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ABSTRACT. This paper studies boundedness and dissipation of solutions of a class of discrete-

time dynamic systems. By the method of Lyapunov functions, some necessary and sufficient criteria

on boundedness, equi-boundedness, uniform boundedness, and uniform dissipation are established.

In addition, some sufficient criteria on dissipation, equi-dissipation and uniform dissipation are also

obtained. Some examples are given to illustrate our results.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

Boundedness and dissipation are important characteristics of biological systems,

neural networks, control systems and chaotic systems. The dissipation and bounded-

ness of general ecological systems are studied by Q. Kong and X. Liao [1]. The dissi-

pative control of three-species food chain system is studied by L. Zhao and Q. Zhang

[2]. The dissipation of the flood series in Huaihe basin is studied by Y. Zhou and

L. Wang etc. [3]. The global dissipation of continuous-time recurrent neural networks

with time delay is studied by X. Liao and J. Wang [4]. The control of chaotic in-

stabilities in a spinning spacecraft with dissipation is studied by P. A. Meehan and

S. F. Asokanthan [5]. The former studies in boundedness and dissipation can be seen

in [6, 7].

A. M. Lyapunov developed two methods (Lyapunov’s first and direct methods)

for analyzing the stability of differential equations in 1892. X. Liao [8], T. Yoshizawa

[9] and N. Rouche [10] investigated the boundedness and dissipation of ODE (T = R)

by using Lyapunov functions; L. Wang and M. Wang [11] studied the boundedness

and dissipation of DDE (T = z) by using Lyapunov function method. Peterson and

Christopher [12] obtained some results on the uniform boundedness and uniqueness
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of solutions by constructing suitable Lyapunov-type I functions on time scale and

formulating appropriate inequalities on these functions. L. Ou and S. Zhu [13] inves-

tigated the boundedness and dissipation of dynamic systems in a more general time

scale by using Lyapunov functions and Dini-derivative.

Motivated by [8, 9, 14], we investigate the boundedness and dissipation of discrete-

time dynamic systems in a more general time scale.

The rest of this paper is organized as follows. In Section 2, we introduce our

notations and definitions. Then in Section 3, we study the boundedness of discrete-

time dynamic systems. In Section 4, we study the dissipation of discrete-time dynamic

systems. In Section 5, we discuss some examples to illustrate our results.

2. PRELIMINARIES

Difference Equation or discrete dynamic system is a very fascinating subject

because it can derive many complex behaviors based on simple formulation. It has

both practical and theoretical significance to study discrete dynamic system. Consider

the following system

(2.1)

{

xn+1 = xn + f(tn, xn),

x(t0) = x0, t0 ≥ 0, x0 ∈ Rm,

where xn = (x1(tn), x2(tn), · · · , xm(tn)) ∈ Rm, n ∈ N, f : T × Rm → Rm, T = {tn :

tn > tn−1, n ∈ N}. Assume that the equilibrium position xn = 0 of (2.1) exists and

all solutions of (2.1) are unique.

Definition 2.1. We call that φ belongs to class K functions (denoted by φ ∈ K), if

φ : R+ → R+[or φ : [0, r] → R+] is a continuous and strictly increasing function and

φ(0) = 0.

We call that φ belongs to radial unbounded class K functions (denoted by φ ∈
KR), if φ ∈ K,φ : R+ → R+ and lim

r→+∞
φ(r) = +∞.

Definition 2.2. We call that the solution of system (2.1) is stable in Lagrange sense,

if every solution x(tn, t0, x0) of system (2.1) is bounded, namely there exists a constant

β(t0, x0) such that

‖x(tn, t0, x0)‖ ≤ β(t0, x0), tn > t0.

We call that the solution of system (2.1) is equi-bounded, or equi-stable in La-

grange sense, if for any α > 0, t0 ∈ T , there exists β(t0, α) > 0 such that for any

x0 ∈ Sα = {x| ‖x‖ ≤ α}, we have

‖x(tn, t0, x0)‖ ≤ β(t0, α), tn > t0.

We call that the solution of system (2.1) is uniformly bounded, or uniformly stable

in Lagrange sense, if the above β(t0, α) is independent of t0, namely β(t0, α) = β(α).
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3. BOUNDEDNESS OF DISCRETE-TIME DYNAMIC SYSTEMS

In this section, we shall establish some boundedness criteria for discrete dynamic

system (2.1).

Theorem 3.1. All the solutions of system (2.1) are bounded if and only if there exists

a function V (tn, x) ∈ [T × Ω, R+] with Ω = {x| |x| ≥M} such that

(i) V (tn, xn) ≥ φ (‖xn‖) , φ ∈ KR;

(ii) For any solution x(tn, t0, x0) of (2.1), V (tn, xn(tn, t0, x0)) is nonincreasing for

tn ∈ T .

Proof. First we prove the sufficiency. For any solution xn(tn, t0, x0) of system (2.1),

by conditions (i) and (ii), we have

φ (‖xn(tn, t0, x0)‖) ≤ V (tn, xn(tn, t0, x0)) ≤ V (t0, x0),

and

‖xn(tn, t0, x0)‖ ≤ φ−1 (V (t0, x0)) = β(t0, x0), tn > t0.

Thus all the solutions of system (2.1) are bounded.

We now prove the necessity. Suppose all the solutions of system (2.1) is bounded.

For any solution x(tn, t0, x0) of system (2.1), let

(3.1) V (tn, x) = sup
τ≥0, tn+τ∈T

‖x(tn + τ, tn, x)‖2 .

We have

V (tn, x) ≥ ‖x(tn, tn, x)‖2 = ‖x‖2 = φ (‖x‖) .
It can be seen that φ (‖x‖) ∈ KR. Thus condition (i) holds.

For all tn1 < tn2 ∈ T , assume t0 < tn1 < tn2 , by the uniqueness of the solution,

we have

V (tn1 , x(tn1 , t0, x0)) = sup
τ≥0, tn1+τ∈T

‖x(tn1 + τ, tn1 , x(tn1, t0, x0)))‖2

= max

{

sup
0≤τ≤tn2−tn1

‖x(tn1 + τ, tn1, x(tn1 , t0, x0)))‖2 ,

sup
τ≥0

‖x(tn2 + τ, tn2 , x(tn2 , t0, x0)))‖2

}

≥ sup
τ≥0

‖x(tn2 + τ, tn2, x(tn2 , t0, x0)))‖2 = V (tn2 , x(tn2 , t0, x0)).(3.2)

Therefore, condition (ii) is satisfied. The proof is complete.

Example 3.2. Consider the discrete-time dynamic system

(3.3)

(

xn+1

yn+1

)

=

(

xn

yn

)

+

(

−xn + yn

−yn − e−tn/2xn

)

.
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We now prove that any solution of (3.3) is bounded.

Proof. Let

(3.4) V (tn, xn, yn) = x2
n + y2

ne
tn−1 .

We have

V (tn, xn, yn) ≥ x2
n + y2

n = W (xn, yn) → +∞ (x2
n + y2

n → +∞).

Thus there exists a function φ ∈ KR, such that

V (tn, xn, yn) ≥ φ
(

x2
n + y2

n

)

,

and

∆+V (tn, xn, yn) |3.3 = V (tn+1, xn+1, yn+1) − V (tn, xn, yn)

= (x2
n+1 + y2

n+1e
tn) − (x2

n + y2
ne

tn−1)

= x2
n+1 − x2

n + y2
n+1e

tn − y2
ne

tn−1

= y2
n − x2

n + (−e−tn/2xn)2etn − y2
ne

tn−1

= −y2
n

(

etn−1 − 1
)

≤ 0.(3.5)

From (3.4) and (3.5), it is obviously that any solution of (3.3) is bounded.

The simulation result with x0 = 10, y0 = 10 is shown in Figure 1.

Figure 1. Simulation result of Example 1.

Theorem 3.3. All the solutions of system (2.1) are equi-bounded if and only if there

exists a function V (tn, x) ∈ [T × Ω, R+] with Ω = {x| |x| ≥M}, such that:

(i) V (tn, xn) ≥ φ (‖xn‖) , φ ∈ KR;

(ii) for any solution x(tn, t0, x0) of system (2.1), V (tn, x(tn, t0, x0)) is nonincreasing

for tn ∈ T ;
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(iii) for any α > 0, there exits β(t, α) > 0 such that V (tn, x) ≤ β1(tn, α) for any

x0 ∈ Sα = {x| ‖x‖ < α}.

Proof. First we prove the sufficiency. If the conditions (i), (ii) and (iii) are satisfied

for any solution x(tn, t0, x0) of system (2.1), there exists a function V (tn, x) satisfying

the condition of the theorem. For any α > 0 and any x0 ∈ Sα = {x| ‖x‖ ≤ α}, there

exists β1(t0, α) > 0 such that V (t0, x0) ≤ β1(t0, α).

By condition (iii), we get

(3.6) φ (‖xn(tn)‖) ≤ V (tn, xn(tn)) ≤ V (t0, xn(t0)) ≤ β1(t0, α),

and

(3.7) ‖xn(tn)‖ ≤ φ−1 (β1(t0, α)) = β(t0, α).

Thus the solution x(tn, t0, x0) of system (2.1) is equi-bounded.

Suppose every solution x(tn, t0, x0) of the system (2.1) is equi-bounded. Let

(3.8) V (tn, x) = sup
τ≥0, tn+τ∈T

‖x(tn + τ, tn, x)‖2 ,

then V (tn, x) is bounded for any fixed tn in any compact set |x| ≤ α, and

(3.9) V (tn, x) ≥ ‖x(tn, tn, x)‖2 = ‖x‖2 = φ (‖x‖) ∈ KR.

Now, we prove the necessity. For all tn1 < tn2 ∈ T , assume t0 < tn1 < tn2 , by the

uniqueness of the solution, we have

V (tn1 , x(tn1 , t0, x0)) = sup
τ≥0, tn1+τ∈T

‖x(tn1 + τ, tn1 , x(tn1 , t0, x0)))‖2

= max

{

sup
0≤τ≤tn2−tn1

‖x(tn1 + τ, tn1 , x(tn1 , t0, x0)))‖2 ,

sup
τ≥0

‖x(tn2 + τ, tn2 , x(tn2 , t0, x0)))‖2

}

≥ sup
τ≥0

‖x(tn2 + τ, tn2 , x(tn2 , t0, x0)))‖2

= V (tn2 , x(tn2 , t0, x0)).(3.10)

Thus V (tn, x(tn, t0, x0)) is nonincreasing for tn ∈ T . The proof is complete.

Example 3.4. Consider the discrete dynamic system

(3.11)











xn+1 = xn,

yn+1 = yn − zn |xn| ,
zn+1 = zn + ynx

2
n.

The simulation result with x0 = 0.1, y0 = 10, z0 = 10 is shown in Figure 2. It can

be seen that the solution of system (3.11) is not equi-bounded.
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Figure 2. Simulation result of Example 2.

Theorem 3.5. All the solutions of system (2.1) are uniformly bounded if and only

if there exists a function V (tn, x) ∈ [T × Ω, R+] with Ω = {x| |x| ≥M} big enough,

such that:

(i) φ1 (‖x‖) ≤ V (tn, x) ≤ φ2 (‖x‖) , φ1, φ2 ∈ KR;

(ii) ∆+V (tn, x)
∣

∣

(2.1) = V (tn+1, x) − V (tn, x) ≤ 0 , for any solution x(tn, t0, x0) of

system (2.1).

Proof. If conditions (i) and (ii) are satisfied, for any α > 0, there exists β(α) > 0

such that φ2 (α) < φ1 (β). Then, for any x0 ∈ Sα = {x| ‖x‖ ≤ α} , we have

(3.12) φ1 (‖xn(tn)‖) ≤ V (tn, xn(tn, t0, x0)) ≤ V (t0, x0) < φ2 (x0) ≤ φ2 (α) ≤ φ1 (β) .

Thus, we get

‖xn(tn, t0, x0)‖ < βα.

Therefore, all the solutions of system (2.1) are uniformly bounded.

Suppose all the solutions of system (2.1) are uniformly bounded. For any solution

x(tn, t0, x0) of system (2.1), let

(3.13) V (tn, x) =
(

1 + e−tn
)

inf
t0≤τ≤tn, tn+τ∈T

‖x(τ, tn, x)‖2 −b±
√
b2 − 4ac

2a
.

We have

(3.14) V (tn, x) ≤ 2 ‖x(τ, tn, x)‖2 = 2 ‖x‖2 = φ2 (‖x‖) ∈ KR.

Since all the solutions of system (2.1) are uniformly bounded, for any α > 0, there

exists β(α) > 0 such that for all x ∈ Sα = {x| ‖x‖ ≤ α}, we have

‖x(tn, t0, x)‖ ≤ β(α).
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If γ ≤ ‖x‖, for all tn ≥ τ ≥ t0 , we have

‖x(τ, tn, x)‖ ≥ ‖x(tn, t0, x)‖ = ‖x‖ ≥ γ.

Thus, for all γ ≤ ‖x‖ ≤ α, and tn ≥ τ ≥ t0, by (3.12) and (3.14), we have

γ ≤ ‖x(τ, tn, x)‖ ≤ β(α).

Then, we get

(3.15) γ2 ≤ V (tn, x) ≤ 4β2(α).

Take γn = α
n+1

, where γn = α
n+1

≤ ‖x‖ ≤ α
n
γn−1, there exists ηn = γ2

n, η1 > η2 >

· · · > ηn such that

V (tn, x) ≥ ηn.

Let

(3.16) W (x) = ηn+1 +
n(n+ 1)

α
(ηn − ηn+1) (‖x‖ − γn) .

If γn = α
n+1

≤ ‖x‖ ≤ α
n
γn−1, we have

(3.17) W (x) ≥ ηn+1 +
n(n + 1)

α
(ηn − ηn+1) (γn − γn) = ηn+1 > 0,

and

W (x) ≤ ηn+1 +
n(n+ 1)

α
(ηn − ηn+1) (γn−1 − γn)

= ηn+1 +
n(n + 1)

α
(ηn − ηn+1)

α

n(n+ 1)
(3.18)

= ηn+1 + ηn − ηn+1 = ηn.

Thus, we have

(3.19) W (x) ≤ ηn ≤ V (tn, x),

and

W (0+) ≤ lim
m→∞

ηm ≤ V (tn, 0) = 0.

Therefore, V (tn, x) is positive, There exists ϕ1 (‖x‖) with ϕ1 ∈ KR, such that

φ1 (‖x‖) ≤ V (tn, x). Hence, condition (i) is true.

Along the solution x(tn, t0, x0) of system (2.1), we have

V (tn) = V (tn, x(tn, t0, x0))

=
(

1 + e−tn
)

inf
t0≤τ≤tn, tn+τ∈T

‖x(τ, tn, x(tn, t0, x0))‖2

=
(

1 + e−tn
)

inf
t0≤τ≤tn, tn+τ∈T

‖x(τ, tn, x0)‖2 .

Hence, D+V (tn)
∣

∣

(2.1) ≤ 0. The proof is complete.
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Example 3.6. Prove that the solution of the following discrete dynamic system is

uniformly bounded
{

xn+1 = xn cos tn − yn sin tn,

yn+1 = xn sin tn + yn cos tn.

Proof. Assume

V (tn, xn, yn) =
√

x2
n + y2

n

(

1 + e−tn
)

,

φ1 (‖(xn, yn)‖) =
√

x2
n + y2

n,

φ2 (‖(xn, yn)‖) = 2
√

x2
n + y2

n.

It is obvious that φ1, φ2 ∈ KR and
√

x2
n + y2

n ≤
√

x2
n + y2

n

(

1 + e−tn
)

≤ 2
√

x2
n + y2

n,

φ1 (‖(xn, yn)‖) ≤ V (tn, xn, yn) ≤ φ2 (‖(xn, yn)‖) .

∆V +(tn, xn, yn) =
√

x2
n+1 + y2

n+1

(

1 + e−tn+1
)

−
√

x2
n + y2

n

(

1 + e−tn
)

≤
(

√

x2
n+1 + y2

n+1 −
√

x2
n + y2

n

)

(

1 + e−tn
)

=
x2

n+1 + y2
n+1 − x2

n − y2
n

√

x2
n+1 + y2

n+1 +
√

x2
n + y2

n

(

1 + e−tn
)

≤ 2
√

x2
n+1 + y2

n+1 +
√

x2
n + y2

n

[

x2
n cos2 tn − 2xnyn sin tn cos tn + y2

n sin2 tn

+x2
n sin2 tn + 2xnyn sin tn cos tn + y2

n cos2 tn − x2
n − y2

n

] (

1 + e−tn
)

=
2

√

x2
n+1 + y2

n+1 +
√

x2
n + y2

n

(

x2
n + y2

n − x2
n − y2

n

) (

1 + e−tn
)

= 0.

Thus, the conclusion is true.

The simulation result with x0 = 10, y0 = 10 is shown in Figure 3.

Now, consider a special type of discrete system described as

(3.20)

{

xn+1 = F (tn, xn, yn),

yn+1 = G(tn, xn, yn).

where x ∈ Rl, y ∈ Rm, and F (tn, xn, yn), G(tn, xn, yn) = I × Rl ×Rm.

Theorem 3.7. Assume there exists a function V (tn, xn, yn), (tn, xn, yn) ∈ I × Ω ,

{(tn, xn, yn)|tn ∈ I, |xn| + |yn| ≥ K2}. For any M > 0, there exists a function

W (tn, xn, yn), (tn, xn, yn) ∈ I × Ω1, {(tn, xn, yn)|tn ∈ I, |xn| ≥ K1, |yn| ≤ M}, where

K1 is sufficient big. And the below conditions hold

(i) V (tn, xn, yn) → +∞ (on tn, xn), when |yn| → +∞ ;

(ii) V (tn, xn, yn) ≤ b(|xn|, |yn|), where b(r, s) is continuous;

(iii) ∆+V (tn, xn, yn)
∣

∣

(3.20) ≤ 0;
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Figure 3. Simulation result of Example 3.

(iv) W (tn, xn, yn) → +∞(on tn, yn), when |xn| → +∞ ;

(v) W (tn, xn, yn) ≤ c(|xn|), where c(r) is continuous;

(vi) ∆+W (tn, xn, yn)
∣

∣

(3.20) ≤ 0.

Then, the solution of system (3.20) are uniformly bounded.

Proof. Suppose x(t) = x(tn, t0, x0) and y(t) = y(tn, t0, x0) are the solutions of system

(3.20) satisfying |xn| + |yn| ≤ α. By condition (i) and (ii), we can choose β(α) big

enough such that

(3.21) sup
|xn|+|yn|=α

t∈I

V (tn, xn, yn) ≤ sup
|xn|+|yn|=α

b(|xn|, |yn|) ≤ inf
|yn|=β

t∈I

V (tn, xn, yn).

By condition (iii), when the solution of system (3.20) exists, and |x0| + |y0| ≤ α, we

get

(3.22) |y(tn, t0, x0, y0)| ≤ β(α).

Now consider a function W (tn, xn, yn), (tn, xn, yn) ∈ I × Ω3 , {(tnxn, yn)|tn ∈
I, |xn| ≥ K1(β), |yn| ≤ β}. Let α∗ = max{α,K1(β)}, there exists a γ which is big

enough, such that

(3.23) sup
|xn|=α,|yn|≤β

tn∈I

W (tn, xn, yn) < inf
|xn|<γ,|yn|≤β

tn∈I

V (tn, xn, yn),

By condition (vi), if the solution of system (2.1) exists, we must have |x(tn)| ≤
γ(α).

Consequently, for all tn ≥ t0, we have

|x(tn)| < γ(α), |y(tn)| < γ(α).
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Thus the solution of system (3.20) is uniformly bounded.

Example 3.8. Prove the solution of the following discrete dynamic system is uni-

formly bounded

(3.24)

(

xn+1

yn+1

)

=

(

0 sgn yn

1 0

)(

xn

yn

)

−
(

e−tn

0

)

.

Proof. Let

(3.25) V (tn, xn, yn) = (x2
n + y2

n).

It can be seen that V (tn, xn, yn) satisfies condition (i) and (ii) of Theorem 3.7. And

we have

∆+V (tn, xn, yn)
∣

∣

(3.24) = (x2
n+1 + y2

n+1) − (x2
n + y2

n)

= x2
n+1 − x2

n + y2
n+1 − y2

n

= y2
n − 2 |yn| e−t + e−2t − x2

n + x2
n − y2

n

= −(2 |yn| − e−tn)e−tn ≤ 0, |y|n ≥ 1/2, tn ≥ t0 ≥ 0.

Thus, condition (iii) of the Theorem 3.7 is satisfied. Let

(3.26) W (tn, xn, yn) = |x| ,

Then, W (tn, xn, yn) satisfies conditions (iv) and (v) in Theorem 3.7, and

∆+W (tn, xn, yn)
∣

∣

(3.24) = |xn+1| − |xn| .

When |xn| ≥ K1, |yn| ≤ M , assume without loss of generality that Ki > M + 1, we

have

∆+W (tn, xn, yn)
∣

∣

(3.24) = |xn+1| − |xn|
≤ |yn| + e−tn − |xn|
≤M + 1 −K1 < 0, tn ≥ t0 ≥ 0.

The proof is thus complete.

The simulation result with x0 = 1, y0 = 1 is shown in Figure 4.

4. DISSIPATION OF DISCRETE-TIME DYNAMIC SYSTEMS

Definition 4.1. The system (2.1) is called a dissipative system, or the solution of

system (2.1) is said to be ultimately bounded with bound B, if there exist constant

B > 0, T (t0, x0) > 0, such that

‖x(tn, t0, x0)‖ ≤ B, for all tn ≥ t0 + T (t0, x0),

where x(tn, t0, x0) is the solution of (2.1).
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Figure 4. Simulation result of Example 4.

The system (2.1) is called a equi-dissipative system, or the solution of (2.1) is

said to be ultimately equi-bounded with bound B, if there exist constant B > 0, for

any α > 0 and any x0 ∈ Sα = {x| ‖x‖ ≤ α}, there exists T (t0, α) > 0 such that

‖x(tn, t0, x0)‖ ≤ B, for all tn ≥ t0 + T (t0, α),

where x(tn, t0, x0) is the solution of system (2.1).

The system (2.1) is called a uniformly dissipative system, or the solution of (2.1)

is said to be ultimately bounded with bound B, if For any α > 0, any x0 ∈ Sα =

{x| ‖x‖ ≤ α}, there exist constant B > 0, T (α) > 0 such that

‖x(tn, t0, x0)‖ ≤ B, for all tn ≥ t0 + T (α),

where x(tn, t0, x0) is the solution of system (2.1).

Theorem 4.2. Assume that there exists a function V (tn, x) ∈ [T × Ω, R+] with

Ω = {x| |x| ≥ M} such that

(i) V (tn, xn) ≤ φ (‖xn‖) , φ ∈ K ;

(ii) ∆+V (tn, xn)
∣

∣

(2.1) ≤ −ω(|xn|) < 0 .

Then the system (2.1) is a dissipative system.
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Proof. If it is not true, that is, for some t0, x0, for any B ∈ R+, and there exists

tni
> t0, i = 1, 2, . . . , such that |x(tni

, t0, x0)| > B. Then, we have

V (tni
, xni

(tni
, t0, x0)) ≤ V (tni−1, xni−1) − ω(B)

≤ V (tni−2, xni−2) − 2ω(B)

≤ · · ·
≤ V (t0, x0) − niω(B) → −∞, (i→ ∞),(4.1)

which is a contradiction. So we can choose B∗ > B and tn0 > t0 such that

|xn(tn0 , t0, x0)| ≤ B.

Denote xn0 = x(tn0 , t0, x0). From condition (i) and (ii), for all tn > t0, we have

φ (‖xn(tn, t0, x0)‖) ≤ V (tn−1, xn−1) − V (tn, xn)

≤ V (tn−1, xn−1)

≤ · · ·
≤ V (tn0 , xn0)

≤ φ(|xn0 |) ≤ φ(|B∗|).(4.2)

Thus, |xn(tn, t0, x0)| ≤ B∗, as tn ∈ T . The proof is complete.

Theorem 4.3. Assume that there exists a function V (tn, x) ∈ [T × Ω, R+] with

Ω = {x| |x| ≥ M} such that

(i) φ (‖xn‖) ≤ V (tn, xn), φ ∈ K ;

(ii) ∆+V (tn, xn)
∣

∣

(2.1) ≤ −cV (tn−1, xn−1), c = const > 0.

Then the system (2.1) is a dissipative system.

Proof. If it is not true, that is, for any B ∈ R+, for any t0, x0, there exists tn0 >

t0 + c∗−1 ln(v(t0, x0) − φ(B)) = t0 + T (t0, x0), such that |xn0(tn0 , t0, x0)| ≥ B, where

c∗ = min c(tk − tk−1)
−1, 1 ≤ k ≤ n. Using inequality equation 1− r ≤ · · · ≤ e−r with

r > 0 and mathematical induction, we have

V (tn, xn) ≤ (1 − c∗(tn − tn−1))V (tn−1, xn−1)

≤ V (tn−1, xn−1)e
−c∗(tn−tn−1)

≤ (1 − c∗(tn−1 − tn−2))V (tn−2, xn−2)e
−c∗(tn−tn−1)

≤ V (tn−2, xn−2)e
−c∗(tn−tn−2)

≤ · · ·
≤ V (t0, x0)e

−c∗(tn−t0).(4.3)
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Thus

φ(B) ≤ φ(‖xn0(tn0, t0, x0)‖)
≤ V (tn0 , xn0(tn0 , t0, x0))

≤ V (t0, x0)e
−c∗(tn0−t0)

< V (t0, x0)e
−c∗c∗−1 ln(v(t0 ,x0)−φ(B))

= φ(B),(4.4)

which is a contradiction. Therefore, there exists B∗ ∈ R+ such that |x(tn, t0, x0)| < B∗

for all tn > t0 + c∗−1 ln(v(t0, x0) − φ(B)). The proof is complete.

Theorem 4.4. Assume that there exists a function V (tn, x) ∈ [T × Ω, R+] with

Ω = {x| |x| ≥ M} such that

(i) there exists B > 0, φ (|xn|) ≤ V (tn, xn), as |xn| ≥ B, φ ∈ KR ;

(ii) ∆+V (tn, xn) ≤ −cV (tn−1, xn−1), c = const > 0 ;

(iii) for any α > 0, there exists K(t0, α) such that V (t0, x0) ≤ K(t0, α), as x0 ∈
Sα = {x0 ||x0| ≤ α}.

Then, system (2.1) is an equi-dissipative system.

Proof. We claim that for any x0 ∈ Sα = {x0 ||x0| ≤ α}, if tn > t0 + c∗−1 ln(K(t0, α)−
φ(B)) = t0 + T (t0, x0), we will get

(4.5) |x(tn, t0, x0)| < B.

If it is not true, that is, there exists tn0 > t0+c∗−1 ln(K(t0, α)−φ(B)) = t0+T (t0, x0),

we have

(4.6) |xn0(tn0 , t0, x0)| ≥ B,

where c∗ = min c(tk − tk−1)
−1, 1 ≤ k ≤ n. Since

(4.7) V (tn0, xn0) ≤ V (t0, x0)e
−c∗(tn0−t0) ≤ K(t0, α)e−c∗(tn0−t0),

we get

φ(B) ≤ φ(‖x(tn0 , t0, x0)‖)
≤ V (tn0 , xn0(tn0 , t0, x0))

= V (tn0 , xn0)

≤ K(t0, α)e−c∗(tn0−t0)

< K(t0, α)e−c∗c∗−1 ln(K(t0,α)−φ(B))

= φ(B),(4.8)

which is a contradiction. Thus, our claim holds. The proof is complete.
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Lemma 4.5. Assume that φ(tn), tn ≥ 0, lim
tn→∞

φ(tn) = 0 is a decreasing function and

ξ(tn) with tn ≥ 0 is a nondecreasing function, then there exists a increasing function

G(r), G(0) = 0 defined on 0 ≤ r ≤ φ(0) such that

(4.9)

∞
∑

n=0

G (φ∗(tn+1)) ξ(tn+1)(tn+1 − tn) < 1,

for all 0 < φ∗(tn) ≤ φ(tn) tn ≥ 0.

Proof. From the assumption, we can choose a sequence {tn} with tn > 1, tn+1 > tn +1

such that

φ(tn) <
1

n + 1
.

Take η(tn) = 1
n
, η(t) is linear on [tn, tn+1] , η(t) =

(

t1
t

)p
, as 0 < t < t1 , where p is a

positive number satisfying η̇(t1 − 0) < η̇(t1 + 0) . It can be seen that

lim
t→+∞

η(t) = 0.

Let

G(r) =

{

e−η−1(r)

ξ(η−1(r))
, r > 0,

0, r = 0,

where η−1 is a invertible function of η, η−1 is a decreasing function. For all 0 <

φ∗(tn) ≤ φ(tn) and tn ≥ 0 , we have

η−1 (φ∗(tn)) ≥ η−1φ(tn) > η−1 (η(tn)) = tn,

e−η−1(φ∗(tn)) < e−tn , ξ
(

η−1 (φ∗(tn))
)

≥ ξ(tn).

Thus

G (φ∗(tn)) =
e−η−1(φ∗(tn))

ξ(η−1(φ∗(tn)))
<

e−tn

ξ(tn)
.

Then

∞
∑

n=0

G (φ∗(tn+1)) ξ(tn+1)(tn+1 − tn) <
∞
∑

n=0

e−tn+1

ξ(tn+1)
ξ(tn+1)(tn+1 − tn) <

∫ +∞

0

e−tdt = 1.

Hence, the proof is complete.

Theorem 4.6. All the solutions of system (2.1) are ultimately bounded with bound B,

if and only if there exists a function V (tn, x) ∈ [T × Ω, R+] with Ω = {x| |x| ≥M}
and M < B as n is big enough, such that

(i) φ (‖xn‖) ≤ V (tn, xn) ≤ ψ (‖xn‖) , φ, ψ ∈ KR ;

(ii) ∆+V (tn, xn)
∣

∣

(2.1) ≤ −ω(|xn|), ω ∈ K .
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Proof. From conditions (i) and (ii), for α ≥ M , we can choose β with φ (α) < ψ (β)

such that for any solution x(tn, t0, x0) of system (2.1) with x0 ∈ Sα = {x| ‖x‖ ≤ α},
we have

(4.10) φ (‖x(tn)‖) ≤ V (tn, x(tn, t0, x0)) ≤ V (t0, x0) < ψ (x0) ≤ φ (α) < φ (β) .

Then, we get

‖x(tn, t0, x0)‖ < β, tn ≥ t0.

Thus, all the solutions of (3.20) are uniformly bounded.

Choosing B > M . For any α > B and any x0 ∈ Sα = {x| ‖x‖ ≤ α} , there

exists tn0 > t0 such that

(4.11) ‖xn0(tn0 , t0, x0)‖ < B.

If it is not true, that is, for all tn ≥ t0, we have

B ≤ ‖xn(tn, t0, x0)‖ < β.

Thus

V (tn, xn) ≤ V (tn−1, xn−1) − ω(B)

≤ V (tn−2, xn−2) − 2ω(B)

≤ · · ·
≤ V (t0, x0) − nω(B) → −∞, (n→ ∞),

which is a contradiction. Hence, (4.11) is true.

Take B∗ satisfying B < B∗ ≤ α, as tn > t0, we have

φ (‖xn(tn, t0, x0)‖) ≤ V (tn−1, xn−1) − V (tn, xn)

≤ V (tn−1, xn−1)

≤ · · ·
≤ V (tn0 , xn0)

≤ φ(|xn0 |) ≤ φ(|B∗|).

Thus

|xn(tn, t0, x0)| < B∗.

Therefore, all the solutions of (2.1) are uniformly bounded with B.

Suppose all the solutions of system (2.1) are uniformly bounded with B, for any

α > B, and any x0 ∈ Sα. Let MB = {x| ‖x‖ ≤ B} . d(p(t0 + τn, t0, x0),MB), τn ∈ T ,

which denote the distance between the point p(t0 + τn, t0, x0) and the set MB. Since

the solution x(tn, t0, x0) is uniformly bounded with B, using the similar method in
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[15], we can prove that there exist an increasing function ψ(τn), ψ(0) = 0 and a

positive function σ(tn) with lim
n→∞

σ(tn) = 0, such that

(4.12) d(p(t0 + τn, t0, xn),MB) ≤ ψ(d(xn,MB))σ(τn).

Let φ(τn) = ψ(α − B)σ(τn) and ξ(τn) ≡ 1. It can be seen by Lemma 4.5 that

there exists an increasing function G(r) with G(0) = 0 defined on 0 ≤ r ≤ φ(0) =

ψ(α−B)σ(0). Let g(τn) = G2(τn), as τn > tn, d(x0,MB) ≤ α− B, we have

g(ψ(d(xn,MB))σ(τn − tn)) = [g(ψ(d(xn,MB))σ(τn − tn))]1/2

× [g(ψ(d(xn,MB))σ(τn − tn))]1/2

≤ [g(ψ(d(xn,MB))σ(0))]1/2[g(ψ(α− B)σ(τn − tn))]1/2.(4.13)

Let

(4.14) V1(tn, xn) =
∞
∑

k=1

g (d(p(t0 + tn+k−1, tn, xn),MB)) (tn+k − tn+k−1) ≥ 0,

We have

V1(tn, xn) ≤ [g(ψ(d(xn,MB))σ(0))]1/2
∞
∑

k=1

[g(ψ(α− B)σ(tn+k − tn))]1/2(tn+k − tn+k−1)

≤ [g(ψ(d(xn,MB))σ(0))]1/2
∞
∑

k=1

[g(ψ(α− B)σ(t∗n))]1/2(t∗n+k − t∗n+k−1)

≤ G(ψ(d(xn,MB))σ(0))
∞
∑

k=1

G(ψ(α−B)σ(t∗n))(t∗n+k − t∗n+k−1)

≤ G(ψ(d(xn,MB))σ(0)) = ψ1(|xn|),(4.15)

and

D+V1(tn+1, xn)
∣

∣

(2.1) = V1(tn+1, xn) − V1(tn, xn)

=
∞
∑

k=1

g (d(p(t0 + tn+k+1, tn, xn),MB)) (tn+k+1 − tn+k)

−
∞
∑

k=1

g (d(p(t0 + tn+k, tn, xn),MB)) (tn+k − tn+k−1)

, lim
m→∞

[

m
∑

k=1

g (d(p(t0 + tn+k+1, tn, xn),MB)) (tn+k+1 − tn+k)

−
m
∑

k=1

g (d(p(t0 + tn+k, tn, xn),MB)) (tn+k − tn+k−1)

]

= lim
m→∞

[g (d(p(t0 + tn+m+1, tn, xn),MB)) (tn+m+1 − tn+m]

≤ −cg (d(p(t0 + tn+1, tn, xn),MB))

≤ −cG2 (d(p(xn,MB)) = −ω(|xn|), c = min(tn+1 − tn).(4.16)
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By Theorem 3.5, there exists V2(tn, xn) ∈ [T × Rm, R+] such that

(i) φ1 (‖xn‖) ≤ V2(tn, xn) ≤ φ2 (‖xn‖) , φ1, φ2 ∈ KR;

(ii) ∆+V2(tn, xn)
∣

∣

(2.1) ≤ 0, for each solution x(tn, t0, x0) of (2.1).

Let V (tn, xn) = V1(tn, xn) + V2(tn, xn), we have

(4.17)

φ (‖xn‖) = φ1 (‖xn‖) ≤ V2(tn, xn) ≤ V (tn, xn) ≤ φ2 (‖xn‖) + ψ1(|xn|) = ψ(|xn|),

and

(4.18) D+V (tn+1, xn)
∣

∣

(2.1) = ∆+V1(tn+1, xn)
∣

∣

(2.1) + ∆+V2(tn, xn)
∣

∣

(2.1) ≤ −ω(|xn|).

Thus, all the conditions of Theorem 4.6 are satisfied. The proof is complete.

5. CONCLUSION

In this paper, we have studied the boundedness and dissipation properties of

discrete-time dynamic systems. We have established some sufficient and necessary

conditions for boundedness, equi-boundedness, uniform boundedness and uniform

dissipation for the solutions of discrete dynamic systems. We have also established

sufficient conditions for dissipation, equi-dissipation and uniform dissipation for the

solutions of discrete dynamic systems. These results are superior in comparison with

some similar results for continuous-time dynamic systems found in the literature.

where the sufficient conditions are obtained. Some examples have been given to

illustrate the main results.
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