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ABSTRACT. In this paper, by using upper and lower solutions, we develop monotone method for

the nonlinear Caputo fractional boundary value problem of order α where 1 < α < 2. We construct

two sequences which converge uniformly and monotonically to the extremal solutions of the nonlinear

Caputo fractional boundary value problem.
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1. INTRODUCTION

Qualitative study of fractional differential equations has gained lot of importance

recently due to its applications, see [1, 3, 4, 5]. Recently we have developed monotone

method for Riemann-Liouville fractional differential equations of order q, 0 < q < 1,

with periodic boundary conditions, see [6].

In this work we develop monotone method for fractional boundary value problem

of order α where 1 < α < 2. For that purpose we develop some basic fractional

calculus results which are used as tools to develop comparison results relative to upper

and lower solutions of Caputo fractional boundary value problems. Our results include

the comparison theorem given in [2] for derivative of order α. We have also computed

the Green’s function for the linear Caputo fractional boundary value problem. The

integral representation of the linear fractional nonhomogeneous problem is useful in

developing monotone method for the Caputo fractional boundary value problem.

Finally we prove monotone method for fractional differential equations of order

α. Here we combine the method of upper and lower solutions and monotone method

to develop two sequences which converge uniformly and monotonically to the minimal

and maximal solutions.

Received November 23, 2010 1056-2176 $15.00 c©Dynamic Publishers, Inc.



74 J. D. RAMIREZ AND A. S. VATSALA

2. COMPARISON THEOREM, GREEN’S FUNCTION AND SOME

AUXILIARY RESULTS

In this section we develop some auxiliary results and a comparison theorem rela-

tive to boundary value problems with Caputo fractional derivative of order 1 < α < 2.

This will be useful to develop our main result. For that purpose we consider the

Boundary Value Problem (BVP):

(2.1)

−cD1+qu(t) = f(t, u(t), cDqu(t)),

αau(a) − βa
cDqu(a) = γa

αbu(b) + βb
cDqu(b) = γb,

where αa, αb ≥ 0, βa, βb > 0, γa, γb ∈ R, and f ∈ C
[

[a, b] × R × R,R
]

.

In (2.1), cDαu(t) is the Caputo derivative of order n − 1 < α < n for t ∈ [a, b],

see [1, 3], where

cDα
a+u(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1u(n)(s)ds,

and

cDα
b−u(t) =

1

Γ(n− α)

∫ b

t

(s− t)n−α−1u(n)(s)ds.

In this paper, we study the case n = 2 with respect to (2.1). In particular, we

choose 0 < q < 1.

Lemma 2.1. Let m(t) ∈ C2([a, b],R). If there exists t1 ∈ (a, b) such that m(t1) = 0

and m(t) ≤ 0 for a ≤ t ≤ b, then cDqm(t1) = 0 and cD1+qm(t1) ≤ 0.

Proof. We will compute both
(

cD
q
a+m

)

(t1) and
(

cD
q

b−m
)

(t1).

By the definition of Caputo derivative and integration by parts,

(

cD
q
a+m

)

(t1) =
1

Γ(1 − q)

∫ t1

a

m′(s)

(t1 − s)q
ds

=
1

Γ(1 − q)

m(s)

(t1 − s)q

∣

∣

∣

∣

∣

t1

a

−
q

Γ(1 − q)

∫ t1

a

m(s)(t1 − s)−q−1ds

= −
1

Γ(1 − q)

m(a)

(t1 − a)q
−

q

Γ(1 − q)

∫ t1

a

m(s)(t1 − s)−q−1ds

≥ 0,

Similarly,

(

cD
q

b−m
)

(t1) =
1

Γ(1 − q)

∫ b

t1

m′(s)

(s− t1)q
ds

=
1

Γ(1 − q)

m(s)

(s− t1)q

∣

∣

∣

∣

∣

b

t1

+
q

Γ(1 − q)

∫ b

t1

m(s)(s− t1)
−q−1ds
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=
1

Γ(1 − q)

m(b)

(b− t1)q
+

q

Γ(1 − q)

∫ b

t1

m(s)(s− t1)
−q−1ds

≤ 0,

Therefore cDqm(t1) = 0.

In order to show that
(

cD1+qm
)

(t1) ≤ 0, we will compute
(

cD
1+q
a+ m

)

(t1) and
(

cD
1+q

b− m
)

(t1). Observe that
(

cD1+qm
)

(t1) = cD
(

cDqm(t1)
)

=
d

dt
cDqm(t1).

Furthermore, cDqm(t) is continuous and, consequently

lim
h→0

cD
q
a+m(t1 − h) ≥ cD

q
a+m(t1), and

lim
h→0

cD
q

b−m(t1 + h) ≤ cD
q

b−m(t1).

Then, we have that

cD
1+q
a+ m(t1) =

d

dt
cD

q
a+m(t1)

= lim
h→0

cD
q
a+m(t1) −

cD
q
a+m(t1 − h)

h

= − lim
h→0

cD
q
a+m(t1 − h)

h
≤ 0.

Similarly,

cD
1+q

b− m(t1) =
d

dt
cD

q

b−m(t1)

= lim
h→0

cD
q

b−m(t1 + h) − cD
q

b−m(t1)

h

= lim
h→0

cD
q

b−m(t1 + h)

h
≤ 0.

Therefore cD1+qm(t1) ≤ 0.

Corollary 2.2. Let m ∈ C2([a, b],R). If m reaches a nonnegative maximum at

t1 ∈ (a, b), then cDqm(t1) = 0 and cD1+qm(t1) ≤ 0

Proof. Let K be the maximum of m, it suffices to take m̃(t) = m(t) −K and apply

Lemma 2.1 to m̃.

Remark 2.3. If m(t) reaches a nonnegative maximum at the endpoint t = a then
cDqm(a) ≤ 0. Also, if it reaches a nonnegative maximum at t = b then cDqm(b) ≥ 0.

The proof is similar to the previous cases.

Similarly we can prove,

Lemma 2.4. Let m ∈ C2([a, b],R).
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(a) If m reaches a nonpositive minimum at t1 ∈ (a, b), then cDqm(t1) = 0 and
cD1+qm(t1) ≥ 0.

(b) If m reaches a nonpositive minimum at t = a then cDqm(a) ≥ 0.

(c) If m reaches a nonpositive minimum at t = b, then cDqm(b) ≤ 0

Now we are ready to prove the following comparison theorem.

Theorem 2.5. Let 0 < q < 1 and assume that:

(i) v, w ∈ C2([a, b],R) are lower and upper solutions, respectively, of the Boundary

Value Problem (2.1); i.e.,

−cD1+qv(t) ≤ f(t, v(t), cDqv(t)),

αav(a) − βa
cDqv(a) ≤ γa,

αbv(b) + βb
cDqv(b) ≤ γb,

and

−cD1+qw(t) ≥ f(t, w(t), cDqw(t)),

αaw(a) − βa
cDqw(a) ≥ γa,

αbw(b) + βb
cDqw(b) ≥ γb.

(ii) fu, fcDqu exist, are continuous on [a, b] with fu < 0 and fu 6≡ 0 on Ω = [t, u, ū) :

t ∈ [a, b], w(t) ≤ u ≤ v(t) and ū =cDqv =cDqw.

Then v(t) ≤ w(t) on [a, b].

Proof. Assume first that one of the above inequalities is strict and set m(t) = v(t) −

w(t). We will show that m(t) < 0.

If the conclusion is not true, then there exists a t1 ∈ [a, b] such that m(t1) = 0 and

m(t) ≤ 0 on [a, b]. If t1 ∈ (a, b), then it follows from Lemma 2.1 that cDqm(t1) = 0,

and cD1+qm(t1) ≤ 0.

Therefore, v(t1) = w(t1),
cDqv(t1) =cDqw(t1), and cD1+qv(t1) ≤cD1+qw(t1).

Hence,

f
(

t1, v(t1),
cDqv(t1)

)

≥ −cD1+qv(t1) ≥

≥ −cD1+qw(t1) > f
(

t1, w(t1),
cDqw(t1)

)

=

= f
(

t1, v(t1),
cDqv(t1)

)

,

which is a contradiction. Therefore v(t) < w(t) on (a, b).

Now, assume that t1 = a, then m′(a) ≤ 0 and m(a) ≥ 0. Thus v′(a) ≤ w′(a) and

v(a) ≥ w(a). Since m′(a) ≤ 0,

cDqm(a) = lim
h→0

1

Γ(1 − q)

∫ a+h

a

m′(s)

(a + h− s)q
ds ≤ 0.
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Thus cDqm(a) ≤ 0 and cDqv(a) ≤cDqw(a). But from the boundary conditions it

follows that

αav(a) − βa
cDqv(a) ≤ αaw(a) − βa

cDqw(a).

Hence, βa(
cDqw(a)−cDqv(a)) ≤ 0 and cDqv(a) ≥cDqw(a) because βa > 0. Thus

cDqm(a) = 0. Therefore, we have from the proof of Lemma 2.1 that

cD1+qm(a) =
d

dt
cDqm(a) = lim

h→0

cDqm(a + h) − cDqm(a)

h

= lim
h→0

cDqm(a+ h)

h
≤ 0.

Proceeding as before, we get the contradiction. Thus v(a) < w(a)

Finally, if t1 = b it follows by a similar argument that v(b) < w(b). Thus

v(t) < w(t) on [a, b].

Now assume that the inequalities when v and w are applied to (2.1) are nonstrict.

In this case we can show that v(t) ≤ w(t) on [a, b]. If the conclusion is not true, then

v(t)−w(t) has a positive maximum, say M , at some t0 ∈ (a, b). We will prove that if

such a t0 exists, then v(t)−w(t) ≡M for t ∈ [a, b]. If this is not true, then there exists

a t̃ ∈ [a, b] such that v(t̃) − w(t̃) < M . We show that this leads to a contradiction.

Suppose first that t̃ > t0 and define the function z(t) = (t − a)qeα(t−a) − (t0 −

a)qeα(t0−a), where α > 0 is a constant that will be determined later. Note that

z(t) < 0 for a ≤ t < t0,

z(t) > 0 for t0 < t ≤ b,

z(t0) = 0.

Also,

cDqz(t) = α

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2
, and

cD1+qz(t) = α2

∞
∑

k=0

αk(t− a)kΓ(k + q + 3)

(k + 1)!(k + 2)!

Finally, note that

cD1+qz(t) = α2
∞

∑

k=0

αk(t− a)kΓ(k + q + 3)

(k + 1)!(k + 2)!

= α2

∞
∑

k=0

αk(t− a)k(k + q + 2)Γ(k + q + 2)

(k + 1)!(k + 2)!

> α2

∞
∑

k=0

αk(t− a)k(k + 2)Γ(k + q + 2)

(k + 1)!(k + 2)!

= α2
∞

∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2
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= αcDqz(t)

Let m(t) = v(t) − w(t) + εz(t), where ε > 0. Then

cD1+qm(t) = cD1+qv(t) − cD1+qw(t) + εcD1+qz(t)

= −f(t, v, cDqv) + f(t, w, cDqw) + εcD1+qz(t)

= −f(t, v, cDqv) + f(t, w, cDqv)

−f(t, w, cDqv) + f(t, w, cDqw) + εcD1+qz(t)

= −fu(t, ξ,
cDqv)(v − w) − fcDqu(t, w, η)(

cDqv − cDqw)

+εα2
∞

∑

k=0

αk(t− a)kΓ(k + q + 3)

(k + 1)!(k + 2)!
, for some values ξ, η ∈ R

> −fu(t, ξ,
cDqv)(v − w) − fcDqu(t, w, η)(

cDqv − cDqw)

+εα2

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2

= −fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+εfu(t, ξ,
cDqv)[(t− a)qeα(t−a) − (t0 − a)qeα(t0−a)]

+εα
(

fcDqu(t, w, η)
)

[

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2

]

+εα2

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2

> −fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+εfu(t, ξ,
cDqv)[(t− a)qeα(t−a)]

+ε
(

αfcDqu(t, w, η) + α2
)

[

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2

]

= −fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+εfu(t, ξ,
cDqv)

[

(t− a)q

∞
∑

k=0

αk(t− a)k

k!

]

+ε
(

αfcDqu(t, w, η) + α2
)

[

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2

]

Since Γ(k + 2 + q) > Γ(k + 2) = (k + 1)! for k ≥ 0, we get from the last expression

that if fcDqu(t, w, η) + α > 0, then

−fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+εfu(t, ξ,
cDqv)

[

(t− a)q

∞
∑

k=0

αk(t− a)k

k!

]
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+ε
(

αfcDqu(t, w, η) + α2
)

[

∞
∑

k=0

αk(t− a)kΓ(k + q + 2)

((k + 1)!)2

]

> −fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+εfu(t, ξ,
cDqv)

[

(t− a)q

∞
∑

k=0

αk(t− a)k

k!

]

+ε
(

αfcDqu(t, w, η) + α2
)

[

∞
∑

k=0

αk(t− a)k

(k + 1)!

]

> −fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+εfu(t, ξ,
cDqv)

[

(t− a)q

∞
∑

k=0

αk(t− a)k

(k + 1)!

]

+ε
(

αfcDqu(t, w, η) + α2
)

[

∞
∑

k=0

αk(t− a)k

(k + 1)!

]

= −fu(t, ξ,
cDqv)m− fcDqu(t, w, η)(

cDqm)

+ε
(

(t− a)qfu(t, ξ,
cDqv) + αfcDqu(t, w, η) + α2

)

[

∞
∑

k=0

αk(t− a)k

(k + 1)!

]

Finally, since (t−a)qfu(t, ξ,
cDqv) and fcDqu(t, w, η) are bounded on [a, b] we can select

α such that (t− a)qfu(t, ξ
cDqv)+αfcDqu(t, w, η)+α2 > 0 for all t ∈ [a, b]. Therefore,

(2.2) −cD1+qm(t) < fu(t, ξ,
cDqv)m+ fcDqu(t, w, η)(

cDqm)

which implies that m(t) can not attain its maximum on (a, b). However, now choosing

0 < ε <
[M − v(t̃) − w(t̃)

z(t̃)

]

when t̃ > t0, we get

m(t̃) < v(t̃) − w(t̃) +
M − v(t̃) − w(t̃)

z(t̃)
z(t̃) < M.

Alsom(t0) = M , which implies by our choice of z(t) thatm(t) has a positive maximum

greater than or equal to M at some t∗ ∈ (t0, t̃), which leads to a contradiction because

of (2.2).

If t̃ < t0, we can arrive to a similar conclusion by considering z(t) = (b−t)qeα(b−t)−

(b− t0)
qeα(b−t0). Now we have that

z(t) > 0 for a ≤ t < t0,

z(t) < 0 for t0 < t ≤ b,

z(t0) = 0.

If t0 = a, then clearly t̃ > a. Also, if t∗ > a we can arrive as before to a contradiction.

If t∗ = a, then we only have m(a) = M and cDqm(a) ≤ 0. But from the bound-

ary conditions is follows that cDqm(a) ≥ 0 because β0 > 0. Hence it follows that
cDqm(a) = 0 and we can arrive at a contradiction as before. By a similar argument,
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we have that if t0 = b, then cDqm(b) = 0. Thus we have that v(t) − w(t) ≡ M on

[a, b]. As a consequence, it follows that

0 = cD1+qv − cD1+qw ≥ f(t, v, cDqw) − f(t, w, cDqv)

= fu(t, ξ,
cDqw)(−M) ≥ 0

for t ∈ (a, b), where ξ lies between v and w. This implies that fu(t, ξ,
cDqw) ≡ 0 on Ω,

which contradicts the assumption (ii). Hence the proof of the theorem is complete.

The following special case will be useful to prove our main result.

Corollary 2.6. Let ρ, r ∈ C([a, b]) with r(t) ≥ 0 on [a, b]. Suppose further that

p ∈ C2[a, b], and

−cD1+qp ≤ ρcDqp− rp,

αap(a) − βa
cDqp(a) ≤ 0,

αbp(b) + βb
cDqp(b) ≤ 0.

Then p(t) ≤ 0.

Next we will obtain a representation formula for the solution of the linear BVP

of the form

(2.3)

−cD1+qu+Mu = f(t, u, cDqu)

αau(a) − βa
cDqu(a) = γa,

αbu(b) + βb
cDqu(b) = γb,

where f satisfies the assumptions of Theorem 2.5, by using the Green’s function of

(2.4)

−cD1+qG(t, z) +MG(t, z) = δ(t− z)

αaG(a, z) − βa
cDqG(a, z) = 0,

αbG(b, z) + βb
cDqG(b, z) = 0,

where δ(t− z) is the Dirac Delta function.

Observe that A0 + A1(t − a) and B0 + B1(b − t) are two linearly independent

solutions of cD1+qu = 0. Letting u0,a = A0 +A1(t− a), we will compute ua(t) by the

method of succesive approximations

un,a(t) = u0,a(t) +MI
1+qun−1(t)

= u0,a(t) +
M

Γ(1 + q)

∫ t

a

un−1,a(s)(t− s)qds,

where I
αu(t) is the fractional integral of order α, defined as in [1], and cDα

(

I
αu(t)

)

=

u(t).

Then

u1,a(t) = A0 + A1(t− a)



MONOTONE METHOD. FRACTIONAL PERIODIC BOUNDARY VALUE PROBLEM 81

+
M

Γ(1 + q)

∫ t

a

[

A0 + A1(s− a)
]

(t− s)qds

= A0 + A1(t− a)

+M(t− a)1+q

[

A0

Γ(2 + q)
+
A1(t− a)

Γ(3 + q)

]

Repeating the process, it follows that

u2,a(t) = A0 + A1(t− a)

+M(t− a)1+q

[

A0

Γ(2 + q)
+
A1(t− a)

Γ(3 + q)

]

+M2(t− a)2+2q

[

A0

Γ(3 + 2q)
+
A1(t− a)

Γ(4 + 2q)

]

Proceeding inductively, it follows that

un,a(t) =
n

∑

k=0

Mk(t− a)k+kq

[

A0

Γ(k + 1 + kq)
+

A1(t− a)

Γ(k + 2 + kq)

]

Therefore,

ua(t) =
∞

∑

n=0

Mn(t− a)n+nq

[

A0

Γ(n+ 1 + nq)
+

A1(t− a)

Γ(n+ 2 + nq)

]

It follows by direct comparison that this series is convergent, because M is a fixed

constant, (t− a) is bounded on [a, b],

1

Γ(n+ 1 + nq)
≤

1

n!
,

and
1

Γ(n+ 2 + nq)
≤

1

(n+ 1)!

Furthermore, it is uniformly convergent because

ua(t) =
∞

∑

n=0

Mn(t− a)n+nq

[

A0

Γ(n+ 1 + nq)
+

A1(t− a)

Γ(n + 2 + nq)

]

≤

∞
∑

n=0

A0M
n(b− a)n+nq

n!
+

∞
∑

n=0

A1M
n(b− a)n+nq(b− a)

(n+ 1)!

By the ratio test the last series is convergent. Thus ua is uniformly convergent by the

Weierstrass M-test.

By a similar argument, letting u0,b = B0 +B1(b− t) we can compute ub(t) by the

method of succesive approximations

un,b(t) = u0,b(t) +
M

Γ(1 + q)

∫ b

t

un−1,b(s)(s− t)qds
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Then

un,b(t) =

n
∑

k=0

Mk(b− t)k+kq

[

B0

Γ(k + 1 + kq)
+

B1(b− t)

Γ(k + 2 + kq)

]

Therefore,

ub(t) =
∞

∑

n=0

Mn(b− t)n+nq

[

B0

Γ(n + 1 + nq)
+

B1(b− t)

Γ(n+ 2 + nq))

]

Now it is easy to observe that this series is also uniformly convergent. Thus, the

Green’s function corresponding to (2.4) is given by

G(t, z) =



















1

c
ua(t)ub(z), if a ≤ z ≤ t ≤ b

1

c
ua(z)ub(t), if a ≤ t ≤ z ≤ b

Since −cD1+qG+MG = δ(t− z), we have that

c = ub(t)
(

cDqua(t)
)

−ua(t)
(

cDqub(t)
)

.

Observe that

d

dt
ua(t) = A1 +

∞
∑

n=1

[

A0M
n(n+ nq)(t− a)n−1+nq

Γ(n+ 1 + nq)
+
A1M

n(n + 1 + nq)(t− a)n+nq

Γ(n+ 2 + nq)

]

,

and

d

dt
ub(t) = −B1 −

∞
∑

n=1

[

B0M
n(n+ nq)(b− t)n−1+nq

Γ(n+ 1 + nq)
+
B1M

n(n+ 1 + nq)(b− t)n+nq

Γ(n+ 2 + nq)

]

,

Hence, it can be shown as before by direct comparison and the Weierstrass M-test

that
d

dt
G(t, z) is also uniformly convergent. Therefore, a solution of (2.3) is given by

(2.5) u(t) = ψ(t) +

∫ b

a

G(t, z)f
(

z, u(z), cDqu(z)
)

dz,

where ψ(t) is a solution of the problem

−cD1+qu+Mu = 0

αau(a) − βa
cDqu(a) = γa,

αbu(b) + βb
cDqu(b) = γb.

This is indeed a solution of (2.3) because u(t) ∈ C2[a, b], it satisfies the boundary

conditions and

− cD1+qu(t) +Mu(t) =

= −cD1+qψ(t) −

∫ b

a

cD1+qG(t, z)f
(

z, u(z), cDqu(z)
)

dz

+Mψ(t) +

∫ b

a

MG(t, z)f
(

z, u(z), cDqu(z)
)

dz
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=

∫ b

a

[

−cD1+qG(t, z) +MG(t, z)
]

f
(

z, u(z), cDqu(z)
)

dz

− cD1+qψ(t) +Mψ(t)

=

∫ b

a

δ(t− z)f
(

z, u(z), cDqu(z)
)

dz

= f
(

t, u(t), cDqu(t)
)

.

We have shown the existence of a solution of (2.3). Now we are ready to show that

this solution is unique.

Lemma 2.7. The Boundary Value Problem (2.3) has a unique solution.

Proof. Let u1 and u2 be two arbitrary solutions of (2.3). Then,

−cD1+qu1 +Mu1 = f(t, u1,
cDqu1)

αau1(a) − βa
cDqu1(a) = γa,

αbu1(b) + βb
cDqu1(b) = γb,

and

−cD1+qu2 +Mu2 = f(t, u2,
cDqu2)

αau2(a) − βa
cDqu2(a) = γa,

αbu2(b) + βb
cDqu2(b) = γb,

From Theorem 2.5 it follows that u1 ≤ u2, and similarly it follows that u1 ≥ u2.

Therefore u1 = u2 on [a, b] and the solution of (2.3) is unique.

3. MONOTONE ITERATIVE TECHNIQUE

In this section, we develop a monotone method for a BVP of the form (2.1),

by using upper and lower solutions. Next we state our main result related to the

corresponding nonlinear fractional differential equation with boundary conditions.

Consider the following special case of the BVP (2.3),

(3.1)

−cD1+qu(t) = f
(

t, u(t)
)

,

αau(a) − βa
cDqu(a) = γa

αbu(b) + βb
cDqu(b) = γb,

Theorem 3.1. Assume that:

(i) v0, w0 ∈ C2[a, b] are such that v0 ≤ w0 and

−cD1+qv0 ≤ f
(

t, v0(t)
)

,

αav0(a) − βa
cDqv0(a) ≤ γa

αbv0(b) + βb
cDqv0(b) ≤ γb,
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−cD1+qw0 ≥ f
(

t, w0(t)
)

,

αaw0(a) − βa
cDqw0(a) ≥ γa

αbw0(b) + βb
cDqw0(b) ≥ γb,

(ii) There exists M > 0 such that

f
(

t, u(t)
)

−f
(

t, ξ(t)
)

≥ −M
(

u(t) − ξ(t)
)

,

for t ∈ [a, b] and v0(t) ≤ ξ(t) ≤ u(t) ≤ w0(t).

Then there exist monotone sequences {vn}, {wn} such that vn → v, wn → w

as n → ∞ uniformly on [a, b] and v, w are extremal solutions of the BVP (3.1).

That is if u(t) is any solution of the periodic boundary value problem (3.1) such that

v0(t) ≤ u ≤ w0(t) , then v ≤ u ≤ w

Proof. Define the sequences

(3.2)

−cD1+qvn(t) = f
(

t, vn−1(t)
)

−M
(

vn(t) − vn−1(t)
)

,

αavn(a) − βa
cDqvn(a) = γa,

αbvn(b) + βb
cDqvn(b) = γb,

and

(3.3)

−cD1+qwn(t) = f
(

t, wn−1(t)
)

−M
(

wn(t) − wn−1(t)
)

,

αawn(a) − βa
cDqwn(a) = γa,

αbwn(b) + βb
cDqwn(b) = γb,

For (3.2), we have from (2.5) the solution in terms of the corresponding Green’s

function Gv,n(t, z)

vn(t) = ψv,n(t) +

∫ b

a

Gv,n(t, z)
[

f
(

z, vn−1(z)
)

+Mvn−1(z)
]

dz,

where ψv,n(t) is computed like ψ(t) in (2.5).

Similarly, we have for (3.3) that

wn(t) = ψw,n(t) +

∫ b

a

Gw,n(t, z)
[

f
(

z, wn−1(z)
)

+Mwn−1(z)
]

dz.

Furthermore, since v0, w0 ∈ C2[a, b], it follows that v1, w1 ∈ C2[a, b] and proceeding

inductively vn, wn ∈ C2[a, b] for each n. Also, by Lemma 2.7, vn and wn are unique

for each n.

Now, define a mapping A by v1 = Av0, where v1 is the solution of (3.2) for n = 1

and v0 is the lower solution of (3.1). Also let p(t) = v0(t) − v1(t), then from (i) and

(3.2)

−cD1+qp = −cD1+qv0 + cD1+qv1

= f
(

z, v0

)

−f
(

z, v0

)

+M(v1 − v0)
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= M(v1 − v0) = −M(v0 − v1) = −Mp

with

αap(a) − βa
cDqp(a) ≤ 0,

αbp(b) + βb
cDqp(b) ≤ 0.

From Corollary 2.6, we have that p(t) ≤ 0. Thus v0(t) ≤ Av0(t) on [a, b] and v0(t) ≤

v1(t).

By a similar argument, w0(t) ≥ w1(t).

Now let η and µ be any two solutions such that v0 ≤ η ≤ µ ≤ w0 and assume

that u1 = Aη and u2 = Aµ. Letting p = u1 − u2 and using assumption (ii), we have

that

−cD1+qp = −cD1+qu1 + cD1+qu2

= f
(

t, η
)

−M(u1 − η) − f
(

t, µ
)

+M(u2 − µ)

≤ −M(η − µ) −M(u1 − η) +M(u2 − µ)

= −M(u1 − u2) = −Mp,

with

αap(a) − βa
cDqp(a) ≤ 0,

αbp(b) + βb
cDqp(b) ≤ 0.

Hence p(t) ≤ 0 on [a, b] and, consequently, Aη ≤ Aµ. This proves that A is monotone.

Define the sequences {vn}, {wn} such that vn = Avn−1, wn = Awn−1. Note that

since v0 ≤ Av0 = v1 and w0 ≥ Aw0 = w1, by monotonicity of A we have that

v0 ≤ v1 ≤ w1 ≤ w0. Repeating the process we have that v2 ≤ w2, and v0 ≤ v1 ≤ v2 ≤

w2 ≤ w1 ≤ w0 Proceeding inductively it follows that vn ≤ u ≤ wn, then

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ · · ·w1 ≤ w0,

on [a, b]. Now, we are ready to show that {vn} and {wn} are uniformly bounded and

equicontinuous.

First we show that they are uniformly bounded.

By hypothesis both v0(t) and w0(t) and bounded on [a, b], then there exists a

positive constant M̄ such that |v0(t)| ≤ M̄ and |w0(t)| ≤ M̄ for all t ∈ [a, b]. Since

v0(t) ≤ vn(t) ≤ w0(t) for all n, it follows that 0 ≤ vn(t)− v0(t) ≤ w0(t)− v0(t). Thus

{vn(t)} is uniformly bounded.

By a similar argument, {wn(t)} is also uniformly bounded.

To show that {vn} is equicontinuous, fix n and let a ≤ t1 ≤ t2 ≤ b. Then

∣

∣vn(t1) − vn(t2)
∣

∣=

∣

∣

∣

∣

∣

ψv,n(t1) +

∫ b

a

Gv,n(t1, z)
[

f
(

z, vn−1(z)
)

+Mvn−1(z)
]

dz
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− ψv,n(t2) −

∫ b

a

Gv,n(t2, z)
[

f
(

z, vn−1(z)
)

+Mvn−1(z)
]

dz

∣

∣

∣

∣

∣

≤
∣

∣ψv,n(t1) − ψv,n(t2)
∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

Gv,n(t1, z)
[

f
(

z, vn−1(z)
)

+Mvn−1(z)
]

dz

−

∫ b

a

Gv,n(t2, z)
[

f
(

z, vn−1(z)
)

+Mvn−1(z)
]

dz

∣

∣

∣

∣

∣

=
∣

∣ψv,n(t1) − ψv,n(t2)
∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

[

f
(

z, vn−1(z)
)

+Mvn−1(z)
][

Gv,n(t1, z)dz −Gv,n(t2, z)
]

dz

∣

∣

∣

∣

∣

≤
∣

∣ψv,n(t1) − ψv,n(t2)
∣

∣

+

∫ b

a

∣

∣

∣

∣

∣

[

f
(

z, vn−1(z)
)

+Mvn−1(z)
][

Gv,n(t1, z)dz −Gv,n(t2, z)
]

∣

∣

∣

∣

∣

dz.

Since f is continuous and {vn} is uniformly bounded, There exists a constant K̂ such

that
∣

∣f
(

z, vn−1(z)
)

+Mvn−1(z)
∣

∣≤ K̄. Then

∣

∣vn(t1) − vn(t2)
∣

∣≤
∣

∣ψv,n(t1) − ψv,n(t2)
∣

∣+K̄

∫ b

a

∣

∣

∣

∣

∣

Gv,n(t1, z)dz −Gv,n(t2, z)

∣

∣

∣

∣

∣

dz.

By the Mean Value Theorem, there exist ξ, η ∈ [t1, t2] such that,

∣

∣ψv,n(t1) − ψv,n(t2)
∣

∣+K̄

∫ b

a

∣

∣

∣

∣

∣

Gv,n(t1, z)dz −Gv,n(t2, z)

∣

∣

∣

∣

∣

dz

=
∣

∣

d

dt
ψv,n(ξ)(t1 − t2)

∣

∣+K̄

∫ b

a

∣

∣

∣

∣

∣

d

dt
Gv,n(η, z)(t1 − t2)

∣

∣

∣

∣

∣

dz.

Given that ψv,n ∈ C2[a, b],
d

dt
ψv,n is continuous and bounded on [a, b], and since

d

dt
Gv,n(t, z) is uniformly convergent, there exist constants K̄1 and K̄2 such that for

all t1, t2 ∈ [a, b],

∣

∣

d

dt
ψv,n(ξ)(t1 − t2)

∣

∣+K̄

∫ b

a

∣

∣

∣

∣

∣

d

dt
Gv,n(η, z)(t1 − t2)

∣

∣

∣

∣

∣

dz

≤ K̄1

∣

∣t1 − t2
∣

∣+K̄2

∫ b

a

∣

∣t1 − t2
∣

∣dz

= K̄1

∣

∣t1 − t2
∣

∣+K̄2(b− a)
∣

∣t1 − t2
∣

∣.

Thus for this particular n and for all t1, t2 ∈ [a, b],

∣

∣vn(t1) − vn(t2)
∣

∣≤
(

K̄1 + K̄2(b− a)
)
∣

∣t1 − t2
∣

∣,



MONOTONE METHOD. FRACTIONAL PERIODIC BOUNDARY VALUE PROBLEM 87

or
∣

∣vn(t1) − vn(t2)
∣

∣

∣

∣t1 − t2
∣

∣

≤
(

K̄1 + K̄2(b− a)
)

,

i.e., vn satisfies a Lipschitz condition on [a, b].

Moreover, since {vn} is uniformly bounded there exists L > 0 such that for all n

and all t1, t2 ∈ [a, b],
∣

∣vn(t1) − vn(t2)
∣

∣

∣

∣t1 − t2
∣

∣

≤ L.

Thus {vn} have the same Lipschitz constant and, consequently, {vn} is equicontinu-

ous. By a similar argument {wn} is equicontinuous.

Hence by Arzela-Ascoli’s theorem, there exist subsequences {vnk
} and {wnk

}

which converge to v(t) and w(t), respectively. Since the sequences are monotone, the

entire sequences converge.

It remains to show that v(t) and w(t) are extremal solutions of (3.1).

Assume that for some k > 0, vk−1 ≤ u ≤ wk−1 on [a, b] where u is a solution of

(3.1) such that v0 ≤ u ≤ w0. Then setting p = vk − u we get that

−cDqp = −cDqvk + cDqu

= f
(

t, vk−1

)

−M(vk − vk−1) − f
(

t, u
)

≤ M(u− vk−1) −M(vk − vk−1)

= −M(vk − u)

= −Mp

and

αap(a) − βa
cDqp(a) ≤ 0,

αbp(b) + βb
cDqp(b) ≤ 0.

By Corollary 2.6, p(t) ≤ 0 on a ≤ t ≤ b, hence vk ≤ u. By a similar argument wk ≥ u

on [a, b].

Since v0 ≤ u ≤ w0, it follows by induction that vn ≤ u ≤ wn on [a, b], for all

n. Hence v ≤ u ≤ w on [a, b], which shows that v and w are minimal and maximal

solutions of (3.1), respectively. This completes the proof.
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