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ABSTRACT. We consider the optimal dividend and reinsurance problems in this article, where

the dividend strategy is the threshold strategy and the reinsurance is the proportional reinsurance.

Despite the fact that the barrier strategy has its popularity in theoretical research, such a strategy

has little practical acceptance as it will lead to the certainty of ultimate ruin. A modified version of

the barrier strategy is the threshold strategy which assumes that dividends are paid at a rate smaller

than the rate of premium income whenever the surplus is above some threshold level, and that no

dividends are paid out whenever the surplus is below the threshold level. In this article, we consider

two cases of the threshold strategy. One is the threshold strategy without barrier, and the other is

the threshold strategy with barrier. The first case generalizes and corrects part of results in [16].

In the second case, we use the stochastic control theoretic techniques, to find the value function as

well as the optimal investment-reinsurance policy in closed form.

AMS (MOS) Subject Classification: 60H10, 60H30, 93E20

1. INTRODUCTION

The optimal dividend pay-out is a classical problem in actuarial mathematics;

the dividend distribution depends on the choice of time and amount of payment

to shareholders. An analysis of different strategies in paying out the dividend has

become an increasingly important issue for insurance companies. Here, the objective

is to maximize the dividend pay-outs.

The bankruptcy (minimizing the ruin probability) is another optimization prob-

lem of major importance to insurance companies. Control of risk leads to reinsuring

part of the claims; the reinsurance can efficiently reduce their exposure to loss. Almost

all insurance companies have some form of reinsurance program.

The impact of dividend payments and reinsurance on insurance businesses needs

to be studied carefully and thoroughly. Though close to some problems in Mathe-

matical Finances, this problem cannot be treated as a special case in there because

of some singularity difficulties that arise.
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Optimizing the dividend payouts was first proposed by de Finetti [5] in order to

cope with the important problem of minimizing ruin probability. Due to its practical

importance, the optimal dividend problem without reinsurance has been considered

in numerous papers. The first dividend optimization problme was proposed for the

compound Poisson model, namely the Cramér-Lundberg model. The dividend prob-

lem for the classical Cramér-Lundberg model is solved by Gerber [7]. In the setting

of diffusion processes, Shreve et al [15] completely solves this problem and shows that

under some reasonable assumptions the barrier strategy turns out to be optimal. The

barrier strategy suggests that if the surplus grows beyond a certain level called bar-

rier, the difference between the surplus and the barrier is paid out as dividends until

a new claim arrives.

Recently the reinsurance has been incorporated into the optimal dividend prob-

lem. For the Cramér-Lundberg model, (a) the optimal-dividend proportional-reinsurance

problem has been studied by Azcue and Muler [4], and (b) the dividend-excess of loss

reinsurance problem has been studiec by Asmussen et al [2]. For the diffusion risk

model, (a) the optimal-dividend proportional-reinsurance problem has been studied

by Højgaard and Taksar [11], and (b) the dividend-excess of loss reinsurance problem

has been studiec by Mnif and Sulem [13]. Other extensions of the optimal dividend

problem can be found in the survey articles: Albrecher and Thonhauser [1], Avanzi

[3], Hipp [10], Schmidli [14], Taksar [16] and references therein.

Despite that barrier strategy has its popularity in theoretical research, such a

strategy has little practical acceptance as it will lead to the certainty of ultimate

ruin. Gerber and Shiu [8] proposes a modified version of the barrier strategy, namely

the threshold strategy, which assumes that dividends are paid at a rate smaller than

the premium income rate whenever the surplus is above some threshold level, and

that no dividends are paid whenever the surplus is below the threshold level. The

threshold strategy is more acceptable from the realistic point of view.

In this paper, we consider two cases of dividend strategy. One is the threshold

strategy without barrier, and the other is the threshold strategy with barrier. In the

first case, we generalizes and correct some of the results in Højgaard and Taksar [11].

In the second case, we use the stochastic control technique to find, in closed form,

the value function as well as the optimal investment-reinsurance policy.

2. THE MODEL ASSUMPTIONS

Our set up starts with a complete probability space (Ω,F , (Ft), P) which supports

all our random elements. Let {Rt, t ≥ 0} denote the reserve (surplus) (stochastic)

process for the company. We model the uncontrolled surplus process {Rt, t ≥ 0} by

the constant coefficient diffusion:

(2.1) dRt = µdt + σdWt,
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where µ > 0 is the constant premium income rate, {Wt : t ≥ 0} is a standard

Brownian motion, and the diffusion term σdWt measures the uncertainty associated

with the insurance market or the economic environment. This diffusion model is the

limiting case of the more intutive Cramér-Lundberg model for the company’s reserve.

To see this, let insurance claims arrive at a Poisson rate λ with claim sizes {Ui}, where

the Ui’s are iid with mean m and variance v2. Then the surplus of the company at

time t satisfies the equation

rt = r0 + pt −
N(t)
∑

i=1

Ui,

where p is the amount of premium per unit time, and r0 is the initial reserve. To

consider the diffusion limit, take m = mn and p = pn and let them converge to

zero at the rate of
√

n so that the limits p̂ = limn→∞

√
npn and m̂ = limn→∞

√
nmn

exist. Also, set rt : rnt/
√

n. Then, the limit process Rt satisfies the Equation 2.1 with

µ = p̂ − λm̂, and σ =
√

λ(m̂2 + v2).

The dividend strategy that we consider in this paper is the threshold strategy.

The dividends are paid at a rate 0 ≤ l ≤ M whenever the surplus is above some

barrier B ≥ 0, in which M is the highest rate of dividend pay-out. The case of

B = 0 is the dividend strategy discussed in [11]. Another control variable is the

reinsurance. The form of the reinsurance here is the ‘proportional reinsurance’. A

control strategy π is described by a two-dimensional stochastic process {aπ(t), Lπ
t }t≥0,

where 0 ≤ aπ
t ≤ 1 and Lπ

t ≥ 0. Here, for a strategy π = {aπ(t), Lπ
t }, aπ(t) corresponds

to the risk exposure or the reinsurance proportion at time t, and Lπ
t ≥ 0 represents

the cumulative dividend payments up to time t. This cumulative dividend payment

process Lπ
t is non-decreasing, Ft-adapted, and we take it in the following form in this

article

Lt =

∫ t

0

lsds, 0 ≤ ls ≤ M.

With Lt as a control, we refer to Rπ
t as the controlled process and is given by:

dRπ
t = aπ(t)µdt + aπ(t)σdWt − dLπ

t ,(2.2)

Rπ
0 = x − Lπ

0 ,(2.3)

where Wt is a standard Brownian Motions in R. We define the bankruptcy time by

the random time τπ = inf{t ≥ 0 : Rπ
t ≤ 0}. The collection of admissible strategies

is denoted by Π. For any given strategy π ∈ Π, we denote the expected value of

discounted dividend payments by

(2.4) Vπ(x) := E

∫ τπ

0

e−ctdLπ
t , c > 0.

The objective function is the optimal dividend payout function defined by

(2.5) V (x) := sup
π∈Π

Vπ(x), x ≥ 0.
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In order to solve this optimal control problem, we need the following lemma.

This result is established in [11]. While we borrow some ideas from [11] to establish a

few of our results that follow, we also correct some of their erroneous arguments and

results.

Lemma 2.1. The function V defined by the Equation (2.5) is concave.

3. OPTIMIZATION WITHOUT BARRIER B

We solve in this section the optimal control problem mentioned above for the

case without barrier constraint, i.e. B = 0. Højgaard and Taksar studied a similar

problem in their work [11]; some errors crept in, however, in their calculation of the

value function. In evaluating our value function we also provide a correct version of

their value function (derived as a special case). According to the theory of dynamic

programming ([6]), if the value function is smooth enough, it satisfies the so-called

Hamilton-Jacobi-Bellman(HJB) equation. Toward this, we have the following theo-

rem.

Theorem 3.1. Under the assumption that V (x), defined by (2.5), is twice contin-

uously differentiable on (0, +∞) except at a finite number of points, it follows that

V (x) satisfies the HJB equation

(3.1) max
a∈[0,1],l∈[0,M ]

{

1

2
σ2a2V ′′(x) + (µa − l)V ′(x) − cV (x) + l

}

= 0,

with V (0) = 0.

While we apply the method in [11] to derive the explicit form of V (x), we also

simultaneously correct their erroneous calculation and corresponding result. Let u1 :=

inf{u : V (u) = 1}.
Case where x ≤ u1: In this case, l(x) = 0. Hence,

(3.2) max

{

1

2
σ2a2V ′′(x) + µaV ′(x) − cV (x)

}

= 0.

Consequently,

(3.3) a(x) = − µV ′(x)

σ2V ′′(x)

is a maximizer of (3.2). Inserting (3.3) into (3.2) and solving the equation, we get

(3.4) V (x) = g1(x) = c1x
γ ,

where

γ =
c

µ2

2σ2 + c
.(3.5)
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Therefore, a(x) = − µx

σ2(γ − 1)
. Assuming that a(u0) = 1 we get u0 =

σ2

µ
(1 − γ). If

u0 < u1, then we have a(x) = 1, for u0 < x < u1. So the solution of Equation (3.2) is

(3.6) V (x) = g2(x) = c2 exp{d−(x − u0)} + c3 exp{d+(x − u0)},

where

d± =
1

σ2
(−µ ±

√

µ2 + 2cσ2).

Case where x > u1: Here it is obvious that l(x) = M and V (x) satisfies

(3.7)
1

2
σ2V ′′(x) + (µ − M)V ′(x) − cV (x) + M = 0.

From the boundedness of V , we have that

(3.8) V (x) = g3(x) =
M

c
+ c4 exp{d̂(x − u1)},

where

d̂ =
1

σ2

(

−(µ − M) −
√

(µ − M)2 + 2cσ2
)

.

From the discussions above,

(3.9) a(x) =







µx

σ2(1 − γ)
, x < u0,

1, x > u0,

and l(x) is given as follows

(3.10) l(x) =

{

0, x < u1,

M, x > u1.

The constants in g1, g2 and g3 are determined by the continuity assumption on V ,

V ′, and V ′(u1) = 1. It follows that

(3.11) c1γuγ−1
0 = c2d− + c3d+,

(3.12) c1u
γ
0 = c2 + c3.

Hence,

(3.13) c2 = c1
uγ−1

0 (u0d+ − γ)

d+ − d−

,

and

(3.14) c3 = c1
uγ−1

0 (γ − d−u0)

d+ − d−

.

Plug the above values of c2 and c3 into g2 and solve g′
2(u1) = g′

3(u1) = 1, g2(u1) =

g3(u1). We then get

(3.15) u1 = u0 +
1

d+ − d−

ln
(d+u0 − γ)

[

d−

(

M
c

+ 1

d̂

)

− 1
]

(γ − d−u0)
[

1 − d+

(

M
c

+ 1

d̂

)] ,
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(3.16) c4 =
1

d̂
,

and

c1 =
d+ − d−

uγ−1
0

(

M

c
+

1

d̂

)















(d+u0 − γ)





(d+u0 − γ)
[

d−

(

M
c

+ 1

d̂

)

− 1
]

(γ − d−u0)
[

1 − d+

(

M
c

+ 1

d̂

)]





d
−

d+−d
−

+(γ − d−u0)





(d+u0 − γ)
[

d−

(

M
c

+ 1

d̂

)

− 1
]

(γ − d−u0)
[

1 − d+

(

M
c

+ 1

d̂

)]





1

d+−d
−











(3.17)

It remains to verify that u1 ≥ u0. It follows that u1 ≥ u0 if and only if

(3.18)
(d+u0 − γ)

[

d−

(

M
c

+ 1

d̂

)

− 1
]

(γ − d−u0)
[

1 − d+

(

M
c

+ 1

d̂

)] ≥ 1.

Straightforward calculation implies that (3.18) is equivalent to

(3.19) M ≥ µ

2
+

cσ2

µ
.

It is clear now that the V (x) constructed above is concave, and consequently we have

the following theorem.

Theorem 3.2. If M ≥ µ/2 + cσ2/µ and V (x) is given by (3.4), (3.6), and (3.8),

then V (x) is a concave solution of (3.2).

Proof. The proof is exactly the same as the one for Theorem 2.1 in [11]. �

Let M < µ/2 + cσ2/µ and u1 < u0. Then, the solution of Equation (3.2) is given

by

(3.20) V (x) =



















u1

γ

(

x

u1

)γ

, x < u1,

M

c

(

1 − γ exp

{

− c

Mγ
(c − u1)

})

, x > u1,

where γ is as defined in (3.5) and u1 =
Mγ(1 − γ)

c
. The maximizing functions a(x)

and l(x) are given by

(3.21) a(x) =











µx

σ2(1 − γ)
, x < u1,

µu1

cσ2(1 − γ)
, x > u1,

(3.22) l(x) =

{

0, x < u1,

M, x > u1.
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So we have the following theorem:

Theorem 3.3. If M < µ/2 + cσ2/µ and V (x) is given by (3.20), then V (x) is a

concave solution of (3.2).

Proof. Follow the proof of Theorem 2.2 in [11]. �

We now need a verification result that indicates that the solutions constructed

above are optimal. Toward this we have

Theorem 3.4. Suppose, V (x) is given by (3.4), (3.6), and (3.8) in the case of M ≥
µ/2 + cσ2/µ, and by (3.20) for M < µ/2 + cσ2/µ. Then V (x) = Vπ∗(x), where π∗ is

given by aπ∗(t) = a(Rπ∗

t ) and lπ∗(t) = l(Rπ∗

t ), for t < τπ∗ , in which a and l are given

by (3.9), (3.21) and (3.10), (3.22) respectively.

Proof. The proof is the same as the one given for Theorem 2.3 in [11]. In our situation,

we need to apply Itô’s formula to e−c(t∧τǫ
π)V (Rt∧τǫ

π
), where τ ǫ

π = inf{t : Rπ
t = ǫ} for a

chosen 0 < ǫ < x, and also the fact that
∫ t∧τǫ

π

0

e−csσaπ(s) V ′(Rπ
s ) dWs

is a martingale with zero mean. �

Remark 3.5. The illustration of the optimal dividend policy is very clear. When

the capital reserve is low, the major task of an insurance company is to reduce the

insolvency risk. So it is optimal for the firm not to pay any dividend and have a

greater reinsurance proportion. However, when the reserve capital is high, there is

no immediate risk of insolvency. Now the company can pay as much as possible and

carry no reinsurance at all. As we will show soon, this policy not only optimizes the

expected dividend payout but also reduces the insolvency probability in finite time

to 0. Such advantage is a result of a(x) =
µx

σ2(1 − γ)
when x < u0 ∧ u1. We plug this

into (2.2) and get:

(3.23) dRπ∗

t = µrRπ∗

t dt + σrRπ∗

t dWt,

where R0 = x < u0 and r =
µ

σ2(1 − γ)
. The solution to (3.23) is a geometric Brownian

Motion, which is positive with probability 1.

Theorem 3.6. Subject to the policy π∗ and, with aπ∗(t) := a(Rπ∗

t ) and lπ∗(t) :=

l(Rπ∗

t ), we have P(τπ∗

= ∞) = 1, independent of the initial capital x.

Proof. Due to the Markov property of Rπ∗

t , we only need to consider the case x <

u∗ = u0 ∧ u1. Let τ ∗ = inf{t : Rπ∗

t > u∗}. Since τ ∗ is a stopping time, define
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σ∗ = τ ∗ ∧ τπ∗

. Noting that Rπ∗

t > 0 when t < σ∗, we can apply Itô’s formula to

ln(Rπ∗

t ). Thus

ln(Rπ∗

t ) − ln(x) =

∫ t

0

dRπ∗

s

Rπ∗

s

− 1

2

∫ t

0

d〈Rπ∗

, Rπ∗〉t
(Rπ∗

s )2

=

∫ t

0

µr dt + σr dWt −
1

2

∫ t

0

σ2r2(Rπ∗

t )2

(Rπ∗

s )2
dt

=

∫ t

0

(

µr − 1

2
σ2r2

)

dt +

∫ t

0

σr dWt

=

(

µr − 1

2
σ2r2

)

t + σrWt,(3.24)

for t < σ∗ and x < u∗. From (3.24), we get

Rπ∗

t = x exp

[(

µr − 1

2
σ2r2

)

t + σrWt

]

for t < σ∗ and x < u∗. So Rπ∗

t is a geometric Brownian Motion with drift, which can

never hit 0 with probability 1. This concluds the proof. �

Remark 3.7. As discussed in [9], Theorem 3.6 can also be generalized to optimal

barrier strategy under proportional reinsurance. This result suggests that there is no

need to restrict to the ruin probability to the optimal dividend-reinsurance problem

as defined above. Liang and Huang [12] gives a new definition of ruin probability:

τπ = inf{t ≥ 0 : Rπ
t < m}, where m is a positive constant. Under this definition

the ruin happens with positive probability. The optimal threshold strategy dividend-

reinsurance problem with solvency constraint in this new definition is an interesting

one.

4. OPTIMIZATION WITH BARRIER CONSTRAINT B

In continueing the above study of the optimal control problem we now modify

the problem to the case where we have a barrier constraint, B > 0. As is done in

the last section, we will solve the Equation (3.1) explicitly and determine the optimal

strategy π∗
B. The HJB equation for the case with barrier constraint is formulated as

follows:

max
a∈[0,1]

{

1

2
σ2a2V ′′(x) + µaV ′(x) − cV (x)

}

= 0, 0 ≤ x ≤ B,(4.1)

max
a∈[0,1],l∈[0,M ]

{

1

2
σ2a2V ′′(x) + (µa − l)V ′(x) − cV (x) + l

}

= 0, x > B.(4.2)

As can be seen, this problem creates a higher degree of complexity than what we

faced in the last section; however, we suitably modify the methods used there. Since

the solution to the HJB equation is very different depending on the value of M , we
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divide the problem into two cases:

(a) M ≤ µ/2 + cσ2/µ and

(b) M > µ/2 + σ2/µ.

Case (a): M ≤ µ/2+cσ2/µ. For different values of B, we have different solutions

for the HJB equation. So we subdivide this into three subcases and consider each of

them separately.

Case a-1 B ≤ u1:

All the admissible strategies for the case with barrier are admissible for the case

without the barrier, and in the case of B ≤ u1, the optimal strategy for the case

without the barrier is also admissible for the case with the barrier. So the solution

for this subcase is the same as that for without barrier, and we omit the details.

Case a-2 u1 < B < u0:

For x ≤ B, the Equation (4.1) is solved by

VB(x) = f1(x) = c′1x
γ

with the maximizer

a(x) = − µV ′
B(x)

σ2V ′′
B(x)

=
µx

σ2(1 − γ)
< 1, x ≤ B < u0.

Because all the admissible strategies for the case with barrier are admissible for the

case without the barrier, the value function is not bigger than that for without the

barrier, i.e. c′ ≤ c. Now we get f ′
1(B) < 1. The concavity of the value function

implies that V ′
B(x) < 1 for x > B. The equation (4.2) becomes

max
a∈[0,1]

{

1

2
σ2a2V ′′(x) + (µa − M)V ′(x) − cV (x) + M

}

= 0, x > B.

Following ideas in [11], the solution to the above equation is:

VB(x) = f2(x) =
−Mη

1 + cη
exp

{

1 + cη

−Mη
(x − k2)

}

+ c′2, x > B,

where η = 2σ2/µ2, and k2, c′2 are unknown constants. To determine these unknown

constants, we have the following equations from the continuity of the value function

and its first derivative at B:

c′1B
γ =

−Mη

1 + cη
exp

{

1 + cη

−Mη
(B − k2)

}

+ c′2,(4.3)

c′1γBγ−1 = exp

{

1 + cη

−Mη
(B − k2)

}

.(4.4)

Solving the above equations, we get the following value function:
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VB(x) =















M

cBγ + γ2Bγ−1M
xγ, x ≤ B,

M

c
− γ2Bγ−1M2

c(cBγ + γ2Bγ−1M)
exp

{

− c

Mγ
(x − B)

}

, x > B.

And the maximizing function a(x) is then given by

a(x) =















µx

σ2(1 − γ)
, x ≤ B,

M
µ

2
+ cσ2

µ

, x > B.

Case a-3 B ≥ u0:

For x < B, let a(x) be the maximizer of the left-hand side of Equation (4.1). By a

similar calculation, the interval for 0 < a(x) < 1 is (0, u0), and for x ∈ (0, u0), the

solution of (4.1) is

f1(x) = c1x
γ(4.5)

For x ∈ [u0, B], the Equation (4.1) becomes

1

2
σ2V ′′(x) + µV ′(x) − cV (x) = 0.

The solution of the above equation is

f2(x) = c2e
d+x + c3e

d−x.

Again we get f ′
1(B) < 1. The concavity of the value function implies that V ′

B(x) < 1

for x > B. Now the Equation (4.2) becomes

max
a∈[0,1]

[

1

2
σ2a2V ′′(x) + (µa − M)V ′(x) − cV (x) + M

]

= 0, x > B.

The solution of this equation is

f3(x) =
M

c
+ c4 exp

{

− c

Mγ
(x − B)

}

.

To determine the constants c1, c2, c3, c4, we use the continuity and the continuous

differentiability at u0 and B. We thus get

c1 =
M

c

[

Aed−B

(

1 +
Mγ

c
d−

)

+ Ded+B

(

1 +
Mγ

c
d+

)]−1

,

c2 = c1A,

c3 = c2D,

c4 = −c1

(

Ad−ed−B + Dd+ed+B
) M2γ

c2
,
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where, A =
d+u0 − γuγ−1

0

(d+ − d−)ed−u0
, D =

γuγ−1
0 − d−u0

(d+ − d−)ed+u0
. Also, the maximizing function

a(x) is given by

a(x) =























µx

σ2(1 − γ)
, x < u0,

1, u0 ≤ x ≤ B,
M

µ

2
+ cσ2

µ

, x > B.

Case (b): M > µ/2 + cσ2/µ. As in the Case (a) we consider the following

subcases.

Case b-1 B ≤ u1.

Following the argument in the previous case, the solution in the present case is also

as that for without barrier.

Case b-2 B > u1.

As in the Case a-3, we obtain

f1(x) = c1x
γ x < u0,(4.6)

f2(x) = c2e
d+x + c3e

d−x, u0 ≤ x ≤ B.(4.7)

For x > B, we have the Equation

max
a∈[0,1]

[

1

2
σ2a2V

′′

(x) + (µa − M)V
′

(x) − cV (x) + M

]

= 0, x > B.(4.8)

The solution of this equation is

f3(x) =
M

c
+ c4e

d̂(x−b)

To determine the constants c1, c2, c3, c4, we use, as before, the continuity and the

continuous differentiability at u0 and B. We get

c1 =
M

c

[

AedB

(

1 +
Mγ

c
d−

)

+ Ded+B

(

1 +
Mγ

c
d+

)]−1

,

c2 = c1A,

c3 = c2D,

c4 = c1

(

Ad−ed−B + Dd+ed+B
) M

d̂c
,

where d̂ =
−(µ − M) −

√

(µ − M)2 + 2cσ2

σ2
.
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