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ABSTRACT. This paper discusses boundary value problem for fractional integrodifferential equa-

tions. We establish existence results by using the applications of Krasnoselkii theorem. An example

is discussed to illustrate the efficiency of the obtained results.
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1. INTRODUCTION

In this paper, we consider the following first order boundary value problem for

fractional integro differential equation of the form
{

Dqx(t) =
∫ t

0
k(t, s, x(s))ds, t ∈ I = [0, T ],

ax(0) + bx(T ) = c,
(1.1)

where 0 < q < 1 ; k : ∆×X → X is given function, ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} and

a, b, c are real constants with a + b 6= 0.

Differential equations of fractional order have recently proved to be valuable tools

in the modeling of many phenomena in various fields of science and engineering. In-

deed, we can find numerous applications in visco-elasticity, electrochemistry, control,

porous media, electromagnetics, etc. (see [3, 6, 7, 24]). For noteworthy papers dealing

with the integral operator and the arbitrary fractional order differential operator, see

for instance [9,10]. Very recently some basic theory for the initial value problems of

fractional differential equations involving Riemann-Liouville differential operator has

been discussed by Lakshmikantham and Vatsala [22, 23]. There has been significant

development in the theory of fractional differential equations in recent years; see the

monographs of E. R. Kaufmann et al [18], S. M. Momani et al [24], M. Benchohra et

al [2] and the references therein. Some existence results were given for the problem

(1) with q = 1 by Tisdell in [26].

In this paper, we present existence results for the problem (1). In Section 3,

we give two results, one based one on Banach fixed point theorem and the other on
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Krasnoselkii theorem. An example is given in Section 4 to demonstrate the application

of our results.

2. PRELIMINARIES

In this short section, we introduce notations and definitions that are used through-

out this paper.

Let (X, ‖.‖) be a Banach space, and I := [0, T ], T > 0 , a compact interval in R.

Denote by C = C([0, T ], X) the Banach space of all continuous function [0, T ] → X

endowed with the topology of uniform convergence ( the norm in this space will be

denoted by ‖.‖C).

Definition 2.1 ([20,25]). The fractional (arbitrary) order integral of the function

h ∈ L1([a, b], R+) of order α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t − s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function.When a = 0, we write Iαh(t) = h(t) ∗ ϕα(t), where

ϕα(t) = tα−1

Γ(α)
for t > 0,and ϕα(t) = 0 for t ≤ 0, and ϕα(t) → δ(t) as α → 0, where δ

is the delta function.

Definition 2.2 ([3]). The Riemann-Liouville fractional integral operator of order

0 ≤ α, of a function f ∈ Cµ, µ ≥ −1 is defined as

Iαf(x) =
1

Γ(x)

∫ x

0

(x − t)α−1f(t)dt, α ≥ 0, x > 0

I0f(x) = f(x).

The Riemann-Liouville derivative has certain disadvantages when trying to model

real-world phenomena with fractional differential equations. Therefore, we shall use

a modified fractional differential operator Dα
∗ proposed by M. Caputo in his work on

the theory of viscoelasticity.

Definition 2.3 ([3,25]). The fractional derivative of f(x) in the Caputo sense is

defined as

Dα
∗ f(x) = Im−αDmf(x)

=
1

Γ(m − α)

∫ x

0

(x − t)m−α−1fm(t)dt,

for m − 1 ≤ m, m ∈ N, x > 0, f ∈ Cm
−1.

Lemma 2.1 ([19]). Let 0 < q < 1 and let h : [0, T ] → X be continuous. A function

x is a solution of the fractional integral equations

x(t) = x0 +
1

Γ(q)

∫ t

0

(t − s)q−1h(s)ds, t ∈ [0, T ].
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if and only if x is a solution of the initial value problem for the fractional differential

equations

Dqx(t) = h(t), t ∈ I = [0, T ],

x(0) = x0.

Lemma 2.2. Let 0 < q < 1 and let h : [0, T ] → X be continuous. A function x is a

solution of the fractional integral equation

x(t) =
1

Γ(q)

∫ t

0

(t − s)q−1

∫ t

0

h(s)ds −
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1

∫ t

0

h(s)ds − c

]

if and only if x is a solution of the fractional boundary value problem of integrodiffer-

netial equation

Dqx(t) =

∫ t

0

h(s)ds, t ∈ I = [0, T ],

ax(0) + bx(T ) = c.

3. MAIN THEOREMS

We investigate in our paper the Boundary Value Problem (BVP) for the nonlinear

fractional integrodifferential equation with the following assumptions.

(H1). k : ∆ × X → X is continuous and there exist constant K1 > 0 such that

‖k(t, s, x1) − k(t, s, x2)‖ ≤ K1‖x1 − x2‖, x1, x2 ∈ X.

(H2). For any positive number r there exists hr ∈ L1(I) such that

sup‖x‖≤r‖k(t, s, x)‖ ≤ hr(t), x ∈ X, (t, s) ∈ ∆.

By Lemma 2.2, the system (1) is equivalent to

x(t) =
1

Γ(q)

∫ t

0

(t − s)q−1

∫ s

0

k(s, τ, x(τ))dτds

−
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1

∫ s

0

k(s, τ, x(τ))dτds − c

]

, ∀t ∈ [0, T ].

Our first result is the following.

Theorem 3.1. Under assumptions[H1 − H2], if K1 ≤ Γ(q+1)
2T q

(

1 + |b|
|a+b|

)−1

then

Eq. (1.1) has a unique solution.

Proof. Define F : C → C by

(Fx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1

∫ s

0

k(s, τ, x(τ))dτds

−
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1

∫ s

0

k(s, τ, x(τ))dτds − c

]

.



20 P. KARTHIKEYAN

Choose r ≥ 2( K2T q

Γ(q+1)
(1 + |b|

|a+b|
)), let K2 = max {‖k(t, s, 0)‖ : (t, s) ∈ ∆}. Then we can

show that FBr ⊂ Br where Br := {x ∈ C : ‖x‖ ≤ r}. So let x ∈ Br; then for every

t ∈ I, we get

‖Fx)(t)‖ =
1

Γ(q)

∫ t

0

(t − s)q−1‖

∫ s

0

k(s, τ, x(τ))dτds‖

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1‖

∫ s

0

k(s, τ, x(τ))dτds

]

+
|c|

|a + b|

≤
1

Γ(q)

∫ t

0

(t − s)q−1

∫ s

0

(‖k(s, τ, x(τ) − k(s, τ, 0)‖ + ‖k(s, τ, 0)‖)dτds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1

∫ s

0

(‖k(s, τ, x(τ) − k(s, τ, 0)‖ + ‖k(s, τ, 0)‖)dτds

]

+
|c|

|a + b|

≤ (K1r + K2)
1

Γ(q)

∫ t

0

s(t − s)q−1ds

+
|b|

|a + b|
(K1r + K2)

[

1

Γ(q)

∫ T

0

s(T − s)q−1ds

]

+
|c|

|a + b|

≤ (
(K1r + K2)t

2

2
)

T q

Γ(q + 1)

(

1 +
|b|

|a + b|

)

+
|c|

|a + b|
≤ r

by the choice of K1, K2 and r. Now we take x, y ∈ C. Clearly, the fixed points

of the operator F are solution of the problem (1). We can easily show that F is a

contraction. Let x, y ∈ C. Then for each t ∈ J we have

‖(Fx)(t) − (Fy)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1

∫ s

0

‖k(s, τ, x(τ)) − k(s, τ, y(τ))‖dτds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1

∫ s

0

‖k(s, τ, x(τ)) − k(s, τ, y(τ))‖dτds

]

≤ K1‖x − y‖C

1

Γ(q)

∫ t

0

(t − s)q−1ds

+ K1‖x − y‖C

(

|b|

|a + b|

) [

1

Γ(q)

∫ T

0

(T − s)q−1ds

]

≤





K1T
q
(

1 + |b|
|a+b|

)

qΓ(q)



 ‖x − y‖C

Thus

‖Fx − Fy‖C ≤ Ωa,b,c,K1,T,q‖x − y‖C

where Ωa,b,c,K1,T,q =

[

K1T q(1+ |b|
|a+b|)

Γ(q+1)

]

.And since Ωa,b,c,K1,T,q < 1, F is a contraction. As

a consequennce of Banach fixed point theorem, we deduce that F has a fixed point

which is a solution of the problem (1). The theorem is now proved.
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Theorem 3.2 (Krasnoselkii). Let M be a closed convex and nonempty subset of a

Banach space X. Let A,B be two operators such that

1. Ax + By ∈ M whenever x, y ∈ M ;

2. A is compact and continuous ;

3. B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Our next result is as follows.

Theorem 3.3. Assume (H1)-(H3) with
(

|b|
|a+b|

)

< 1. Then Eq. (1) has at least one

solution on I.

Proof. Choose r ≥
T q‖hr‖L1

Γ(q+1)

(

1 + |b|
|a+b|

)

+ |c|
|a+b|

and consider Br : {x ∈ C : ‖x‖ ≤ r}.

Now define on Br the operators A, B by

(Ax)(t) : =
1

Γ(q)

∫ t

0

(t − s)q−1

∫ s

0

k(s, τ, x(τ))dτds,

and

(Bx)(t) : = −
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1

∫ s

0

k(s, τ, x(τ))dτds − c

]

Let us observe that if x, y ∈ Br then Ax + By ∈ Br. Indeed it is easy to check the

inequality

‖Ax + By‖ ≤
T q‖hr‖L1

Γ(q + 1)

(

1 +
|b|

|a + b|

)

+
|c|

|a + b|
≤ r

by (H1), it is also clear that B is a contraction mapping for
(

|b|
|a+b|

)

< 1. Since x is

continuous, then (Ax)(t) is continuous in view of (H1). Let us now note that A is

uniformly bounded on Br. This follows from the inequality

‖(Ax)(t)‖ ≤
T q‖hr‖L1

Γ(q + 1)
.

Now let us prove that (Ax)(t) is equicontinuous. Let t1, t2 ∈ I, t1 < t2 and x ∈ Br.

Using the fact that f is bounded on the compact set I × Br (thus

sup(s,τ)∈I×Br
‖

∫ s

0
k(s, τ, x(τ))dτ‖ := c0 < ∞),we will get

‖Ax(t2) − Ax(t1)‖ = ‖
1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]

∫ s

0

k(s, τ, x(τ))dτds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1

∫ s

0

k(s, τ, x(τ))dτds‖

=
1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]‖

∫ s

0

k(s, τ, x(τ))dτds‖

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1‖

∫ s

0

k(s, τ, x(τ))dτds‖
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≤
c0

Γ(q)
‖

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]ds +
c0

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

≤
c0

Γ(q + 1)
[(t2 − t1)

q + t
q
1 − t

q
2] +

c0

Γ(q + 1)
(t2 − t1)

q

≤
c0

Γ(q + 1)
|2(t2 − t1)

q + t
q
1 − t

q
2|,

which does not depend on x. So A(Br) is relatively compact. As t2 → t1, the

righthand side of the above inequality tends to zero. By the Arzela-Ascoli Theorem,

A is compact. We now conclude the result of the theorem based on the Krasnoselkii’s

Theorem above.

4. EXAMPLE

Let us consider the following boundary value problem,

Dqy(t) =
1

33

∫ t

0

(ts)x(s)ds, 0 < t < 1, q ∈ (0, 1](4.1)

y(0) + y(1) = 0.(4.2)

Set

k(t, s, x) =
1

33
x, (t, s, x) ∈ (0, 1)2 × [0,∞)

Let x, y ∈ [0,∞). Then we have

|k(t, s, x) − k(t, s, y)| =≤
1

33
|x − y|

Hence the condition (H1) holds with K1 = 1
33

. We shall check that the condition
(

K1T q(1+ |b|
|a+b|)

Γ(q+1)
< 1

)

is satisfied for appropriate values of q ∈ (0, 1] with a = b = T =

1. Indeed

3K1

2Γ(q + 1)
< 1 ⇔ Γ(q + 1) >

3K1

2
= 0.04.(4.3)

Then by Theorem 3.1 the problem (4.1)–(4.2) has a unique solution on [0, 1] for values

of q satisfying condition (4.3). For example if q = 1
5

then Γ(q + 1) = Γ(6
5
) = 0.92 and

3K1

2

1

Γ(q + 1)
=

0.04

0.92
= 0.04347826 < 1.

If q = 2
3

then Γ(q + 1) = Γ(5
3
) = 0.89 and

3K1

2

1

Γ(q + 1)
=

0.04

0.89
= 0.04494382 < 1.
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