SOME TOPOLOGICAL THEOREMS FOR COMPACT MULTIFUNCTIONS

DONAL O'REGAN

School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway, IRELAND

ABSTRACT: A simple theorem is presented which immediately yields the topological transversality theorem for a general class of maps.

Key Words: essential maps, homotopy

Received:	October $6, 2019;$	Revised:	November 6, 2019;
Published (online):	November 17, 2019	doi:	10.12732/dsa.v28i4.3
Dynamic Publishers, Inc.	, Acad. Publishers, Lt	d.	https://acadsol.eu/dsa

1. INTRODUCTION

The topological transversality theorem states that if F and G are continuous compact single valued maps and $F \cong G$ then F is essential [3] if and only if G is essential. These concepts were extended to multimaps for general classes of maps in [1, 4, 5, 6]. In this paper we approach this differently and we present a very simple result which immediately yields the topological transversality theorem in a very general setting.

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps $F: X \to K(Z)$; here K(Z) denotes the family of nonempty compact subsets of Z. A nonempty topological space is said to be acyclic if all its reduced Čech homology groups over the rationals are trivial. Now $F: X \to K(Z)$ is acyclic if F has acyclic values.

2. TOPOLOGICAL TRANSVERSALITY THEOREM

We will consider a class **A** of maps. Let E be a completely regular space (i.e. a Tychonoff space) and U an open subset of E.

Definition 2.1. We say $F \in A(\overline{U}, E)$ if $F \in \mathbf{A}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is a upper semicontinuous (u.s.c.) compact map; here \overline{U} denotes the closure of U in E.

Remark 2.2. Examples of $F \in \mathbf{A}(\overline{U}, E)$ might be that $F : \overline{U} \to K(E)$ has convex values or $F : \overline{U} \to K(E)$ has acyclic values.

Definition 2.3. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ and $x \notin F(x)$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 2.4. Two maps $F, G \in A_{\partial U}(\overline{U}, E)$ are said to be homotopic in $A_{\partial U}(\overline{U}, E)$, written $F \cong G$ in $A_{\partial U}(\overline{U}, E)$, if there exists a u.s.c. compact map $\Psi : \overline{U} \times [0, 1] \to K(E)$ with $\Psi(., \eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0, x \notin \Psi_t(x)$ for any $x \in \partial U$ and $t \in (0, 1)$ (here $\Psi_t(x) = \Psi(x, t)$), $\Psi_0 = F$ and $\Psi_1 = G$.

Remark 2.5. In our results below alternatively we could use the following definition for \cong in $A_{\partial U}(\overline{U}, E)$: $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if there exists a u.s.c. compact map $\Psi: \overline{U} \times [0,1] \to K(E)$ with $\Psi \in \mathbf{A}(\overline{U} \times [0,1], E), x \notin \Psi_t(x)$ for any $x \in \partial U$ and $t \in (0,1)$ (here $\Psi_t(x) = \Psi(x,t)$), $\Psi_0 = F$ and $\Psi_1 = G$. If we use this definition then we always assume for any map $\Phi \in \mathbf{A}(\overline{U} \times [0,1], E)$ and any map $f \in \mathbf{C}(\overline{U}, \overline{U} \times [0,1])$ then $\Phi \circ f \in \mathbf{A}(\overline{U}, E)$; here \mathbf{C} denotes the class of single valued continuous functions. **Definition 2.6.** Let $F \in A_{\partial U}(\overline{U}, E)$. We say F is essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ there exists a $x \in U$ with $x \in J(x)$.

The proof of the topological transversality theorem and the generalized Leray– Schauder type alternative is based on the following simple theorem.

Theorem 2.7. Let E be a completely regular topological space, U an open subset of $E, F \in A_{\partial U}(\overline{U}, E)$ and $G \in A_{\partial U}(\overline{U}, E)$ is essential in $A_{\partial U}(\overline{U}, E)$. Also suppose

(2.1)
$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{we have } G \cong J \text{ in } A_{\partial U}(\overline{U}, E). \end{cases}$$

Then F is essential in $A_{\partial U}(\overline{U}, E)$.

Proof: Without loss of generality assume \cong in $A_{\partial U}(\overline{U}, E)$ is as in Definition 2.4. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. From (2.1) we have a homotopy joining G and J i.e there exists a u.s.c. compact map $H^J: \overline{U} \times [0,1] \to K(E)$ with $H^J(.,\eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0, x \notin H_t^J(x)$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_t^J(x) = H^J(x,t)$), $H_0^J = G$ and $H_1^J = J$. Let

$$K = \left\{ x \in \overline{U} : x \in H^J(x, t) \text{ for some } t \in [0, 1] \right\}.$$

Now $K \neq \emptyset$ since G is essential in $A_{\partial U}(\overline{U}, E)$. A standard argument (note H^J is u.s.c.) guarantees that K is closed and in fact it is compact (since $K \subseteq H^J(K \times [0, 1])$ and H^J is a compact map). Also note $K \cap \partial U = \emptyset$ (since $x \notin H_t^J(x)$ for any $x \in \partial U$ and $t \in [0, 1]$) so since E is Tychonoff there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x, \mu(x))$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then $R(x) = H^J(x, 0) = G(x)$) so the essentiality of G guarantees a $x \in U$ with $x \in R(x)$ (i.e. $x \in H_{\mu(x)}^J(x)$). Thus $x \in K$ so $\mu(x) = 1$. As a result $x \in H_1^J(x) = J(x)$.

Remark 2.8. (i). In the proof of Theorem 2.7 it is simple to adjust the proof if we use \cong in $A_{\partial U}(\overline{U}, E)$ from Remark 2.5 if we note $H^J(x, \mu(x)) = H^J \circ g(x)$ where $g: \overline{U} \to \overline{U} \times [0, 1]$ is given by $g(x) = (x, \mu(x))$.

(ii). Note Theorem 2.7 immediately yields a very general Leray–Schauder type alternative. Let E be a completely metrizable locally convex space, U an open subset of $E, F \in A_{\partial U}(\overline{U}, E), G \in A_{\partial U}(\overline{U}, E)$ is essential in $A_{\partial U}(\overline{U}, E), x \notin t F(x) + (1 - t) G(x)$ for $x \in \partial U$ and $t \in (0, 1)$, and $\eta(.) J(.) + (1 - \eta(.)) G(.) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$ for any map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. Then F is essential in $A_{\partial U}(\overline{U}, E)$.

The proof is immediate from Theorem 2.7 since topological vector spaces are completely regular and note if $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ then with $H^J(x, t) =$ t J(x)+(1-t) G(x) note $H_0^J = G$, $H_1^J = J$, $H^J : \overline{U} \times [0,1] \to K(E)$ is a u.s.c. compact (see [2, Theorem 4.18]) map, and $H^J(., \eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ and $x \notin H_t^J(x)$ for $x \in \partial U$ and $t \in (0,1)$ (if $x \in \partial U$ and $t \in (0,1)$ then since $J|_{\partial U} = F|_{\partial U}$ we have $H_t^J(x) = t J(x) + (1-t) G(x) = t F(x) + (1-t) G(x))$ so as a result $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ (i.e. (2.1) holds). [Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff) topological vector space E which has the property that the closed convex hull of a compact set in E is compact. In fact it is easy to see if we argue differently all we need to assume is that E is a topological vector space.]

We now present the topological transversality theorem in a general setting with this new approach. Assume

(2.2)
$$\cong$$
 in $A_{\partial U}(\overline{U}, E)$ is an equivalence relation

and

(2.3) if
$$\Phi, \Psi \in A_{\partial U}(\overline{U}, E)$$
 with $\Phi|_{\partial U} = \Psi|_{\partial U}$ then $\Phi \cong \Psi$ in $A_{\partial U}(\overline{U}, E)$.

Theorem 2.9. Let E be a completely regular topological space, U an open subset of E and assume (2.2) and (2.3) hold. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, E)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Then F is essential in $A_{\partial U}(\overline{U}, E)$ if and only if G is essential in $A_{\partial U}(\overline{U}, E)$.

Proof: Assume G is essential in $A_{\partial U}(\overline{U}, E)$. To show F is essential in $A_{\partial U}(\overline{U}, E)$ let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. If we show $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ (i.e. if we show (2.1)) then Theorem 2.7 guarantees that F is essential in $A_{\partial U}(\overline{U}, E)$. Note $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ is immediate since from (2.3) we have $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ and since $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ then (2.2) guarantees that $G \cong J$ in $A_{\partial U}(\overline{U}, E)$. A similar argument shows that if F is essential in $A_{\partial U}(\overline{U}, E)$ then G is essential in $A_{\partial U}(\overline{U}, E)$.

Remark 2.10. (i). Suppose *E* is a completely metrizable locally convex space and $F \in \mathbf{A}(\overline{U}, E)$ means $F : \overline{U} \to K(E)$ has convex values then immediately (2.2) and

(2.3) (take $H(x,t) = t \Phi(x) + (1-t) \Psi(x)$) hold. [Note *E* being a completely metrizable locally convex space can be replaced by any (Hausdorff) topological vector space *E* which has the property that the closed convex hull of a compact set in *E* is compact. In fact it is easy to see if we argue differently all we need to assume is that *E* is a topological vector space.]

(ii). Suppose E is a (Hausdorff) topological vector space, U is convex and $F \in \mathbf{A}(\overline{U}, E)$ means $F : \overline{U} \to K(E)$ has acyclic values then immediately (2.2) holds. Suppose

(2.4) there exists a retraction
$$r: \overline{U} \to \partial U$$

[Note if E is an infinite dimensional Banach space and U is convex then [1] we know (2.4) holds].

Then (2.3) holds. To see this let r be in (2.4) and consider the map Φ^* given by $\Phi^*(x) = \Phi(r(x)), x \in \overline{U}$. Note $\Phi^*(x) = \Psi(r(x)), x \in \overline{U}$ since $\Phi|_{\partial U} = \Psi|_{\partial U}$. With

$$H(x,\lambda) = \Psi(2\lambda r(x) + (1-2\lambda)x) = \Psi \circ j(x,\lambda) \text{ for } (x,\lambda) \in \overline{U} \times \left[0,\frac{1}{2}\right]$$

(here $j: \overline{U} \times [0, \frac{1}{2}] \to \overline{U}$ (note \overline{U} is convex) is given by $j(x, \lambda) = 2 \lambda r(x) + (1 - 2 \lambda) x$) it is easy to see that

$$\Psi \cong \Phi^*$$
 in $A_{\partial U}(\overline{U}, E)$;

note if there exists $x \in \partial U$ and $\lambda \in [0, \frac{1}{2}]$ with $x \in H_{\lambda}(x)$ then $x \in \Psi(2 \lambda x + (1 - 2\lambda)x) = \Psi(x)$, a contradiction, and it is easy to see that $H: \overline{U} \times [0, \frac{1}{2}] \to K(E)$ is a u.s.c. compact map and for any fixed $x \in \overline{U}$ note $H(x, \mu(x)) = \Psi(j(x, \mu(x)))$ has acyclic values and so $H(., \eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$. Similarly with

$$Q(x,\lambda) = \Phi((2-2\lambda)r(x) + (2\lambda-1)x) \text{ for } (x,\lambda) \in \overline{U} \times \left[\frac{1}{2},1\right]$$

it is easy to see that

$$\Phi^* \cong \Phi$$
 in $A_{\partial U}(\overline{U}, E)$.

Consequently $\Phi \cong \Psi$ in $A_{\partial U}(\overline{U}, E)$ so (2.3) holds.

Note in (i) and (ii) above we used \cong in $A_{\partial U}(\overline{U}, E)$ from Definition 2.4 and also notice in Definition 2.4 one could replace here (if one wishes) $\Psi(., \eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0, 1], \eta(\partial U) = 0$ with $\Psi_t \in \mathbf{A}(\overline{U}, E)$ for any $t \in [0, 1]$ since for fixed $x \in \overline{U}$ note $\Psi(x, \mu(x)) = \Psi_{\mu(x)}(x) = \Psi_t(x)$ with $t = \mu(x) \in [0, 1]$.

Now we consider a generalization of essential maps, namely the *d*-essential maps. Let *E* be a completely regular topological space and *U* an open subset of *E*. For any map $F \in A(\overline{U}, E)$ let $F^* = I \times F : \overline{U} \to K(\overline{U} \times E)$, with $I : \overline{U} \to \overline{U}$ given by I(x) = x, and let

(2.5)
$$d: \left\{ \left(F^{\star}\right)^{-1}(B) \right\} \cup \{\emptyset\} \to \Omega$$

be any map with values in the nonempty set Ω ; here $B = \{(x, x) : x \in \overline{U}\}$. **Definition 2.11.** Let $F \in A_{\partial U}(\overline{U}, E)$ with $F^* = I \times F$. We say $F^* : \overline{U} \to K(\overline{U} \times E)$ is *d*-essential if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J^* = I \times J$ and with $J|_{\partial U} = F|_{\partial U}$ we have that $d\left((F^*)^{-1}(B)\right) = d\left((J^*)^{-1}(B)\right) \neq d(\emptyset)$. **Remark 2.12.** If F^* is *d*-essential then

$$\emptyset \neq (F^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, F(x)) \cap (x, x) \neq \emptyset \},\$$

so there exists a $x \in U$ with $(x, x) \in F^{\star}(x)$ (i.e. $x \in F(x)$).

Theorem 2.13. Let *E* be a completely regular topological space, *U* an open subset of *E*, $B = \{(x, x) : x \in \overline{U}\}$, *d* is defined in (2.5), $F \in A_{\partial U}(\overline{U}, E)$, $G \in A_{\partial U}(\overline{U}, E)$ with $F^* = I \times F$ and $G^* = I \times G$. Suppose G^* is *d*-essential and

(2.6)
$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{we have } G \cong J \text{ in } A_{\partial U}(\overline{U}, E) \text{ and} \\ d\left((F^{\star})^{-1} (B) \right) = d\left((G^{\star})^{-1} (B) \right). \end{cases}$$

Then F^{\star} is d-essential.

Proof: Without loss of generality assume \cong in $A_{\partial U}(\overline{U}, E)$ is as in Definition 2.4. Consider any map $J \in A_{\partial U}(\overline{U}, E)$ with $J^* = I \times J$ and $J|_{\partial U} = F|_{\partial U}$. We must show $d\left((F^*)^{-1}(B)\right) = d\left((J^*)^{-1}(B)\right) \neq d(\emptyset)$. From (2.6) there exists a u.s.c. compact map $H^J: \overline{U} \times [0,1] \to K(E)$ with $H^J(.,\eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0, \ x \notin H_t^J(x)$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_t^J(x) = H^J(x,t)$), $H_0^J = G, \ H_1^J = J$ and $d\left((F^*)^{-1}(B)\right) = d\left((G^*)^{-1}(B)\right)$. Let $(H^J)^*: \overline{U} \times [0,1] \to K(\overline{U} \times E)$ be given by $(H^J)^*(x,t) = (x, H^J(x,t))$ and let

$$K = \left\{ x \in \overline{U} : (x, x) \in (H^J)^*(x, t) \text{ for some } t \in [0, 1] \right\}.$$

Now $K \neq \emptyset$ is closed, compact and $K \cap \partial U = \emptyset$. Thus there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x,\mu(x))$ and $R^* = I \times R$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$. Since G^* is *d*-essential then

(2.7)
$$d\left((G^{\star})^{-1} (B)\right) = d\left((R^{\star})^{-1} (B)\right) \neq d(\emptyset).$$

Now since $\mu(K) = 1$ we have

$$(R^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, x) \cap (x, H^{J}(x, \mu(x))) \neq \emptyset \}$$
$$= \{ x \in \overline{U} : (x, x) \cap (x, H^{J}(x, 1)) \neq \emptyset \}$$
$$= (J^{\star})^{-1} (B),$$

so from above and (2.7) we have $d\left(\left(F^{\star}\right)^{-1}(B)\right) = d\left(\left(J^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$ \Box

Note again it is simple to adjust the proof in Theorem 2.13 if we use \cong in $A_{\partial U}(\overline{U}, E)$ from Remark 2.5.

Theorem 2.14. Let E be a completely regular topological space, U an open subset of E, $B = \{(x, x) : x \in \overline{U}\}$, d is defined in (2.5) and assume (2.2) and (2.3) hold. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, E)$ with $F^* = I \times F$, $G^* = I \times G$ and $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Then F^* is d-essential if and only if G^* is d-essential.

Proof: Without loss of generality assume \cong in $A_{\partial U}(\overline{U}, E)$ is as in Definition 2.4. Assume G^* is *d*-essential. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J^* = I \times J$ and $J|_{\partial U} = F|_{\partial U}$. If we show (2.6) then F^* is *d*-essential from Theorem 2.13. Now (2.3) implies $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ and this together with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ and (2.2) guarantees that $G \cong J$ in $A_{\partial U}(\overline{U}, E)$. To complete (2.6) we need to show $d\left((F^*)^{-1}(B)\right) =$ $d\left((G^*)^{-1}(B)\right)$. We will show this by following the argument in Theorem 2.13. Note since $G \cong F$ in $A_{\partial U}(\overline{U}, E)$ let $H : \overline{U} \times [0, 1] \to K(E)$ be a u.s.c. compact map with $H(., \eta(.)) \in \mathbf{A}(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$, $x \notin H_t(x)$ for any $x \in \partial U$ and $t \in (0, 1)$ (here $H_t(x) = H(x, t)$), $H_0 = G$ and $H_1 = F$. Let $H^* : \overline{U} \times [0, 1] \to K(\overline{U} \times E)$ be given by $H^*(x, t) = (x, H(x, t))$ and let

$$D = \left\{ x \in \overline{U} : (x, x) \in H^{\star}(x, t) \text{ for some } t \in [0, 1] \right\}.$$

Now $D \neq \emptyset$ and there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(D) = 1$. Define the map R by $R(x) = H(x,\mu(x))$ and $R^* = I \times R$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$ so since G^* is *d*-essential then $d\left((G^*)^{-1}(B)\right) = d\left((R^*)^{-1}(B)\right) \neq d(\emptyset)$. Now since $\mu(D) = 1$ we have (see Theorem 2.13) that $(R^*)^{-1}(B) = (F^*)^{-1}(B)$ and as a result we have $d\left((F^*)^{-1}(B)\right) = d\left((G^*)^{-1}(B)\right)$. \Box

Note again it is simple to adjust the proof in Theorem 2.14 if we use \cong in $A_{\partial U}(\overline{U}, E)$ from Remark 2.5.

It is also easy to extend the above ideas to other natural situations. Let X be a (Hausdorff) topological vector space (so automatically completely regular), Y a topological vector space, and U an open subset of X. Also let $L : dom L \subseteq X \to Y$ be a linear (not necessarily continuous) single valued map; here dom L is a vector subspace of X. Finally $T : X \to Y$ will be a linear, continuous single valued map with $L + T : dom L \to Y$ an isomorphism (i.e. a linear homeomorphism); for convenience we say $T \in H_L(X,Y)$.

A map $F: \overline{U} \to 2^Y$ is said to be (L, T) upper semicontinuous if $(L+T)^{-1}(F+T): \overline{U} \to K(X)$ is an upper semicontinuous map. Also $F: \overline{U} \to 2^Y$ is said to be (L,T) compact if $(L+T)^{-1}(F+T): \overline{U} \to 2^X$ is a compact map.

Definition 2.15. We let $F \in A(\overline{U}, Y; L, T)$ if $(L+T)^{-1}(F+T) \in A(\overline{U}, X)$.

Definition 2.16. We say $F \in A_{\partial U}(\overline{U}, Y; L, T)$ if $F \in A(\overline{U}, Y; L, T)$ with $Lx \notin F(x)$ for $x \in \partial U \cap dom L$.

Definition 2.17. Two maps $F, G \in A_{\partial U}(\overline{U}, Y; L, T)$ are homotopic in $A_{\partial U}(\overline{U}, Y; L, T)$, written $F \cong G$ in $A_{\partial U}(\overline{U}, Y; L, T)$, if there exists a (L, T) upper semicontinuous,

(L,T) compact mapping $N: \overline{U} \times [0,1] \to 2^Y$ with $(L+T)^{-1} (N(.,\eta(.)+T(.)) \in \mathbf{A}(\overline{U},X)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $Lx \notin N_t(x)$ for any $x \in \partial U \cap dom L$ and $t \in (0,1)$ (here $N_t(x) = N(x,t)$), $N_0 = F$ with $N_1 = G$.

Remark 2.18. In our results below alternatively we could use the following definition for \cong in $A_{\partial U}(\overline{U}, Y; L, T)$: $F \cong G$ in $A_{\partial U}(\overline{U}, Y; L, T)$, if there exists a (L, T) upper semicontinuous, (L, T) compact mapping $N : \overline{U} \times [0, 1] \to 2^Y$ with $N \in \mathbf{A}(\overline{U} \times [0, 1], Y; L, T)$, $Lx \notin N_t(x)$ for any $x \in \partial U \cap dom L$ and $t \in (0, 1)$ (here $N_t(x) = N(x, t)$), $N_0 = F$ with $N_1 = G$. In addition here we always assume for any map $\Phi \in \mathbf{A}(\overline{U} \times [0, 1], Y; L, T)$ and any map $f \in \mathbf{C}(\overline{U}, \overline{U} \times [0, 1])$ then $(L+T)^{-1}(\Phi \circ f+T) \in \mathbf{A}(\overline{U}, X)$ (i.e. $\Phi \circ f \in \mathbf{A}(\overline{U}, Y; L, T)$.

Definition 2.19. A map $F \in A_{\partial U}(\overline{U}, Y; L, T)$ is said to be L-essential in $A_{\partial U}(\overline{U}, Y; L, T)$ if for every map $J \in A_{\partial U}(\overline{U}, Y; L, T)$ with $J|_{\partial U} = F|_{\partial U}$ we have that there exists $x \in U \cap dom L$ with $L x \in J(x)$.

Theorem 2.20. Let X, Y, U, L and T be as above, $F \in A_{\partial U}(\overline{U}, Y; L, T)$ and $G \in A_{\partial U}(\overline{U}, Y; L, T)$ is L-essential in $A_{\partial U}(\overline{U}, Y; L, T)$. Also suppose

(2.8)
$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, Y; L, T) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{we have } G \cong J \text{ in } A_{\partial U}(\overline{U}, Y; L, T). \end{cases}$$

Then F is L-essential in $A_{\partial U}(\overline{U}, Y; L, T)$.

Proof: Without loss of generality assume \cong in $A_{\partial U}(\overline{U}, Y; L, T)$ is as in Definition 2.17. Consider any map $J \in A_{\partial U}(\overline{U}, Y; L, T)$ with $J|_{\partial U} = F|_{\partial U}$. We must show there exists a $x \in U \cap dom L$ with $L x \in J(x)$. Let $H^J : \overline{U} \times [0, 1] \to 2^Y$ be a (L, T)upper semicontinuous, (L, T) compact mapping with $(L+T)^{-1}(H^J(., \eta(.)+T(.)) \in$ $\mathbf{A}(\overline{U}, X)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$, $L x \notin H_t^J(x)$ for any $x \in \partial U \cap dom L$ and $t \in (0, 1)$ (here $H_t^J(x) = H^J(x, t)$), $H_0^J = G$ with $H_1^J = J$ (this is guaranteed from (2.8)). Let

$$K = \left\{ x \in \overline{U} \cap dom \, L : \, L \, x \in H^J(x, t) \text{ for some } t \in [0, 1] \right\}$$

and notice

$$K = \left\{ x \in \overline{U} : \ (L+T)^{-1} \ (H_t^J + T)(x) \text{ for some } t \in [0,1] \right\}.$$

Now $K \neq \emptyset$ is closed, compact and $K \cap \partial U = \emptyset$. Since X is Tychonoff there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x,\mu(x))$. Now $R \in A_{\partial U}(\overline{U},Y;L,T)$ with $R|_{\partial U} = G|_{\partial U}$. Since G is L-essential in $A_{\partial U}(\overline{U},Y;L,T)$ there exists a $x \in U \cap dom L$ with $L x \in R(x) = H^J_{\mu(x)}(x)$. Thus $x \in K, \ \mu(x) = 1$ and so $L x \in H^J_1(x) = J(x)$. \Box

Note again it is simple to adjust the proof in Theorem 2.20 if we use \cong in $A_{\partial U}(\overline{U}, Y; L, T)$ from Remark 2.18.

Next assume

(2.9)
$$\cong$$
 in $A_{\partial U}(\overline{U}, Y; L, T)$ is an equivalence relation

and

(2.10)

if
$$\Phi, \Psi \in A_{\partial U}(\overline{U}, Y; L, T)$$
 with $\Phi|_{\partial U} = \Psi|_{\partial U}$ then $\Phi \cong \Psi$ in $A_{\partial U}(\overline{U}, Y; L, T)$.

Essentially the same reasoning as in Theorem 2.9 (with an obvious modification) yields:

Theorem 2.21. Let X, Y, U, L and T be as above and assume (2.9) and (2.10) hold. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, Y; L, T)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, Y; L, T)$. Then F is essential in $A_{\partial U}(\overline{U}, Y; L, T)$ if and only if G is essential in $A_{\partial U}(\overline{U}, Y; L, T)$.

Finally we discuss d-L-essential maps. For any map $F \in A(\overline{U}, Y; L, T)$ let $F^* = I \times (L+T)^{-1} (F+T) : \overline{U} \to K(\overline{U} \times X)$, with $I : \overline{U} \to \overline{U}$ given by I(x) = x, and let

(2.11)
$$d: \left\{ \left(F^{\star}\right)^{-1}(B) \right\} \cup \{\emptyset\} \to \Omega$$

be any map with values in the nonempty set Ω ; here $B = \{(x, x) : x \in \overline{U}\}$.

Definition 2.22. Let $F \in A_{\partial U}(\overline{U}, Y; L, T)$ with $F^* = I \times (L+T)^{-1} (F+T)$. We say $F^* : \overline{U} \to K(\overline{U} \times X)$ is d-L-essential if for every map $J \in A_{\partial U}(\overline{U}, Y; L, T)$ with $J^* = I \times (L+T)^{-1} (J+T)$ and with $J|_{\partial U} = F|_{\partial U}$ we have that $d((F^*)^{-1}(B)) = d((J^*)^{-1}(B)) \neq d(\emptyset)$.

Remark 2.23. If F^* is *d*-*L*-essential then

$$\emptyset \neq (F^{\star})^{-1} (B) = \{ x \in \overline{U} : (x, (L+T)^{-1} (F+T)(x)) \cap (x, x) \neq \emptyset \},\$$

and this together with $L x \notin F(x)$ for $x \in \partial U \cap dom L$ implies that there exists $x \in U \cap dom L$ with $(x, x) \in F^*(x)$ (i.e. $L x \in F(x)$).

Theorem 2.24. Let X, Y, U, L and T be as above, $B = \{(x,x) : x \in \overline{U}\}$, d is defined in (2.11), $F \in A_{\partial U}(\overline{U}, Y; L, T)$ and $G \in A_{\partial U}(\overline{U}, Y; L, T)$ with $F^* = I \times (L+T)^{-1}(F+T)$ and $G^* = I \times (L+T)^{-1}(G+T)$. Suppose G^* is d-L-essential and in addition assume

(2.12)
$$\begin{cases} \text{for any map } J \in A_{\partial U}(\overline{U}, Y; L, T) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{we have } G \cong J \text{ in } A_{\partial U}(\overline{U}, Y; L, T) \text{ and} \\ d\left((F^*)^{-1}(B)\right) = d\left((G^*)^{-1}(B)\right). \end{cases}$$

Then F is d-L-essential.

Proof: Without loss of generality assume \cong in $A_{\partial U}(\overline{U}, Y; L, T)$ is as in Definition 2.17. Consider any map $J \in A_{\partial U}(\overline{U}, Y; L, T)$ with $J^* = I \times (L+T)^{-1} (J+T)$ and

with $J|_{\partial U} = F|_{\partial U}$. We must show $d\left((F^{\star})^{-1}(B)\right) = d\left((J^{\star})^{-1}(B)\right) \neq d(\emptyset)$. Let $H^J: \overline{U} \times [0,1] \to 2^Y$ be a (L,T) upper semicontinuous, (L,T) compact mapping with $(L+T)^{-1}(H^J(.,\eta(.)+T(.)) \in \mathbf{A}(\overline{U},X)$ for any continuous function $\eta:\overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $Lx \notin H^J_t(x)$ for any $x \in \partial U \cap dom L$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_0 = G$, $H^J_1 = J$ and $d\left((F^{\star})^{-1}(B)\right) = d\left((G^{\star})^{-1}(B)\right)$ (this is guaranteed from (2.12)). Let $(H^J)^{\star}: \overline{U} \times [0,1] \to K(\overline{U} \times X)$ be given by $(H^J)^{\star}(x,t) = (x, (L+T)^{-1}(H^J_t + T)(x))$ and let

$$K = \left\{ x \in \overline{U} : \ (x, x) \in (H^J)_t^{\star}(x) \text{ for some } t \in [0, 1] \right\}$$

Now there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x,\mu(x))$ and $R^* = I \times (L+T)^{-1} (R+T)$. Now $R \in A_{\partial U}(\overline{U},Y;L,T)$ and $R|_{\partial U} = G|_{\partial U}$. Since G^* is d-L-essential then $d\left((G^*)^{-1}(B)\right) = d\left((R^*)^{-1}(B)\right) \neq d(\emptyset)$. Now since $\mu(K) = 1$ we have

$$(R^{\star})^{-1} (B) = \left\{ x \in \overline{U} : (x, x) \cap (x, (L+T)^{-1} (H^J_{\mu(x)} + T)(x)) \neq \emptyset \right\}$$

= $\left\{ x \in \overline{U} : (x, x) \cap (x, (L+T)^{-1} (H^J_1 + T)(x)) \neq \emptyset \right\}$
= $(J^{\star})^{-1} (B),$

and this together with the above yields $d\left(\left(F^{\star}\right)^{-1}(B)\right) = d\left(\left(J^{\star}\right)^{-1}(B)\right) \neq d(\emptyset).$

Note again it is simple to adjust the proof in Theorem 2.24 if we use \cong in $A_{\partial U}(\overline{U}, Y; L, T)$ from Remark 2.18.

Essentially the same reasoning as in Theorem 2.14 (with an obvious modification) yields:

Theorem 2.25. Let X, Y, U, L and T be as above, $B = \{(x,x) : x \in \overline{U}\}$, d is defined in (2.11) and assume (2.9) and (2.10) hold. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, Y; L, T)$ with $F^* = I \times (L+T)^{-1} (F+T)$, $G^* = I \times (L+T)^{-1} (G+T)$ and with $F \cong G$ in $A_{\partial U}(\overline{U}, Y; L, T)$. Then F^* is d-L-essential if and only if G^* is d-L-essential.

REFERENCES

- R.P. Agarwal and D. O'Regan, A note on the topological transversality theorem for acyclic maps, *Appl. Math. Letters*, 18(2005), 17–22.
- [2] C.D. Aliprantis and K.C. Border, Infinite-Dimensional Analysis, Studies in Economic Theory, Volume 4, Springer-Verlag, Berlin, 1994.
- [3] A. Granas, Sur la méthode de continuité de Poincaré, C.R. Acad. Sci. Paris, 282(1976), 983–985.

- [4] D. O'Regan, Homotopy principles for d-essential maps, Jour. Nonlinear and Convex Analysis, 14(2013), 415–422.
- [5] D. O'Regan, A note on the topological transversality theorem for the admissible maps of Gorniewicz, J. Nonlinear Sci. Appl., 12(2019), 345–348.
- [6] R. Precup, On the topological transversality principle, Nonlinear Anal., 20(1993), 1–9.