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ABSTRACT. In this paper we consider a class of partially observed dynamic systems with mea-

surement uncertainty and present a technique for design of optimal linear output feedback controls

to minimize the maximum risk. This is then extended to cover systems with uncertainty in the mea-

surement as well as in the dynamics. These results are presented in the form of necessary conditions

of optimality. Theoretical results are illustrated by numerical examples.
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1. INTRODUCTION

In applications of control theory, there are many physical and engineering prob-

lems where only noisy measurements are available and feedback controls based on

available data must be used since open-loop controls are not feasible. Examples are

traffic control in computer communication networks. The controller must use the

noisy information and exercise control so as to optimize the overall performance. In

this paper we present a methodology based on variational arguments whereby one

can design an optimal feedback control law with hard constraints on the feedback

gains. This leads to constraints on control energy. Related work based on H∞ tech-

nique applied to linear systems with delay can be found in [4]. Here the authors have

used linear output feedback control law just to stabilize the system. In contrast, we

consider nonlinear uncertain systems and develop a technique for design of optimal

output feedback control law which can be used to solve tracking problems including

stabilization.

The rest of the paper is organized as follows. In section 2, some basic notations

are presented. In section 3, the system model is described and a general design

problem for optimal output feedback control law is formulated. In this section, also

the basic assumptions and a result on the existence of solutions are included. In
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section 4, we present the main results giving the necessary conditions of optimality

characterizing optimal feedback control laws (or operators) in the pessimistic case.

This is presented in Theorem 4.1. In Theorem 4.2 we prove the existence of optimal

feedback control laws subject to range constraints. Corollary 4.3 characterizes the

optimal feedback control law in the optimistic case in which the disturbance acts most

favorably with the controller. Next we consider uncertainty both in the dynamics and

the measurement channel. The necessary conditions of optimality are presented in

Theorem 4.4. In section 5, a basic computational technique is described following the

basic principle given in [2], [1] and, in section 6, numerical results are presented with

illustrations.

2. SOME NOTATIONS

For any positive integer n, Rn denotes the Euclidean space with standard norm

and scalar product given by

‖x‖ ≡

(

n
∑

i=1

|xi|
2

)1/2

, and (x, y) ≡

n
∑

i=1

xiyi, x, y ∈ Rn

respectively. We shall use M(n × m) to denote the space of n × m matrices with

entries from the real number system. This is also furnished with the standard norm

and scalar products given by

‖A‖ ≡

(

∑

i,j

|ai,j|
2

)1/2

and 〈A,B〉 ≡ Tr(AB
′

) for A,B ∈M(n×m)

respectively, where B
′

denotes the transpose of the matrix B with B
′

∈ M(m × n).

Clearly Tr(AA
′

) = ‖A‖2. For any p ∈ [1,∞) and any finite interval I ≡ [0, T ], we

use Lp(I, R
n) to denote the standard vector space of Lebesgue measurable Rn valued

functions whose norms are p-th power integrable. For p = ∞, L∞(I, Rn) denotes

the space of Lebesgue measurable functions {f} defined on I and taking values in

Rn satisfying ess-sup{|f(t)|Rn , t ∈ I} < ∞. These are Banach spaces. Similarly,

Lℓocp ([0,∞), Rn) are locally convex topological vector spaces of p-th power locally

integrable functions containing the spaces Lp(I, R
n).

3. SYSTEM MODEL AND PROBLEM FORMULATION

The complete system is governed by the following set of equations:

ẋ = F (x) +Bu, in Rn,(3.1)

z = Lx+ ξ in Rm,(3.2)

u = Kz in Rq,(3.3)
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where the first equation describes the dynamics of the system in the state space Rn

giving the state x(t) at any time t ≥ 0, the second equation describes the measurement

process that observes the status of the system in a noisy environment characterized by

the random process ξ and delivers the output z(t), t ≥ 0. The third equation provides

the control based on the measurement process z in order to regulate the system

(3.1). Note that, according to the dimensions of the state space, the observation

space, and the control space, for compatibility it is necessary that B(t) ∈ M(n× q),

L(t) ∈ M(m × n), ξ(t) ∈ Rm and K(t) ∈ M(q ×m) respectively. The performance

of the system over the time horizon I ≡ [0, T ] is measured by the following cost

functional

J(K, ξ) ≡

∫

I

ℓ(t, x(t))dt+ Φ(x(T )),(3.4)

which depends on the choice of the control law K in the presence of disturbance

ξ. Our objective is to find a bounded measurable matrix valued function K that

minimizes the cost functional taking into account the worst situation that may be

caused by the presence of the non structured disturbance ξ. In other words, we want

a feedback law that minimizes the maximum risk. This problem, called (P1), can be

formulated as min-max problem as stated below

inf
K∈Fad

sup
ξ∈D

J(K, ξ).

For this purpose, we introduce the following basic assumptions:

(A1): The vector field F : Rn −→ Rn is once continuously differentiable with

the derivative uniformly bounded,

(A2): B ∈ Lℓoc1 ([0,∞),M(n× q)), L ∈ Lℓoc∞ ([0,∞),M(m× n)).

For the admissible feedback control laws represented by the matrix valued func-

tion K we introduce the following assumption,

(A3): Let Γ ⊂M(q ×m) be a closed bounded convex set and

Fad ≡ {K ∈ Lℓoc∞ ([0,∞),M(q ×m)) : K(t) ∈ Γ a.e.}(3.5)

(A4): The disturbance (noise) process ξ : [0,∞) −→ Rm, is any measurable

stochastic process taking values from the closed ball Br(R
m) of the measurement

space Rm with probability one. We denote this family by D.

Some comments on the disturbance (uncertainty) are in order. We do not assume

any probabilistic structure for the process {ξ} except that it is a measurable process

and essentially bounded and hence locally square integrable. Thus, by assumption

(A4), on any finite time interval I = [0, T ], the total energy in the signal does not

exceed r2T .
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(A5): The integrand ℓ : [0,∞) × Rn −→ (−∞,∞] is measurable in the first

variable, and once continuously differentiable in the second argument and satisfies

|ℓ(t, x)| ≤ h(t) + c1‖x‖
2
Rn , x ∈ Rn, t ≥ 0

with 0 ≤ h ∈ Lℓoc1 ([0,∞)) and c1 ≥ 0 and further, ℓx ∈ L1(I, R
n). The function Φ is

once continuously differentiable on Rn and there exist constants c2, c3 ≥ 0 such that

|Φ(x)| ≤ c1 + c2‖x‖
2
Rn .

Note that by substituting the equations (3.2) and (3.3) into equation (3.1) we obtain

the following feedback system subject to (unstructured) disturbance ξ

ẋ = F (x) +BKLx+BKξ, ξ ∈ D and K ∈ Fad.(3.6)

Remark 3.1. Note that the uncertain system (3.6) is equivalent to the following

differential inclusion

ẋ(t) ∈ F (x(t)) +B(t)K(t)L(t)x(t) +B(t)K(t)Γ(t), for K ∈ Fad,

where D is the set of measurable selections of the constant multifunction Γ(t) ≡

Br(R
m), t ∈ I. For detailed study of optimal open loop controls for differential

inclusions on Banach spaces see [3] and the references therein. Here our emphasis is

on the characterization of optimal feedback control laws so that one can design an

optimal controller.

Before we conclude this section we present the following fundamental result on

the existence and regularity of solutions of our feedback system.

Lemma 3.2. Consider the uncertain (noisy) feedback system given by (3.6) over

any finite time horizon I ≡ [0, T ], and suppose the assumptions (A1)-(A4) hold.

Then for every initial condition x(0) = ν ∈ Rn, and any feedback law K ∈ Fad

and disturbance ξ ∈ D, the system (3.6) has a unique absolutely continuous solution

x ∈ C(I, Rn). Further, the solution set

X ≡

{

x(·, K, ξ) ∈ C(I, Rn) : K ∈ Fad, ξ ∈ D

}

is a bounded subset of C(I, Rn).

Proof. The proof is classical and follows from similar technique as given in [2, Theo-

rem 3.5.1, p. 89].
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4. OPTIMAL OUTPUT FEEDBACK CONTROLLER

Now we present the main results of this paper. In Theorem 4.1, we present the

necessary conditions of optimality only in the presence of measurement uncertainty.

In Theorem 4.4, we present the necessary conditions of optimality in the presence

of uncertainty both in the dynamics and the measurement (output). Theorem 4.2

proves the existence of optimal feedback control laws.

To solve the feedback control problem as stated in the preceding section, we

introduce the following (pessimistic or worst case ) Hamiltonian

Ho : I ×Rn ×Rn ×M(q ×m) −→ R

given by

Ho(t, x, ψ, S) ≡ (F (x) + B(t)SL(t)x, ψ)(4.1)

+ r‖S
′

B
′

(t)ψ‖Rm + ℓ(t, x).

We follow the following strategy to solve the min-max problem (P1) as stated in

section 3. First, we consider an arbitrary disturbance process from the admissible set

of uncertainty assuming that a sample path of the process ξ is given and present the

necessary conditions of optimality. Then we consider minimizing the maximum risk

(cost).

Theorem 4.1 (Measurement Uncertainty). Consider the system (3.6) satisfying the

assumptions of Lemma 3.2. Suppose ℓ and Φ satisfy the hypothesis (A5). Then, in

order for Ko ∈ Fad to be optimal in the sense discussed above, it is necessary that

there exists a ψo ∈ C(I, Rn) such that the triple {xo, ψo, Ko} satisfy the inequality

(4.2) and equations (4.3) and (4.4) as follows:

Ho(t, xo(t), ψo(t), Ko(t)) ≤ Ho(t, xo(t), ψo(t), K) ∀ K ∈ Γ,(4.2)

and a.a t ∈ I,

ẋo = Ho
ψ(t, xo, ψo, Ko), x(0) = ν, t ∈ I,(4.3)

ψ̇o = −Ho
x(t, xo, ψo, Ko), ψo(T ) = Φx(xo(T )), t ∈ I.(4.4)

Proof. Let ξo ∈ D be any given disturbance and consider the cost functional

J(K, ξo) =

∫

I

ℓ(t, x(t))dt+ Φ(x(T ))(4.5)

where x(t) ≡ x(t,K, ξo) is the solution of equation

ẋ = F (x) +BKLx +BKξo, x(0) = ν, t ∈ I,(4.6)

for any choice of K ∈ Fad. For the fixed ξo ∈ D, let Ko ∈ Fad be optimal and xo the

corresponding solution of equation (4.6). Let K ∈ Fad be any other element. Since

Fad is a closed convex set, it is clear that Kε ≡ Ko+ε(K−Ko) ∈ Fad for all ε ∈ [0, 1].
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Let xε be the solution of equation (4.6) corresponding to Kε. Clearly by virtue of

optimality of Ko, J(Ko, ξo) ≤ J(Kε, ξo) for all ε ∈ [0, 1]. Thus

(1/ε)
(

J(Kε, ξo) − J(Ko, ξo)
)

(4.7)

≡ (1/ε)

{
∫

I

(ℓ(t, xε(t)) − ℓ(t, xo(t)))dt+ (Φ(xε(T ) − Φ(xo(T ))

}

≥ 0

for all ε ∈ [0, 1] and all K ∈ Fad. Let dJ(Ko, ξo) denote the Gateaux (directional)

derivative of J at K = Ko. Since by our assumption, ℓ and Φ are continuously

differentiable in x ∈ Rn, letting ε ↓ 0 we obtain

〈dJ(Ko, ξo), K −Ko〉(4.8)

≡

∫

I

(ℓx(t, xo(t)), y(t))Rndt+ (Φx(xo(T )), y(T ))Rn ≥ 0,

where y ∈ C(I, Rn) is given by

y(t) ≡ lim
ε↓0

(xε(t) − xo(t)

ε

)

and it is the solution of the variational equation given by

ẏ = Fx(xo(t))y + (BKoL)y +B(K −Ko)(Lxo + ξo),(4.9)

y(0) = 0.

By the scalar product 〈, 〉 in the linear vector space M(q×m) (of q×m matrices) we

mean the trace

〈K1, K2〉 ≡ Tr(K1K
′

2), K1, K2 ∈M(q ×m).

Note that dJ(Ko, ξo) is an element of M(q ×m). Equation (4.9) is a linear nonho-

mogeneous differential equation on Rn with B(K −Ko)(Lxo + ξo) being the driving

force. Since, by assumption (A4), ξo is essentially a bounded measurable random

process and, by assumption (A2) (for the finite interval I), B ∈ L1(I,M(n × q)),

L ∈ L∞(I,M(m×n)) and xo ∈ C(I, Rn), and K,Ko ∈ L∞(I,M(q×m)), and product

of measurable functions is measurable, we conclude that B(K − Ko)(Lxo + ξo) is a

measurable Rn-valued function and also an element of L1(I, R
n). Thus, under the

given assumptions on F , equation (4.9) has a unique absolutely continuous solution

y ∈ C(I, Rn) which is continuously dependent on the driving force. Clearly, it follows

from this that the map

B(K −Ko)(Lxo + ξo) −→ y

is continuous from L1(I, R
n) to C(I, Rn) and by virtue of assumption (A5)

y −→

∫ T

0

(ℓx(t, xo(t)), y(t))Rndt+ (Φx(xo(T )), y(T ))Rn

is a continuous linear functional on C(I, Rn). Thus the composition map

B(K −Ko)(Lxo + ξo) −→

∫ T

0

(ℓx(t, xo(t)), y(t))Rndt+ (Φx(xo(T )), y(T ))Rn
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is a continuous linear functional on L1(I, R
n). Hence by Riesz representation theorem

there exists an element ψo ∈ L∞(I, Rn) such that

〈dJ(Ko, ξo), K −Ko〉 =

∫ T

0

(ℓx(t, xo(t)), y(t))Rndt+ Φx(xo(T )), y(T ))Rn(4.10)

=

∫ T

0

(B(K −Ko)(Lxo + ξo), ψo)Rndt.

It follows from the inequality (4.8) and the identity (4.10) that
∫

I

(B(K −Ko)(Lxo + ξo), ψo)Rndt ≥ 0 ∀ K ∈ Fad.(4.11)

Using the fact that y is the solution of the variational equation (4.9), it follows from

the second identity of the expression (4.10) that

∫ T

0

(ℓx(t, xo(t)), y(t))Rndt+ (Φx(xo(T )), y(T ))Rn(4.12)

=

∫ T

0

(ẏ − [Fx(xo(t))y + (BKoL)y], ψo)Rndt.

Since y(0) = 0, by integration by parts, it is easy to verify that

∫ T

0

(ẏ − [Fx(xo(t))y + (BKoL)y], ψo)Rndt(4.13)

= (y(T ), ψo(T ))Rn −

∫ T

0

(y, ψ̇o + F
′

x(xo(t))ψo + L
′

K
′

oB
′

ψo)Rn dt.

By setting

ψ̇o + F
′

x(xo(t))ψo + L
′

K
′

oB
′

ψo = −ℓx(t, xo(t))

and ψo(T ) = Φx(xo(T )), we find that the righthand expression of (4.13) coincides

with the left hand expression of (4.12). Thus we have obtained the adjoint (costate)

dynamics (4.4) given by

ψ̇o = −F
′

x(xo(t))ψo − L
′

K
′

oB
′

ψo − ℓx(t, xo(t))

ψo(T ) = Φx(xo(T ))(4.14)

where xo ∈ C(I, Rn) is the solution of the system equation (4.6) corresponding to the

pair {Ko, ξo} repeated below for convenience of the reader

ẋo = F (xo) +BKoLxo +BKoξo, x(0) = ν, t ∈ I.(4.15)

Clearly ψo, whose existence was already proved by appealing to the Riesz represen-

tation theorem, is actually given by the solution of the adjoint differential equation

(4.14) and hence ψo ∈ C(I, Rn) and is absolutely continuous. Thus given ξo, the nec-

essary conditions of optimality are given by the integral inequality (4.11), the adjoint
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equation (4.14) and the state equation (4.15). In other words, choice of ξo ∈ D deter-

mines the optimality conditions (4.11), (4.14), (4.15) and hence the optimal feedback

law Ko. Considering the optimality condition (4.11) and rewriting it as follows
∫

I

{(BKLxo, ψo) + (ξo, K
′

B
′

ψo)}dt(4.16)

≥

∫

I

{(BKoLxo, ψo) + (ξo, K
′

oB
′

ψo)}dt ∀ K ∈ Fad,

we observe that the worst situation occurs when the disturbance vector ξo is co-linear

with the vector K
′

oB
′

ψo and lies on the boundary of the ball Br(R
m). This is given

by the vector ξo = rΥ1(K
′

oB
′

ψo) where the function Υ1 : Rm −→ Rm is given by

Υ1(z) =







z
‖z‖
, if ‖z‖ 6= 0

0 if ‖z‖ = 0.

Considering this worst case scenario and noting that

|(ξo, K
′

B
′

ψo)Rm | ≤ r‖K
′

B
′

ψo‖Rm

the inequality (4.16) takes the form
∫

I

{(BKLxo, ψo) + r‖K
′

B
′

ψo)‖Rm}dt(4.17)

≥

∫

I

{(BKoLxo, ψo) + r‖K
′

oB
′

ψo‖Rm}dt ∀ K ∈ Fad.

In this case the state equation (4.15) becomes

ẋo = F (xo) +BKoLxo + rBKoΥ1(K
′

oB
′

ψo),(4.18)

x(0) = ν, t ∈ I.

In other words, for best possible performance in the potentially worst situation, the

triple {xo, ψo, Ko} must satisfy equation (4.18), equation (4.14) and the inequality

(4.17) simultaneously. Using the integral inequality (4.17) and spike variation [2,

Corollary 8.3.2, p. 262], it is easy to derive the point wise inequality given by

(B(t)SL(t)xo(t), ψo(t))Rn + r‖S
′

B
′

(t)ψo(t)‖Rm(4.19)

≥ (B(t)Ko(t)L(t)xo(t), ψo(t))Rn + r‖Ko(t)
′

B
′

(t)ψo(t)‖Rm

for almost all t ∈ I and all S ∈ Γ. Now adding the expression

(F (xo(t)), ψo(t)) + ℓ(t, xo(t))

on both sides of the above inequality we obtain the Hamiltonian inequality

Ho(t, xo(t), ψo(t), S) ≥ Ho(t, xo(t), ψo(t), Ko(t))(4.20)

a.e t ∈ I, and all S ∈ Γ.
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This is precisely the expression (4.2) where Ho is given by the expression (4.1). Dif-

ferentiating Ho with respect to the adjoint variable ψ we obtain

Ho
ψ(t, x, ψ, S) = F (x) +B(t)SL(t)x+ rB(t)SΥ1(S

′

B
′

(t)ψ).

Thus equation (4.18) gives

ẋo = Ho
ψ(t, xo, ψo, Ko), xo(0) = ν, t ∈ I

which is equation (4.3) as stated in the theorem. Differentiating Ho with respect to

the state variable x, we obtain and hence (4.14) gives

ψ̇o = −Ho
x(t, xo, ψo, Ko), ψo(T ) = Φx(xo(T )), t ∈ I.

This is equation (4.4) as presented in the statement of the theorem. This completes

the proof of all the necessary conditions as stated.

In the proof of the above theorem, we assumed that for any given ξo ∈ D an

optimal feedback control law Ko ∈ Fad exists. Here, in the following theorem we give

a proof of this.

Theorem 4.2 (Existence of Optimal Control Law). Consider the system (4.6) with

the cost functional (4.5) considered as a functional of K ∈ Fad for any fixed ξo ∈ D.

Suppose the assumptions (A1)-(A5) hold. Then, there exists an optimal control law

Ko ∈ Fad.

Proof. Since, by the well known Alaoglu’s theorem, Fad ⊂ L∞(I,M(q×m)) is a (weak

star) w∗ compact set it suffices to prove that K −→ J̃(K) ≡ J(K, ξo) is sequentially

weak star continuous. Let {Ki, i ∈ N} ∈ Fad be a sequence and suppose Ki
w∗

−→ Ko.

Since Fad is w∗ closed, we have Ko ∈ Fad. Let {xi} and xo denote the solutions of the

system (4.6) corresponding to {Ki} and Ko respectively. By straight forward algebra

the reader can easily verify that

‖xo(t) − xi(t)‖ ≤ ei(t) +

∫ t

0

g(s)‖xo(s) − xi(s)‖ds(4.21)

where g(t) ≡
(

β + γ‖B(t)‖M(n×q)‖L(t)‖M(m×n)

)

, t ∈ I and

β ≡ sup{‖Fx(v)‖M(n×n), v ∈ Rn} and γ ≡ sup{‖A‖M(q×m), A ∈ Γ}.

The function ei is given by ei(t) ≡ ‖Ei(t)‖Rn , t ∈ I, where

Ei(t) ≡

∫ t

0

B(s)(Ko(s) −Ki(s))[L(s)xo(s) + ξo(s)]ds, t ∈ I.(4.22)

By virtue of assumption (A1) β(≥ 0) is finite and by (A3) γ(≥ 0) is finite and by

virtue of assumption (A2), g ∈ L+
1 (I). Thus, it follows from Gronwall inequality
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that

‖xo(t) − xi(t)‖ ≤ ei(t) +

∫ t

0

exp{

∫ t

s

g(r)dr}g(s)ei(s)ds(4.23)

≤ ei(t) + Cg

∫ t

0

g(s)ei(s)ds

where Cg ≡ exp
{∫

I
g(s)ds

}

< ∞. Using the assumptions (A1)-(A4) and Gronwall

inequality, the reader can easily verify that the set of solutions X of the equation

(4.6) corresponding to the admissible set of feedback laws Fad is a bounded subset of

C(I, Rn) and that the integrand of the expression (4.22) is contained in a bounded

subset of L1(I, R
n) for all i ∈ N . Thus sup{ei(t), t ∈ I, i ∈ N} <∞. For any ζ ∈ Rn

it follows from (4.22) that

(Ei(t), ζ)Rn =

∫ t

0

((Ko(s) −Ki(s))[L(s)xo(s) + ξo(s)], B
′

ζ)Rqds(4.24)

=

∫ t

0

Tr
(

(Ko −Ki)(B
′

ζ ⊗ (Lxo + ξo))
)

ds.

Recall that (Ko −Ki) ∈ L∞(I,M(q ×m)) and, for every ζ ∈ Rn, the matrix valued

function (B
′

ζ)⊗(Lxo+ξo) ∈ L1(I,M(m×q)). Since Ki
w∗

−→ Ko, it follows from (4.24)

that (Ei(t), ζ) → 0 as i → ∞ for each t ∈ I. In a finite dimensional space (here Rn)

weak and strong convergence are equivalent. Hence ei(t) → 0 as i→ ∞ for each t ∈ I.

Thus by virtue of Lebesgue dominated convergence theorem, limi→∞

∫ T

0
g(s)ei(s)ds =

0 and hence it follows from inequality (4.23) that limi→∞ xi(t) = xo(t) for each t ∈ I.

Since both ℓ(t, ·) and Ψ(·) are continuous on Rn, we have ℓ(t, xi(t)) −→ ℓ(t, xo(t))

for almost all t ∈ I and Φ(xi(T )) −→ Φ(xo(T )) as i → ∞. Thus it follows from the

expression (4.5) that limi→∞ J̃(Ki) = J̃(Ko) proving weak star continuity of J̃ on

Fad. Since Fad weak star compact, J̃ and hence J attains its minimum (maximum)

on Fad. This completes the proof.

Theorem 4.1 gives the necessary conditions of optimality in the worst situation

when the disturbance acts as an adversary. In contrast, in the optimistic case when the

disturbance acts favorably with the controller, the necessary conditions are obtained

by replacing the Hamiltonian (4.1) by the following expression

(4.25) Ho(t, x, ψ, S) ≡ (F (x) +B(t)SL(t)x, ψ) − r‖S
′

B
′

(t)ψ‖Rm + ℓ(t, x).

We state this as a corollary of Theorem 4.1.

Corollary 4.3. Consider the system (4.6) with the disturbance acting most favorably

and suppose the assumptions (A1)-(A5) hold. Then, the necessary conditions of

optimality are given by equations (4.2), (4.3) and (4.4) with the Hamiltonian (4.1)

replaced by (4.25).
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Proof. The proof is identical to that of theorem 4.1 with the exception that, under the

present assumption, ξo appearing in the inequality (4.16) must now act in cooperation

with the control operator Ko. The most favorable situation occurs when ξo is again

co-linear with the vector K
′

oB
′

ψo and oriented in the opposite direction satisfying the

norm constraint r. This is achieved by use of the Hamiltonian given by (4.25). This

completes the proof.

Our basic system given by equations (3.1)–(3.3) admits uncertainty only in mea-

surement channel. In fact there is no additional difficulty in admitting uncertainty in

the dynamic channel. In this case the system is given by

ẋ = F (x) +Bu+G(x)η in Rn,(4.26)

z = Lx+ ξ in Rm,(4.27)

u = Kz in Rq,(4.28)

where G : Rn −→ L(Rℓ, Rn) ≡ M(n × ℓ) and η denotes the dynamic uncertainty

taking values from Rℓ. This uncertainty is characterized as follows. Let s be any

positive real number and consider the closed ball Bs(R
ℓ) of the space Rℓ. For the

disturbance process {η} we introduce the set Dd satisfying the following assumption.

(A6) The set Dd consists of measurable random processes with sample paths {η(t), t ∈

[0,∞)} taking values from Bs(R
ℓ) with probability one. In other words for any finite

interval I, the elements of the set Dd belong to L∞(I, Bs(R
ℓ)) ⊂ L∞(I, Rℓ) with

probability one.

Now we are prepared to consider the problem admitting dynamic uncertainty.

By straight forward substitution we have the feedback system

ẋ = F (x) +BKLx+BKξ +G(x)η, x(0) = ν, t ∈ I.(4.29)

The objective functional is given by,

J(K, ξ, η) ≡

∫

I

ℓ(t, x(t))dt+ Φ(x(T )).(4.30)

Again our objective is to minimize the maximum risk, that is,

inf
K∈Fad

sup
ξ∈D,η∈Dd

J(K, ξ, η).

We call this problem (P2). In view of Theorem 4.1, it follows from the stated objective

that the Hamiltonian should be taken as

Ho(t, x, ψ, S) ≡ (F (x) +B(t)SL(t)x, ψ) + r‖S
′

B
′

(t)ψ‖Rm(4.31)

+ s‖G
′

(x)ψ‖Rℓ + ℓ(t, x).

For the problem (P2), we have the following necessary conditions of optimality.
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Theorem 4.4 (Both Dynamic and Measurement Uncertainty). Consider the problem

(P2) for the system (4.29) with the objective functional (4.30) and dynamic uncer-

tainty Dd satisfying the assumption (A6). Suppose the assumptions of Lemma 3.2

hold, G is once continuously differentiable with the derivative being uniformly bounded,

and the functions ℓ and Φ satisfy the hypothesis (A5). Then, in order for Ko ∈ Fad

to be optimal in the sense discussed above, it is necessary that there exists a ψo ∈

C(I, Rn) such that the triple {xo, ψo, Ko} satisfy the inequality (4.32) and the equa-

tions (4.33) and (4.34) as follows:

Ho(t, xo(t), ψo(t), Ko(t)) ≤ Ho(t, xo(t), ψo(t), K) ∀ K ∈ Γ,(4.32)

and a.a t ∈ I,

ẋo = Ho
ψ(t, xo, ψo, Ko), x(0) = ν, t ∈ I,(4.33)

ψ̇o = −Ho
x(t, xo, ψo, Ko), ψo(T ) = Φx(xo(T )), t ∈ I,(4.34)

where Ho is the Hamiltonian given by the expression (4.31).

Proof. The proof is similar to that of Theorem 4.1 with the Hamiltonian (4.1) replaced

by the Hamiltonian (4.31) as stated above.

Remark 4.5. The partial derivatives of the Hamiltonian used in the equations (4.33)

and (4.34) are given by

Ho
ψ = F (xo) +BKoLxo + rBKoΥ1(K

′

oB
′

ψo) + sG(xo)Υ2(G
′

(xo)ψo)

Ho
x = F

′

x(xo)ψ + L
′

K
′

oB
′

ψ − s(Dx(G
′

(xo)ψ))
′

Υ2(G
′

(xo)ψ) + ℓx(t, xo)

where Υ2 : Rℓ −→ Rℓ is defined exactly as Υ1 with the dimension being ℓ in place

of m. Here Dx(f) stands for the gradient of f with respect to the variable x ∈ Rn.

Note that Dx(f) ∈M(ℓ× n) if f(x) ∈ Rℓ, x ∈ Rn, and hence (Dx(f))
′

∈M(n× ℓ).

Remark 4.6. In the special case when the dimension of the space of disturbance ℓ = n

and G is independent of the state, in particular G is the identity matrix, the system

(4.29) has only additive uncertainty, and in this case the worst case Hamiltonian is

given by

(4.35) Ho(t, x, ψ, S) ≡ (F (x) +B(t)SL(t)x, ψ) + r‖S
′

B
′

(t)ψ‖Rm + s‖ψ‖Rn + ℓ(t, x).

5. COMPUTATIONAL TECHNIQUE FOR OPTIMAL FEEDBACK

LAW K

We present the key steps for computation of the feedback control law (gain)

{K(t), t ∈ I}. Let Ki ≡ Ki(t), t ∈ I, be the feedback control operator (gain) at the i-

th iteration. In the following, we optimize Ki using the gradient descent technique [1].
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Step 0: Choose any disturbance ξi from the admissible set D as specified by the

assumption (A4). Subdivide the time interval I ≡ [0, T ] into N equal subintervals

and assume a piecewise-contant Ki(t) = Ki(tk), t ∈ [tk, tk+1], for k = 0, . . . , N − 1.

Step 1: Integrate the feedback system (3.6) using the initial condition x0, disturbance

ξi, and the assumed {Ki} and record the solution as trajectory xi ≡ xi(t), t ∈ I.

Step 2: Use {xi, Ki} to write the costate equation (4.4) and solve it backward giving

ψi ≡ ψi(t), for t ∈ I.

Step 3: Now using the triple {xi, Ki, ψi} write the Hamiltonian Ho(t, xi, ψi, Ki) as

defined by the expression (4.1).

Step 4: Compute the functional J(Ki) using (3.4). Also compute the gradients of

the Hamiltonian giving Ho
K and its L2-norm

∫ T

0

‖Ho
K‖

2dt.

Step 5: If J(Ki) ≤ δ1 or
∫ T

0
‖Ho

K‖
2dt ≤ δ2, then Ki is close to the optimal feedback

control law. Here δ1 and δ2 are the predefined small positive numbers which are used

as tolerance (acceptable level of approximation).

Step 6: If J(Ki) 6≤ δ1 or
∫ T

0
‖Ho

K‖
2dt 6≤ δ2, then use the following update rules to

adjust the feedback control operator Ki(called gain in engineering literature):

∆Ki+1(tk) = ǫHo
K(tk) + λ∆Ki(tk) and

Ki+1(tk) = Ki(tk) − ∆Ki+1(tk), for k = 0, . . . , N − 1,
(5.1)

where ǫ and λ are the step size and the momentum constant (for faster convergence),

respectively. Replace Ki by Ki+1 and return to Step 1. We now have a good

approximation of the optimal feedback control law K.

6. NUMERICAL RESULTS

We now illustrate the performance of the proposed feedback controller by con-

ducting a set of numerical experiments. For this, we choose

ℓ(t, x(t)) ≡
1

2
〈Q(x(t) − xd(t)), x(t) − xd(t)〉 , and

Φ(x(T )) ≡
1

2
〈P (x(T ) − x̄), x(T ) − x̄〉 .

The matrix Q ∈M(n× n) is a symmetric positive semi-definite matrix for all t ≥ 0,

and P ∈ M(n × n) is a fixed positive semi-definite matrix, {xd(t) ∈ Rn, t ≥ 0}

is the desired trajectory and x̄ ∈ Rn is the desired target state. For this case,

ℓx = Q(x(t) − xd(t)) and Φx = P (x(T ) − x̄).
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6.1. Example. In order to show the effectiveness of the controller, we present two

different test scenario for a 3-dimensional (n = 3) competitive and cooperative system

defined by

(6.1)







ẋ1

ẋ2

ẋ3






=







a11x1 + a12x2 − a13x1x3

a21x1 + a22x2 − a23x1x3

−a31(x1 + x2) + a32x3






+







b11 b12

b21 b22

b31 b32







[

u1

u2

]

.

The system (6.1) is equivalent to (3.1) with

ẋ =







ẋ1

ẋ2

ẋ3






, F (x) =







a11x1 + a12x2 − a13x1x3

a21x1 + a22x2 − a23x1x3

−a31(x1 + x2) + a32x3






, B =







b11 b12

b21 b22

b31 b32






, and u =

[

u1

u2

]

.

For the simulation purpose, we choose the matrix B, and the coefficients of F (x) from

the matrix A, as follows:

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






= 10−3







28 25 1

30 35 1.2

5 40 0.0






, and B = 10−3







8 8

8 8

8 8






.

The measurement matrix L of (3.2) is set as

L =







lll l12 l13

l2l l22 l23

l3l l32 l33






=







5 6 4

3 5 7

2 9 7






.

The first test scenario is carried out to show the performance of our control strategy

without any measurement uncertainty, i.e., ξ ≡ 0 in (3.2). The second test scenario

is performed by taking into account the measurement uncertainty of the system de-

scribed by the set D ≡ {ξ : I −→ Rm : ξ(t) ∈ Br(R
m), t ∈ I}. The performance

metric used is the integrated tracking error as defined in (3.4) over the time period

of I ≡ [0, 80] with ℓ and Φ as defined above. The initial state (at time t = 0) of the

system is set to [x1 x2 x3]
T = [0.1 0.5 5]T and the initial choice of the feedback control

law K is given by a constant matrix as follows:

(6.2) K(t) = 10−3

[

1 0.5 2

3 1.2 5

]

, for t ∈ [0, 80] time unit,

where the sampling time period is set to 0.8 time unit. The weighting matrices of

the cost integrand ℓ and the terminal cost Φ are chosen as Q = diag(0.2, 0.2, 0.2) and

P = diag(0.1, 0.1, 0.1) respectively. The parameters {ǫ, λ} of the update rule defined

by (5.1) are set as ǫ = 2 × 10−6 and λ = 1. Without loss of generality, we take the

desired trajectory xd as the target state x̄ = [xd1 x
d
2 x

d
3]
T = [0 0 0]T , which also requires

the system to reach the state [0 0 0]T at time t = T .
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6.2. Proposed Controller’s Performance without Measurement Uncertainty.

The first test scenario is aimed at evaluating the performance of the proposed con-

troller in its ability to guide an uncertain dynamic system to a fixed target regardless

of its initial state. In this case, the system is required to reach the target state

(x̄) = (0, 0, 0) at time T = 80 (time units from its initial state). The results of this

test scenario are shown in Figure 1. The initial choice of K drives the system’s state

as shown in Figure 1(a). Examining the figure, it is clear that the feedback control

law (gain) K (as given in (6.2)) chosen arbitrarily can not guide the system to the

desired target. However, as expected, the optimal Ko guides the system to its desired

target state with a small terminal error (see Figure 1(b)). Figure 1(c) shows the

convergence of the numerical procedure up to 500 iterations. Corresponding to the

initial choice of K = K0, the system’s total cost J(K0) = 1015.9. However, for the

optimal Ko as shown in Figure 1(d), it is only J(Ko) = 83.14.
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Figure 1. No Measurement Uncertainty: Performance of the pro-

posed controller without measurement uncertainty (i.e., r = 0). (a)

State trajectory corresponding to the initial choice of the feedback con-

trol law K0, (b) State trajectory corresponding to the optimal feedback

control law (gain) Ko, (c) Tracking error (cost) vs iteration, and (d)

Optimal feedback control law Ko.
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6.3. Proposed Controller’s Performance with Measurement Uncertainty.

The second set of experiments is carried out to show the effectiveness of the pro-

posed feedback controller in highly uncertain dynamic environments. We choose the

uncertainty radius of r = 10 and r = 20. In this scenario, we consider two cases:

pessimistic case, and optimistic case.

6.3.1. Pessimistic case. For the pessimistic case, we must use the Hamiltonian given

by (4.1) representing the worst case scenario. The results of this case are shown in

Figures 2 and 3. Examining the Figures 2(c) and 3(c) one can observe that the cost

corresponding to r = 10 is less than that for r = 20, which is natural. In addition,

as expected, the system’s overall tracking performance is better in the case of r = 10

than that of r = 20. It is clear that under the pessimistic situation, increased level

of uncertainty degrades the system’s ability to reach the desired state.
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Figure 2. Pessimistic Case: Performance of the proposed controller

with measurement uncertainty of radius r = 10 (a) State trajectory

corresponding to the initial choice of feedback control law K0, (b) State

trajectory corresponding to the optimal feedback control law Ko, (c)

Tracking error vs iteration, and (d) Optimal feedback control law Ko.

6.3.2. Optimistic case. In this case, we consider the most favorable situation in the

sense that the energy in the disturbance adds to that of the controller in a cooperative
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Figure 3. Pessimistic Case: Performance of the proposed controller

with measurement uncertainty of radius r = 20. (a) State trajectory

corresponding to the initial choice of feedback control law K0, (b) State

trajectory corresponding to the optimal feedback control law Ko, (c)

Tracking error vs iteration, and (d) Optimal feedback control law Ko.

Table 1. Comparison of costs for two levels of uncertainty.

Radius of the ball of uncertainty Optimistic case Pessimistic case

10 91.57 110.46

20 89.10 128.66

fashion. This scenario is created by replacing r by −r in the pessimistic Hamilton-

ian (4.1) . In other words, in the cooperative environment the Hamiltonian is given

by the expression (4.25). For r = 10 and r = 20, the total system costs in this case

are shown in Figures 4(c) and 5(c), respectively. It is observed from Figures 4 and 5

that the performance of the controller (state trajectory and tracking cost) is much

better than that of the pessimistic case, as seen in the table 1.
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Figure 4. Optimistic case: Performance of the proposed controller

with measurement uncertainty of radius r = 10. (a) State trajectory

corresponding to the initial choice of feedback control law K0, (b) State

trajectory corresponding to the optimal feedback control law Ko, (c)

Tracking error vs iteration, and (d) Optimal feedback control law (gain)

(Ko).
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Figure 5. Optimistic case:Proposed controller’s performance with

measurement uncertainty of radius r = 20. (a) State trajectory corre-

sponding to the arbitrary initial choice of feedback control law K0, (b)

State trajectory corresponding to the optimal feedback control law Ko,

(c) tracking cost vs iteration, and (d) Optimal feedback control law Ko.
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