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BO DU AND XIAOJING WANG

Department of Mathematics, Huaiyin Normal University

Huaian Jiangsu, 223300, P. R. China

ABSTRACT. This work is devoted to investigating the existence of global attractors for a class

of neutral partial functional integrodifferential equation with delay. Using the classic theory about

global attractors in infinite dimensional dynamical systems, we obtain some sufficient conditions for

guaranteeing the existence of a global attractor.
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1. PRELIMINARIES

This paper is devoted to investigating the existence of a global attractor for the

following neutral partial functional integrodifferential equations with finite delay:

(1.1)

{

d
dt
F(t, ut) = AF(t, ut) +

∫ t

0
B(t − s)F(s, us)ds + G(t, ut), t ≥ 0,

u0 = φ ∈ C,

where (A, D(A)) is the infinitesimal generator of strongly continuous semigroup on

a Banach space (X, | · |); C := C([−r, 0], X), r > 0, is the space of continuous

functions from [−r, 0] to the Banach space X, equipped with the uniform norm ‖φ‖ =

sup−r≤θ≤0 |φ(θ)|; (B(t))t≥0 is closed linear operator from D(A) to X and B(t) ∈

L(D(A), X), for any y ∈ D(A), the map t → B(t)y is bounded, differentiable and

the derivative t → B′(t)y is uniformly bounded continuous on R
+, here L(D(A), X)

is a Banach space of bounded linear operators from D(A) to X; the history function

xt ∈ C is defined by

xt(θ) = x(t + θ), for θ ∈ [−r, 0];

F : R
+ × C → X is defined by

F(t, φ) = φ(0) − F (t, φ), (t, φ) ∈ R
+ × C;

F and G are X−valued functions on R
+ × C.

In [1], using the theory of resolvent operator developed in R. Grimmer [2], the

authors obtained the existence of strict solutions for (1.1). Since the pioneering work

of J. Hale [3], neutral partial functional differential equations have been extensively
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investigated, and this investigation has also inspired rapid development in nonlinear

analysis and nonlinear dynamical systems, see [4]–[8] and the references therein. The

simplest scalar case is the following neutral partial functional differential equation on

the unit circle:

∂

∂t
D(vt) = K

∂2

∂x2
D(vt) + H(vt).

Abstract neutral partial functional differential equations originate in the theory of

viscoelastic materials. In [9], it was illustrated that the equation:

u̇(t) = AT

[

u(t) +

∫ t

−∞

F (t − s)u(s)ds +

∫ t

−∞

K(t − s)u(s)ds

]

, t ≥ 0

can be regarded as abstract formulation of the model proposed. After that, Hernandez

and Henriquez [10, 11] established some results concerning the existence and unique-

ness of solutions of the following partial neutral functional differential equations with

infinite delay:

{

d
dt

(u(t) − F (t, ut)) = Au(t) + G(t, ut), t ≥ 0,

u0 = ϕ, ϕ ∈ B.

Motivated by the above work, in this paper we will establish some sufficient conditions

for guaranteeing the existence of a global attractor for (1.1). It is know that the global

attractor is a very useful tool, which is valid for more general situations than those for

stability to study the asymptotical behavior. Hence, our work enriches the content

of partial neutral functional differential equations.

For the sake of convenience, we list the following conditions which will be needed

in our study of (1.1).

(H1) There exist a positive constant H and function K(·), M(·) : R
+ → R

+, with

K continuous and M locally bounded, such that for any σ ∈ R and for a > 0, if

u : (−∞, σ + a] → X, uσ ∈ B and u(·) is continuous on [σ, σ + a], then for every

t ∈ [σ, σ + a], the following conditions hold:

(i) ut ∈ B,

(ii) |u(t)| ≤ H‖ut‖, which is equivalent to φ(0) ≤ H‖φ‖ for each φ ∈ B,

(iii) ‖ut‖ ≤ K(t − σ) supσ≤s≤t |u(s)| + M(t − σ)‖uσ‖,

where B is a Banach space of of functions mapping (−∞, 0] into X endowed with the

norm ‖ · ‖.

(H2) For the function u(·) in (H1), t → ut is a B−value continuous on [σ, σ + a].

(H3) (i) F : R
+×C → X is globally Lipschitz continuous, i.e., there exists a constant

L1 > 0 such that L1K(0) < 1 and

|F (t, φ1) − F (t, φ2)| ≤ L1‖φ1 − φ2‖ for any t ≥ 0 and φ1, φ2 ∈ C.
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(ii) G : R
+ × C → X is globally Lipschitz continuous, i.e., there exists a constant

L2 > 0 such that

|G(t, φ1) − G(t, φ2)| ≤ L1‖φ1 − φ2‖ for any t ≥ 0 and φ1, φ2 ∈ C.

(H4) (i) F ∈ C1(R+ × C; X) and the partial derivatives DtF (·, ·) and DφF (·, ·) are

locally Lipschitzians with respect to the second argument.

(ii) G ∈ C1(R+ ×C; X) and the partial derivatives DtG(·, ·) and DφG(·, ·) are locally

Lipschitzians with respect to the second argument.

(H5) If (ϕn)n≥0 is a Cauchy sequence in C and if (ϕn)n≥0 converges compactly to ϕ

on [−r, 0], then ϕ is in C and ‖ϕn − ϕ‖ → 0 as n → ∞.

Definition 1.1. Let T > 0. A function u : [−r, T ] → X is said to be a strict solution

of (1.1) if u is continuous on [0, T ] and the following conditions hold

(i) t → F(t, ut) ∈ C1([0, T ]; X) ∩ C([0, T ]; D(A)),

(ii) u satisfies (1.1) on [0, T ],

(iii) u(t) = φ(t) for − r ≤ t ≤ 0.

Lemma 1.2 ([1, Theorem 3.7]). Assume that (H1)-(H5) hold. Let φ ∈ C be a

continuously differentiable such that

(1.2) φ′ ∈ C, F(0, φ) ∈ D(A) and DφF(0, φ)φ′ + DtF(0, φ) = AF(0, φ) + G(0, φ).

Then (1.1) possess a unique strict solution, which can be expressed by

(1.3) u(t) =

{

R(t)F(0, φ) + F (t, ut) +
∫ t

0
R(t − s)G(s, us)ds, 0 ≤ t ≤ T,

φ(t), −r ≤ t ≤ 0,

where R(t) ∈ L(X, X) having the following properties:

(i) R(0) = I and ‖R(t)‖ ≤ e−αt for some constant α > 0,

(ii) For each x ∈ X, R(t)x is strongly continuous semigroup for t ≥ 0,

(iii) R(t) ∈ L(D(A)) for t ≥ 0. For x ∈ D(A), R(·)x ∈ C1([0, +∞); X)∩C([0, +∞);

D(A)) and

R′(t)x = AR(t)x +

∫ t

0

B(t − s)R(s)xds

= R(t)Ax +

∫ t

0

R(t − s)B(s)xds.

Denote Σ0 = {φ ∈ C : φ satisfying (1.2)}. Then from Lemma 1.2, for each

φ ∈ Σ0, we define the following operator on Σ0 by

(1.4) U(t)φ = ut(·, φ), t ≥ 0,

where ut(·, φ) is unique strict solution of (1.1) in Lemma 1.2. Clearly, (U(t))t≥0 is a

strongly continuous semigroup on Σ0.
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Definition 1.3 ([12]). An invariant set A is said to be a global attractor if A is a

maximal compact invariant set which attracts each bounded set B ⊂ X.

Definition 1.4 ([12]). A semigroup U(t) : X → X, t ≥ 0, is said to be point

dissipative if there is a bounded set B ⊆ X that attracts each point of E under U(t).

Lemma 1.5 ([13]). If

(i) there is a t0 ≥ 0 such that U(t) is compact for t > t0,

(ii) U(t) is point dissipative in X, then there exists a nonempty global attractor A

in X.

2. THE GLOBAL ATTRACTOR FOR (1.1)

In this section, we apply Lemma 1.5 to the strongly continuous semigroup (U(t))t≥0

to obtain the existence of a global attractor of (1.1). For this purpose, we first give

the following generalized Gronwall inequality, which is crucial for the estimate.

Lemma 2.1 ([14]). If

x(t) ≤ h(t) +

∫ t

t0

k(s)x(s)ds, t ∈ [t0, T ),

where all the functions involved are continuous on [t0, T ), T ≤ +∞, and k(t) ≥ 0,

then x(t) satisfies

x(t) ≤ h(t) +

∫ t

t0

h(s)k(s)e
R t

s
k(u)duds, t ∈ [t0, T ).

Lemma 2.2. Assume that assumptions (H1)–(H5) hold. Then, for each φ ∈ Σ0, if

L1 < e−γr, there exists a constant γ > α such that the strict solution u(·, φ) of (1.1)

satisfies the following inequality:

eαt‖ut‖ ≤
1

e−γr − L1

(

(αc1 + c2)L2(e
−γr − L1)

−1

α2 − αL2(e−γr − L1)−1
+ c1 +

c2

α

)

eαt

+
L2

(e−γr − L1)2

[

L2(c1 + (L1 + 1)‖φ‖ − c2
α

)

e−γr − L1

−
αc1 + c2

α2 − αL2(e−γr − L1)−1

]

eL2(e−γr−L1)−1t,

where c1 = F (0, 0), c2 = G(0, 0).

Proof. By (H3), for each φ ∈ Σ0, we have

|F (t, φ)| = |F (t, φ) − F (0, 0) + F (0, 0)|

≤ |F (0, 0)| + |F (t, φ) − F (0, 0)|

≤ c1 + L1‖φ‖.
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Similar to the above proof, we have

|F(0, φ) = |φ(0) − F (0, φ)|

≤ c1 + (L1 + 1)‖φ‖

and

|G(t, φ)| ≤ c2 + L2‖φ‖.

Instead of considering the norm ‖ut‖ directly, we firstly estimate ‖eγ·ut‖ for some

constant γ > α.

Case 1. For 0 ≤ t ≤ r, by (1.3) we have

(2.1)

sup
−r≤θ≤0

|eγθut(θ)| = max{ sup
−r≤θ≤−t

|eγθφ(t + θ)|, sup
−t≤θ≤0

|eγθut(θ)|}

≤ max{e−γt‖φ‖, sup
−t≤θ≤0

eγθe−α(t+θ)[c1 + (L1 + 1)‖φ‖] + sup
−t≤θ≤0

[c1 + L1‖ut+θ‖]

+ sup
−t≤θ≤0

eγθ

∫ t+θ

0

e−α(t+θ−s)(c2 + L2‖us‖)ds}

≤ max{e−γt‖φ‖, e−αt[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖

+ sup
−t≤θ≤0

c2e
−α(t+θ)eγθ

∫ t+θ

0

eαsds + sup
−t≤θ≤0

L2e
−α(t+θ)eγθ

∫ t+θ

0

eαs‖us‖ds}

≤ e−αt[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖

+ c2e
−αt

∫ t

0

eαsds + L2e
−αt

∫ t

0

eαs‖us‖ds

= e−αt[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖

+
c2

α
(1 − e−αt) + L2e

−αt

∫ t

0

eαs‖us‖ds.

Case 2. For t ≥ r, we have

(2.2)

sup
−r≤θ≤0

|eγθut(θ)| = sup
0≤t+θ≤t

|eγθu(t + θ)|

≤ sup
0≤t+θ≤t

eγθe−α(t+θ)[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖

+ sup
0≤t+θ≤t

eγθ

∫ t+θ

0

e−α(t+θ−s)(c2 + L2‖us‖)ds

≤ e−αt[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖

+ c2e
−αt

∫ t

0

eαsds + L2e
−αt

∫ t

0

eαs‖us‖ds

= e−αt[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖

+
c2

α
(1 − e−αt) + L2e

−αt

∫ t

0

eαs‖us‖ds.
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Therefore for t ≥ 0, from (2.1) and (2.2), we get

sup
−r≤θ≤0

|eγθut(θ)| ≤ e−αt[c1 + (L1 + 1)‖φ‖] + c1 + L1‖ut‖(2.3)

+
c2

α
(1 − e−αt) + L2e

−αt

∫ t

0

eαs‖us‖ds.

On the other hand, we have

(2.4) sup
−r≤θ≤0

|eγθut(θ)| = sup
−r≤θ≤0

eγθ|ut(θ)| ≥ sup
−r≤θ≤0

e−γr|ut(θ)| = e−γr‖ut‖,

which combines with (2.3) yields that

‖ut‖ ≤ e−αt[c1 + (L1 + 1)‖φ‖](e−γr − L1)
−1 + c1(e

−γr − L1)
−1

+
c2

α
(1 − e−αt)(e−γr − L1)

−1 + L2e
−αt(e−γr − L1)

−1

∫ t

0

eαs‖us‖ds

and

eαt‖ut‖ ≤ [c1 + (L1 + 1)‖φ‖](e−γr − L1)
−1 + c1(e

−γr − L1)
−1eαt

+
c2

α
(eαt − 1)(e−γr − L1)

−1 + L2(e
−γr − L1)

−1

∫ t

0

eαs‖us‖ds.

Using the generalized Gronwall inequality in Lemma 2.1, we have

eαt‖ut‖ ≤ [c1 + (L1 + 1)‖φ‖](e−γr − L1)
−1 + c1(e

−γr − L1)
−1eαt

+
c2

α
(eαt − 1)(e−γr − L1)

−1

+ L2(e
−γr − L1)

−2

∫ t

0

[

c1 + (L1 + 1)‖φ‖ + c1e
αs

+
c2

α
(eαs − 1)

]

e
R

t

s
L2(e−γr−L1)−1dτds

=
1

e−γr − L1

(

(αc1 + c2)L2(e
−γr − L1)

−1

α2 − αL2(e−γr − L1)−1
+ c1 +

c2

α

)

eαt

+
L2

(e−γr − L1)2

[

L2(c1 + (L1 + 1)‖φ‖ − c2
α

)

e−γr − L1

−
αc1 + c2

α2 − αL2(e−γr − L1)−1

]

eL2(e−γr−L1)−1t.

Lemma 2.3. Assume that the conditions of Lemma 2.2 are satisfied, further more,

α > L2

e−γr−L1

, where γ is the constant defined by Lemma 2.2. Then (U(t))t≥0 is point

dissipative.

Proof. From Lemma 2.2, we find that, for each φ ∈ Σ0, since α > L2

e−γr−L1

, there exits

a t0 := t0(φ) > 0 such that for t > t0,

‖ut‖ ≤
1

e−γr − L1

(

(αc1 + c2)L2(e
−γr − L1)

−1

α2 − αL2(e−γr − L1)−1
+ c1 +

c2

α

)

+ 1. (independent of φ)
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Therefore,

BX0

(

0,
1

e−γr − L1

((αc1 + c2)L2(e
−γr − L1)

−1

α2 − αL2(e−γr − L1)−1
+ c1 +

c2

α

)

+ 1

)

∩ X0

attracts each point of X0, where BX0

(

0, 1
e−γr−L1

( (αc1+c2)L2(e−γr−L1)−1

α2−αL2(e−γr−L1)−1 + c1 + c2
α

)

+ 1

)

denotes the open ball in Σ0 with center 0 and radius 1
e−γr−L1

(

(αc1+c2)L2(e−γr−L1)−1

α2−αL2(e−γr−L1)−1 +

c1 + c2
α

)

+ 1.

Now, we show the compactness of the operator U(t). The following lemma is

similar with Theorem 2.7 in [15]. But, for the reader convenience, we give the details

of its proof.

Lemma 2.4. Assume that assumptions (H1)–(H5) hold. Then, U(t) is compact for

t > r.

Proof. Let t > r and {φn} be any bounded sequence of Σ0. We will use Ascoli-Arzelà

theorem to show that {U(t)φn : n ∈ N} is pre-compact in Σ0 by two steps.

Step 1. Show for any θ ∈ [−r, 0], the set

Z(θ) = {((U(t)φn)(θ) : n ∈ N}

is pre-compact. For t > r and θ ∈ [−r, 0], by (1.3), we have

(2.5) ((U(t)φn)(θ) = R(t+θ)F(0, φn)+F (t+θ, un
t+θ)+

∫ t+θ

0

R(t+θ−s)G(s, un
s )ds,

where un(·) is the strict solution of (1.1) with initial function φn. Since {R(t)}t≥0 is

compact, the boundedness of F(0, φn) and assumption (H3), we know that

R(t + θ)F(0, φn) and F (t + θ, un
t+θ)

are pre-compact. Now, considering the third term in (2.5), for sufficiently small ε > 0,

we have
∫ t+θ

0

R(t + θ − s)G(s, un
s )ds = R(ε)

∫ t+θ−ε

0

R(t + θ − s − ε)G(s, un
s )ds

+

∫ t+θ

t+θ−ε

R(t + θ − s)G(s, un
s )ds.

Noting that Lemma 2.2, we have

(2.6) sup
n∈N

‖un
s‖ < ∞, s ∈ [0, t].

By (H3), we get

|G(s, un
s )| ≤ c2 + L2‖u

n
s‖.
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Therefore, from (2.5) and (2.6), there exist some constants M1, M2 > 0 such that
∣

∣

∣

∣

∫ t+θ−ε

0

R(t + θ − s − ε)G(s, un
s )ds

∣

∣

∣

∣

≤ M1

and
∣

∣

∣

∣

∫ t+θ

t+θ−ε

R(t + θ − s)G(s, un
s )ds

∣

∣

∣

∣

≤ M2

which yields

R(ε)

{
∫ t+θ−ε

0

R(t + θ − s − ε)G(s, un
s )ds : n ∈ N

}

⊂ Γε,

where Γε is a compact set. Thus, Z(θ) is pre-compact.

Step 2. Show the equicontinuity of {U(t)φn : n ∈ N}. Let −r ≤ θ1 < θ2 ≤ 0, we

have

(U(t)φn)(θ2) − (U(t)φn)(θ1) = [R(t + θ2) − R(t + θ1)]F(0, φn)

+ F (t + θ2, u
n
t+θ2

) − F (t + θ1, u
n
t+θ1

)

+

∫ t+θ2

0

R(t + θ2 − s)G(s, un
s )ds

−

∫ t+θ1

0

R(t + θ1 − s)G(s, un
s )ds

= R(t + θ1)[R(t + θ2) − I]F(0, φn)

+ F (t + θ2, u
n
t+θ2

) − F (t + θ1, u
n
t+θ1

)

+

∫ t+θ2

t+θ1

R(t + θ2 − s)G(s, un
s )ds

+

∫ t+θ1

0

(R(t + θ2 − s) − R(t + θ1 − s))G(s, un
s )ds

which leads to

|(U(t)φn)(θ2) − (U(t)φn)(θ1)| ≤ ‖R(t + θ1)[R(θ2 − θ1) − I]‖ × |F(0, φn)|

+ |F (t + θ2, u
n
t+θ2

) − F (t + θ1, u
n
t+θ1

)|

+

∫ t+θ2

t+θ1

|R(t + θ2 − s)G(s, un
s )|ds

+ ‖R(θ2 − θ1) − I‖

∫ t+θ1

0

|R(t + θ1 − s)G(s, un
s )|ds.

Since the mapping t → R(t) is norm-continuous for t > 0, for some δ ∈ (0, t− r), put

R(t + θ1)[R(θ2 − θ1) − I] = R(t + θ1 − δ)[R(θ2 − θ1 + δ) − R(δ)].

Then

‖R(θ2 − θ1 + δ) − R(δ)‖ → 0 as θ2 → θ1.

Thus

‖R(t + θ1)[T0(θ2 − θ1) − I]‖ × |F(0, φn)| → 0 as θ2 → θ1.
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By the property of F ,

|F (t + θ2, u
n
t+θ2

) − F (t + θ1, u
n
t+θ1

)| → 0 as θ2 → θ1.

By the boundedness of |R(t + θ2 − s)G(s, un
s )|, then

∫ t+θ2

t+θ1

|R(t + θ2 − s)G(s, un
s )|ds → 0 as θ2 → θ1.

Obviously,
∫ t+θ1

0
|R(t + θ1 − s)G(s, un

s )|ds belongs to a compact subset of X, and

‖R(θ2 − θ1) − I‖

∫ t+θ1

0

|R(t + θ1 − s)G(s, un
s )|ds → 0 as θ2 → θ1.

Hence {U(t)φn : n ∈ N} is equicontinuity.

Here, we state our main theorem of this paper, which is an immediate consequence

of Lemma 1.5, 2.3 and 2.4.

Theorem 2.5. Assume that assumptions (H1)–(H5) hold. If α > L2

e−γr−L1

, then (1.1)

has a nonempty global attractor A .

3. AN EXAMPLE

Ezzinbi et al [1] considered the following Lotka-Volterra model with diffusion:

(3.1)


































































∂

∂t

[

n(t, ξ) −

∫ 0

−∞

f(θ, n(t + θ, ξ))dθ

]

=
∂2

∂ξ2

[

n(t, ξ) −

∫ 0

−∞

f(θ, n(t + θ, ξ))dθ

]

+

∫ t

0

b(t − s)
∂2

∂ξ2

[

n(s, ξ) −

∫ 0

−∞

f(θ, n(s + θ, ξ))dθ

]

ds

+

∫ 0

−∞

g(θ, n(t + θ, ξ))dθ for t ≥ 0

n(t, 0) −
∫ 0

−∞
f(θ, n(t + θ, 0))dθ = 0 for t ≥ 0

n(t, π) −
∫ 0

−∞
f(θ, n(t + θ, π))dθ = 0 for t ≥ 0

n(θ, ξ) = n0(θ, ξ) for −∞ < θ ≤ 0, 0 ≤ ξ ≤ π,

where f, g : R
− × R → R, n0 : R

− × [0, π] → R and b : R
+× → R are continuous

functions and obtained the following results:

Theorem 3.1. Assume that assumptions (E1)–(E5) hold. Then (3.1) has a unique

strict solution, where (E1)–(E5) can be found in [1].

Based on the above result, we can choose the proper α, γ, r, L1, L2 such that

α > L2

e−γr−L1

and (3.1) has a nonempty global attractor A .
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