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ABSTRACT. In this paper, we investigate the asymptotic behavior of a DI SIR epidemic model

with a stochastic perturbation. The ergodic property is obtained by stochastic Lyapunov functions.

We also make simulations to show how the solution goes around the endemic equilibrium of a

deterministic system under conditions, which conform to our analytical result.
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1. INTRODUCTION

At the global level, the number of people killed by HIV/AIDS has been growing-

from 35 million in 2001 to 38 million in 2003 and over 20 million have died since the

first emergence of AIDS in 1981. Hence the HIV/AIDS pandemic has been the great-

est public health disaster of modern times. Unfortunately, the dynamics transmission

of HIV is quite complex. Recently, many researchers have constructed mathematical

models, which reflect the characteristics of this epidemic to some extent. In partic-

ular, Hyman et al. [4] proposed a differential infectivity (DI) model that accounted

for differences in infectiousness between individuals during the chronic stages, and

the correlation between viral loads and rates of developing AIDS. They assumed that

the susceptible population was homogeneous and neglected variations in susceptibil-

ity, risk behavior, and many other factors associated with the dynamics to the HIV
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spread. They divided the population as susceptible individuals S, the HIV infection

population I, which was subdivided into n subgroups, I1, I2, . . . , In, and the group of

AIDS patients A. They presented the DI model:
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dS

dt
= µS0 − µS −

n
∑

j=1

βjIjS,

dIk

dt
= pk

n
∑

j=1

βjIjS − (µ + γk)Ik, k = 1, 2, . . . , n,

dA

dt
=

n
∑

k=1

γkIk − δA,

where the rate of infection depends upon the transmission probability per partner βk

of individuals in subgroup k, S0 presents a constant steady state of the susceptible

population S, µ is the rate of inflow and outflow, which maintains the equilibrium

S0, pk is the probability of an individual entering subgroup k, when he is infected,

and
n
∑

k=1

pk = 1, γk is the rate of leaving the high-risk population because of behavior

changes that are induced by either HIV-related illnesses or a positive HIV test and

finally δ is the die rate of A which satisfies δ ≥ µ. Obviously, system (1.1) has only two

kinds of equilibria: the infection-free equilibrium E0 = (S0, I1 = 0, I2 = 0, . . . , In = 0)

and the endemic equilibrium E∗ = (S∗, I∗

1 , I
∗

1 , . . . , I
∗

n). Hyman et al. [4] and Ma et al.

[8] showed if R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable

in the region G := {(S, Ik)|0 ≤ N = S+
n
∑

k=1

Ik ≤ S0}, while if R0 > 1, the disease-free

equilibrium is unstable, and the endemic equilibrium E∗ is globally asymptotically

stable in the region G, where R0 = S0
n
∑

k=1

βkpk

µ+γk
.

Allowing for environmental white noise, Jiang et al. ([6]) proposed a reasonable

stochastic analogue of system (1.1) given by
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





dS = (µS0 − µS −

n
∑

j=1

βjIjS)dt + σSSdBS(t),

dIk = [pk

n
∑

j=1

βjIjS − (µ + γk)Ik]dt + σI,kIkdBI,k(t), k = 1, 2, . . . , n,

dA = (
n
∑

j=1

γjIj − δA)dt + σAAdBA(t),

where BS(t), BI,k(t), BA(t) are independent Brownian motions, and σS, σI,k, σA are

their intensities. They showed there is a unique nonnegative solution to system (1.2)

for any nonnegative initial value and under some conditions there is a stability result

like

lim sup
t→∞

1

t

∫ t

0

E‖X(t) − E0‖
2 or lim sup

t→∞

1

t

∫ t

0

E‖X(t) − E∗‖2
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is small, provided the diffusion coefficients are sufficiently small, here X(t) denotes

the solution of system (1.2), and E ‖ X(t) − X∗ ‖2= E[
n
∑

k=1

(xk(t) − x∗

k)
2].

In this paper, as in [5, 7], we focus on the ergodicity of system (1.2) as R0 > 1,

which gives complement results to the results of [6]. The paper is organized as follows.

In section 2, we utilize a new stochastic Lyapunov function to show system (1.2) is

an ergodic diffusion process if the intensities σS, σI,k are sufficiently small. In section

3, simulations are made to verify our analytical results.

2. THE ERGODIC PROPERTY OF SYSTEM (1.2)

In this section, we discuss the stochastic dynamics of system (1.2) as R0 > 1.

First we introduce some sufficient conditions on the ergodic property of diffusion

processes. Let X(t) be a regular temporally homogeneous Markov process in El ⊂ Rl

described by the stochastic differential equation

dX(t) = b(X)dt +

k
∑

r=1

σr(X)dBr(t),

and the diffusion matrix is defined as follows

A(x) =
(

ai,j(x)
)

, ai,j(x) =
k
∑

r=1

σi
r(x)σj

r(x).

Theorem 2.1 ([2]). Assume there exists a bounded domain U ⊂ El with regular

boundary, having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the

diffusion matrix A(x) is bounded away from zero.

(B.2) If x ∈ El\U , the mean time τ at which a path issuing from x reaches the set U

is finite, and supx∈K Exτ < ∞ for every compact subset K ⊂ El.

Then, the Markov process X(t) has a stationary distribution µ(·) with density in

El such that for any Borel set B ⊂ El

lim
t→∞

P (t, x, B) = µ(B),

and

Px

{

lim
T→∞

1

T

∫ T

0

f
(

x(t)
)

dt =

∫

El

f(x)µ(dx)

}

= 1,

for all x ∈ El and f(x) being a function integrable with respect to the measure µ.

Remark 2.2. The proof is given in [2]. The existence of a stationary distribution with

density can be found in Theorem 4.1, P119 and Lemma 9.4, P138. The ergodicity and

the weak convergence can be found in Theorem 5.1, P121 and Theorem 7.1, P130.

To show Assumption (B.1) and (B.2), it suffices to prove that there exists some

neighborhood U and a non-negative C2-function such that A(x) is uniformly elliptical
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in U and for any x ∈ El\U , LV (x) ≤ −C for some C > 0 (we refer the reader to [1],

P1163).

Theorem 2.3. Let (S(t), Ik(t), I2(t), . . . , In(t)) be the solution of system (1.2) with

any initial value (S(0), I1(0), I2(0), . . . , In(0)) ∈ Rn+1
+ . If R0 > 1, σS, σI,k, k =

1, . . . , n are positive, and for j = 1, . . . , n,

2nµS∗2 > S∗2σ2

S

(

4C3 +
C1

∑n

k=1
βkI

∗

k

2
+ 4n

)

+

n
∑

k=1

I∗2
k σ2

I,k

pk

[

(C1 + C2)βkS
∗

k

2
+

2

pk

]

,

µ + γk

p2
j

I∗2

j > S∗2σ2

S

(

2C3 +
C1

∑n
k=1

βkI
∗

k

2
+ 2n

)

+

n
∑

k=1

I∗2
k σ2

I,k

pk

[

(C1 + C2)βkS
∗

k

2
+

2

pk

]

+
2I∗2

j σ2
I,j

p2
j

,

then the diffusion process (1.2) is ergodic and converges weakly to the stationary

distribution µ, where (S∗, I∗

1 , I
∗

2 , . . . , I
∗

n) is the endemic equilibrium of system (1.1)

and

(2.1)

C1 =
n
∑

k=1

(2µ + γk)
2

µ2(µ + γk)
, C2 =

1

µ
∑n

k=1
βkI

∗

k

n
∑

k=1

(2µ + γk)
2

µ + γk

, C3 =
1

2µ

n
∑

k=1

(2µ + γk)
2

µ + γk

,

Proof. When R0 > 1, there is the endemic equilibrium E∗ = (S∗, I∗

1 , . . . , I
∗

n). Setting

the right-hand sides of system (1.1) to be zero, we get

µS0 − µS∗ −
n
∑

j=1

βjI
∗

j S
∗ = 0, pk

n
∑

j=1

βjI
∗

j S
∗ − (µ + γk)I

∗

k = 0, k = 1, 2, . . . , n,

which gives

(2.2) µS0 = µS∗ +

n
∑

j=1

βjI
∗

j S
∗,

n
∑

j=1

βjI
∗

j S
∗ =

µ + γk

pk

I∗

k , k = 1, 2, . . . , n.

Define

V1(S, I1, I2, . . . , In) =
n
∑

k=1

ak

[

(S − S∗ − S∗ log
S

S∗
) +

1

pk

(Ik − I∗

k − I∗

k log
Ik

I∗

k

)

]

,

where ak, k = 1, 2, . . . , n are positive constants to be determined later. Then

dV1 = LV1dt +

n
∑

k=1

ak

[(

1 −
S∗

S

)

σSSdBS(t) +
1

pk

(

1 −
I∗

k

Ik

)

σI,kIkdBI,k(t)

]

.
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where

LV1 :=
n
∑

k=1

ak[(1 −
S∗

S
)(µS0 − µS −

n
∑

j=1

βjSIj) +
S∗σ2

S

2
]

+

n
∑

k=1

ak[(1 −
I∗

k

Ik

)(

n
∑

j=1

βjSIj −
µ + γk

pk

Ik) +
I∗

kσ
2
I,k

2pk

].

(2.3)

Note that (2.2) implies

(2.4)

LV1 =
n
∑

k=1

ak

[

2µS∗ +
n
∑

j=1

βjS
∗I∗

j − µS −
µ + γk

pk

I∗

k

Ik

I∗

k

−
µS∗2

S
−

n
∑

j=1

βjS
∗2I∗

j

S

+
n
∑

j=1

βjS
∗Ij −

n
∑

j=1

βjSIj

I∗

k

Ik

+
µ + γk

pk

I∗

k +
S∗σ2

S

2
+

I∗

kσ2
I,k

2pk

]

= −
n
∑

k=1

µS∗ak

[

S

S∗
+

S∗

S
− 2

]

−

(

n
∑

k=1

ak

Ik

I∗

k

)(

n
∑

j=1

βjS
∗I∗

j

)

−

(

n
∑

k=1

akS
∗

S

)(

n
∑

j=1

βjS
∗I∗

j

)

+

(

n
∑

k=1

ak

)[

n
∑

j=1

βjS
∗I∗

j

Ij

I∗

j

]

−

n
∑

k=1

ak

[

n
∑

j=1

βjS
∗I∗

j

S

S∗

Ij

I∗

j

I∗

k

Ik

]

+ 2(

n
∑

k=1

ak)

[

n
∑

j=1

βjS
∗I∗

j

]

+

n
∑

k=1

akS
∗σ2

S

2
+

(

n
∑

k=1

akI
∗

kσ2
I,k

2pk

)

.

The fact that x − 1 − ln x ≥ 0 for x > 0, yields

n
∑

k=1

akS
∗

S
≥

n
∑

k=1

ak

(

1 + ln
S∗

S

)

,

n
∑

j=1

βjS
∗I∗

j

S

S∗

Ij

I∗

j

I∗

k

Ik

≥

n
∑

j=1

βjS
∗I∗

j

(

1 + ln
S

S∗
+ ln

Ij

I∗

j

+ ln
I∗

k

Ik

)

.

Substituting the inequalities above into (2.4), we get

LV1 ≤ −

n
∑

k=1

µS∗ak

(

S

S∗
+

S∗

S
− 2

)

−

(

n
∑

k=1

ak

Ik

I∗

k

)(

n
∑

j=1

βjS
∗I∗

j

)

−

(

n
∑

k=1

ak

)

n
∑

j=1

βjS
∗I∗

j ln
Ij

I∗

j

+

(

n
∑

k=1

ak

)

n
∑

j=1

βjS
∗I∗

j

Ij

I∗

j

+
n
∑

k=1

akS
∗σ2

S

2

+

(

n
∑

k=1

akI
∗

kσ
2
I,k

2pk

)

−

(

n
∑

j=1

βjS
∗I∗

j

1 + αjI
∗

j

)

n
∑

k=1

ak ln
I∗

k

Ik

.
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Let ak = βkS
∗I∗

k and we have

(2.5)

LV1 ≤ −µS∗

(

n
∑

k=1

βkS
∗I∗

k

)

(

S

S∗
+

S∗

S
− 2

)

+

(

n
∑

k=1

βkS
∗I∗

k

)

S∗σ2
S

2
+

n
∑

k=1

βkS
∗I∗2

k σ2
I,k

2pk

.

Define the C2 function V2 : Rn → R+ as

V2(I1, I2, . . . , In) =
n
∑

k=1

ak

(

Ik

pk

−
I∗

k

pk

−
I∗

k

pk

log
Ik

I∗

k

)

,

where ak, k = 1, . . . , n are the positive constants defined above. By computation, we

note that

LV2 =

n
∑

k=1

ak

(

1

pk

−
I∗

k

pkIk

)

(

pk

n
∑

j=1

βjSIj − (µ + γk)Ik

)

+

n
∑

k=1

akI
∗

kσ
2
I,k

2pk

=

(

n
∑

k=1

ak

)

n
∑

j=1

βj(S − S∗)(Ij − I∗

j ) +

(

n
∑

k=1

ak

)

n
∑

j=1

(S − S∗)βjI
∗

j

− +

(

n
∑

k=1

ak

)

n
∑

j=1

βjS
∗Ij

n
∑

k=1

ak(µ + γk)

pk

Ik −

(

n
∑

k=1

akI
∗

k

Ik

)(

n
∑

j=1

βjSIj

)

+

n
∑

k=1

ak(µ + γk)

pk

I∗

k +

n
∑

k=1

akI
∗

kσ2
I,k

2pk

=

(

n
∑

k=1

ak

)

n
∑

j=1

βj(S − S∗)(Ij − I∗

j ) +

(

n
∑

k=1

ak

)

n
∑

j=1

βjS
∗I∗

j

S

S∗

+

(

n
∑

k=1

ak

)

n
∑

j=1

βjS
∗I∗

j

Ij

I∗

j

−
n
∑

k=1

ak

n
∑

j=1

βjS
∗I∗

j

S

S∗

Ij

I∗

j

I∗

k

Ik

−

(

n
∑

k=1

akIk

I∗

k

)

n
∑

j=1

βjS
∗I∗

j

+
n
∑

k=1

akI
∗

kσ
2
I,k

2pk

.

Using the fact that x − 1 − ln x ≥ 0 for x > 0, we have that

LV2 ≤

(

n
∑

k=1

βkS
∗I∗

k

)

n
∑

j=1

βj(S − S∗)(Ij − I∗

j )

+

(

n
∑

k=1

βjS
∗I∗

k

)

n
∑

j=1

βjS
∗I∗

j

(

S

S∗
+ ln

S∗

S
− 1

)

+
n
∑

k=1

βkS
∗I∗2

k σ2
I,k

2pk

(2.6)

≤

(

n
∑

k=1

βkS
∗I∗

k

)

n
∑

j=1

βj(S − S∗)(Ij − I∗

j )
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+

(

n
∑

k=1

βkS
∗I∗

k

)2
(

S

S∗
+

S∗

S
− 2

)

+
n
∑

k=1

βkS
∗I∗2

k σ2
I,k

2pk

.

Define the C2 function V3 : R+ → R+ as

V3(S) = (S − S∗)2.

Thus

(2.7)

LV3 = 2(S − S∗)(µS∗ − µS −
n
∑

j=1

βjSIj +
n
∑

j=1

βjS
∗I∗

j ) + σ2

SS2

= −2µ(S − S∗)2 − 2
n
∑

j=1

βj(S − S∗)2Ij − 2S∗

n
∑

j=1

βj(S − S∗)(Ij − I∗

j ) + σ2

SS2

≤ −2µ(S − S∗)2 − 2S∗

n
∑

j=1

βj(S − S∗)(Ij − I∗

j ) + σ2

SS2.

Define the C2 function V4 : Rn+1
+ → R+ as

V4(S, I1, I2, . . . , In) =

n
∑

k=1

(S − S∗ +
Ik

pk

−
I∗

k

pk

)2.

By computation,

LV4 = 2

n
∑

k=1

(

S − S∗ +
Ik

pk

−
I∗

k

pk

)(

µS∗ − µS −
µ + γk

pk

Ik +
µ + γk

pk

I∗

k

)

+

n
∑

k=1

(σ2

SS2 +
σ2

I,kI
2
k

p2
k

)

= −2nµ(S − S∗)2 − 2

n
∑

k=1

µ + γk

p2
k

(Ik − I∗

k)2 − 2

n
∑

k=1

2µ + γk

pk

(S − S∗)(Ik − I∗

k)

+
n
∑

k=1

(

σ2

SS2 +
σ2

I,kI
2
k

p2
k

)

.

Using the fact that 2ab ≤ a2 + b2, we note

(2.8)

LV4 ≤ −2nµ(S − S∗)2 −

n
∑

k=1

µ + γk

p2
k

(Ik − I∗

k)2 +

n
∑

k=1

(2µ + γk)
2

µ + γk

(S − S∗)2

+

n
∑

k=1

(σ2

SS2 +
σ2

I,kI
2
k

p2
k

).

Finally define the C2 function V : Rn+1
+ → R+ as

V = C1V1 + C2V2 + C3V3 + V4,

where C1, C2 and C3 are the positive constants defined in (2.1).
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Taking (2.5), (2.6), (2.7) and (2.8) into account, we have

LV ≤ −2nµ(S − S∗)2 −

n
∑

k=1

µ + γk

p2
k

(Ik − I∗

k)2 + C3σ
2

SS2 + C2

n
∑

k=1

βkS
∗

kI
∗,2
k σ2

I,k

2pk

+
C1σ

2
S

2

n
∑

k=1

βkS
∗2I∗

k + C1

n
∑

k=1

βkS
∗

kI
∗,2
k σ2

I,k

2pk

+
n
∑

k=1

(σ2

SS2 +
σ2

I,kI
2
k

p2
k

).

Since a2 ≤ 2(a − b)2 + 2b2, then

(2.9)

LV ≤ −2
[

nµ − (C3 + n)σ2

S

]

(S − S∗)2 −

n
∑

k=1

(
µ + γk

p2
k

−
2σ2

I,k

p2
k

)(Ik − I∗

k)2

+ S∗2σ2

S(2C3 +
C1

∑n
k=1

βkI
∗

k

2
+ 2n) +

n
∑

k=1

I∗2
k σ2

I,k

pk

[

(C1 + C2)βkS
∗

k

2
+

2

pk

]

= −2
[

nµ − (C3 + n)σ2

S

]

(S − S∗)2 −
n
∑

k=1

(
µ + γk

p2
k

−
2σ2

I,k

p2
k

)(Ik − I∗

k)2 + A,

where A = S∗2σ∗2

S (2C3 +
C1

∑n

k=1
βkI

∗

k

2
+ 2n) +

n
∑

k=1

I∗2
k σ2

I,k

pk

[

(C1 + C2)βkS
∗

k

2
+

2

pk

]

.

Note that if σ2

S <
nµ

C3 + n
, σ2

I,k <
µ + γk

2
, and 2

[

nµ − (C3 + n)σ2

S

]

S∗2 > A, (
µ + γk

p2
k

−

2σ2
I,k

p2
k

)I∗2

k > A, k = 1, . . . , n (i.e. the conditions in Theorem 2.3 hold), then the

ellipsoid

−2
[

nµ − (C3 + n)σ2

S

]

(S − S∗)2 −

n
∑

k=1

(
µ + γk

p2
k

−
2σ2

I,k

p2
k

)(Ik − I∗

k)2 + A = 0

lies entirely in Rn+1
+ . We can take U to be some neighborhood of the ellipsoid with

Ū ⊆ El = Rn+1
+ , so for x ∈ U \El, LV ≤ −C for some C > 0, which implies condition

(B.2) in Lemma (2.1) is satisfied. Also, there is a M > 0 such that

n+1
∑

i,j=1

(

n
∑

k=1

aik(x)ajk(x)

)

ξiξj = σ2

Sx2

1ξ
2

1 +

n
∑

k=1

σ2

I,kx
2

k+1ξ
2

k+1

≥ M | ξ |2 all x ∈ Ū , ξ ∈ Rn+1.

Applying Rayleigh’s principle ([9, p342]), condition (B.1) is satisfied. Therefore, the

stochastic system (1.2) has a unique stationary distribution µ(·) and it is an ergodic

diffusion process.

Remark 2.4. From the results of Theorem 2.5 in [6], we can see, if X∗ is the equi-

librium of the system (1.1), but not of system (1.2), then under some conditions,

lim sup
t→∞

1

t

∫ t

0

E[‖X(s) − X∗‖2]ds < O(σ2),
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where X(t) is the solution of system (1.2), ‖X(s) − X∗‖2 =
n
∑

k=1

(Xk(s) − X∗

k)2 and

σ2 = σ2
S +

n
∑

k=1

σ2
I,k.

In fact, by the ergodic property of system (1.2), the lim sup
t→∞

can be replaced by

lim
t→∞

and the deviation between the vector (x0, x1, . . . , xn) and E∗ in the L2(µ) norm

is dominated by the intensities of white noises.

3. SIMULATION

We use the Milstein’s higher order method in [3] to find the strong solution of

system (1.2) with given initial value and the values of parameters for n = 2. The

corresponding discretization equation is














































































Sk+1 = Sk +

(

µS0 − µSk −
2
∑

j=1

βjSkIj,k

)

△t + σSSk

√

△tξ1,k

+
σ2

S

2
Sk(△tξ2

1,k −△t),

I1,k+1 = I1,k +

[

p1

2
∑

j=1

βjSkIj,k − (µ + γ1)I1,k

]

△t + σI,1I1,k

√

△tξ2,k

+
σ2

I,1

2
I1,k(△tξ2

2,k −△t),

I2,k+1 = I2,k +

[

p2

2
∑

j=1

βjSkIj,k − (µ + γ2)I2,k

]

△t + σI,2I2,k

√

△tξ3,k

+
σ2

I,2

2
I2,k(△tξ2

3,k −△t),

where ξ1,k, ξ2,k and ξ3,k, k = 1, 2, . . . , n are independent Gaussian random variables

N(0, 1), and σ1, σ2, σ3 are intensities of white noises. We choose (S(0), I1(0), I2(0)) =

(3.6, 1.8, 2.8), △t = 0.2 and the parameters S0 = 2, µ = 0.2, γ1 = γ2 = 0.3, p1 = 0.4,

p2 = 0.6, β1 = β2 = 0.5, σS = σI,1 = σI,2 = 0.1 such that the conditions of Theorem

2.3 are satisfied, and the simulations conform the results from visual. Specifically, the

left picture (a) in the figure shows the solution of system (1.2) is fluctuating around a

fixed point (S∗, I∗

1 , I
∗

2 ), where the red, blue and yellow lines represent the population

S, I1, I2, respectively; In the right picture (b) of the figure, we give the simulation

of 1

t

∫ t

0
S(s)ds, 1

t

∫ t

0
I1(s)ds and 1

t

∫ t

0
I2(s)ds to conform the ergodicity of system (1.2),

which are also represented by red, blue and yellow lines, respectively.
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