−6 =
h2n

mn−1(h−m)n
, s8n−7 =

k2n

ln−1(k − l)n

where s−7 = l, s−6 = m, s−5 = p, s−4 = r, s−3 = k, s−2 = h, s−1 = ω, s0 = t.

Proof. For n = 0 result holds now suppose that n > 0 and that our assumption hold

for n− 1, n− 2 That is,

s8n−8 =
t2n+1

(r(t − r))
n , s8n−9 =

ω2n+1

(p(ω − p))
n , s8n−10 =

h2n+1

(m(h−m))
n ,

s8n−11 =
k2n+1

(l(k − l))
n , s8n−12 =

t2n

rn−1(t− r)n
, s8n−13 =

s2n

pn−1(ω − p)n
,

s8n−14 =
h2n

mn−1(h−m)n
, s8n−15 =

k2n

ln−1(k − l)n

Now, from Eq.(6), it follows that

s8n−1 = s8n−5 +
s8n−5s8n−9

s8n−5 + s8n−9

=

(

s2n

pn−1(ω − p)n

)

+

(

s2n

pn−1(ω−p)n

)

×
(

ω2n+1

(p(ω−p))n

)

ω2n

pn−1(ω−p)n − ω2n+1

(p(ω−p))n

=
ω2n

pn−1(ω − p)n
+

(

ω4n+1

p2n−1(ω−p)2n

)

ω2n

pn(ω−p)n−1

=
ω2n

pn−1(ω − p)n
+

ω2n+1

pn−1(ω − p)n+1

=
ω2n{ω − p+ ω}

pn−1(ω − p)n+1
=

ω2n+1

(p(ω − p))
n
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Figure 6: Unbounded trajectories of the special Eq. (6) for any initial values.

Thus,

s8n−1 =
ω2n+1

(p(ω − p))
n

Similarly, one can prove the other relations. Thus the proof is completed.

It is observed that for any initial values with (α = β = γ = 1 and δ = −1), the

trajectories are diverging as shown in Fig. 6. It is noted that the parameters do not

follow the inequality α+ β
γ
< 1.

5.3. THIRD EQUATION

In this section we deal with the specific form of the Eq.(1) when (α = δ = γ = 1 and

β = −1)

sn+1 = sn−3 −
sn−3sn−7

sn−3 + sn−7
, n = 0, 1, ... (7)

where the initial conditions s−7, s−6, s−5, s−4, s−3, s−2, s−1, s0 are arbitrary

non zero real numbers.

Theorem 6. Let{sn}
∞

n=−5be a solution of Eq(7) then for n = 0, 1, 2, ....

s4n =
ωn+2

n
∏

i=1

((i + 1)ω + h)

, s4n−1 =
tn+2

n
∏

i=1

((i+ 1)t+ k)

,

s4n−2 =
mn+2

n
∏

i=1

((i + 1)m+ r)
, s4n−3 =

ln+2

n
∏

i=1

((i + 1)l+ p)
.

s−7 = p, s−5 = r, s−5 = k, s−4 = h, s−3 = l, s−2 = m, s−1 = t, s0 = ω ,

Proof. As the proof of Theorem 4.
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Figure 7: Attracting trajectories of the special Eq. (7) for any initial values.

It is observed that for any initial values with (α = δ = γ = 1 and β = −1), the

trajectories are converging as shown in Fig. 7. It is noted that the parameters satisfy

the inequality α+ β
γ
< 1.

5.4. FOURTH EQUATION

In this section we deal with the specific form of the Eq.(1) when

sn+1 = sn−3 −
sn−3sn−7

sn−3 − sn−7
, n = 0, 1, ... (8)

where the initial conditions s−7, s−6, s−5, s−4, s−3, s−2, s−1, s0 are arbitrary

non zero real numbers, with s−3 6= s−7, s−3 6= 2 s−7, s−2 6= s−6, s−2 6= 2 s−6, s−1 6=

s−5,

s−1 6= 2s−5, s0 6= s−4, s0 6= 2 s−4

Theorem 7. Let {sn}
∞

n=−7 be a solution of Eq.(8). Then for n = 0, 1, 2, ...

s8n = t

(

t− 2r

t− r

)n(
t

r

)n−1

, s8n−1 = s

(

ω − 2p

ω − p

)n(
ω

p

)n−1

s8n−2 = h

(

h− 2m

h−m

)n(
h

m

)n−1

, s8n−3 = k

(

k − 2l

k − l

)n(
k

l

)n−1

s8n−4 = t

(

t− 2r

t− r

)n(
t

r

)n

, s8n−5 = s

(

ω − 2p

ω − p

)(

ω

p

)n

s8n−6 = h

(

h− 2m

h−m

)n(
h

m

)n

, s8n−7 = k

(

k − 2l

k − l

)n(
k

l

)n

where s−7 = p, s−5 = r, s−5 = k, s−4 = h, s−3 = l, s−2 = m, s−1 = t, s0 = ω ,

Proof. Same as the proof of Theorem 5 and will be omitted.
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Figure 8: Diverging trajectories of the special Eq. (8) for any initial values.

Figure (6) shows the solution when s−7 = 4, s−6 = 4, s−5 = 4, s−4 = 7, s−3 =

5, s−2 = 14, s−1 = 19, s0 = 11

It is observed that for any initial values with (α = γ = 1 and β = δ = −1), the

trajectories are converging as shown in Fig. 8. It is noted that the parameters do not

satisfy the inequality α+ β
γ
< 1.

6. CONCLUSION

This work presents the qualitative properties of a rational difference equation. Firstly

existence and uniqueness of positive equilibrium point is prove. Then it investigated

that Eq. (1) is bounded and persists. We proved that the Eq. (1) has a unique

positive equilibrium point, which is locally asymptotically stable. The method of

linearization is used to prove the local asymptotic stability of unique equilibrium

point. Linear stability analysis shows that the positive steady-state of Eq. (1) is

asymptotically stable and there exist positive prime period 4 solution of Eq. (1). In

Section 5 we obtained the form of the solution of four special cases of equation (1) and

gave interesting numerical examples of each of the case, with different initial values.
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