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ABSTRACT. In this paper we obtain necessary conditions and robust algorithmic criteria for

asymptotic stability of the zero solution of higher odd order linear neutral delay differential equations

of the form

y(2m+1)(t) + αy(2m+1)(t − τ) =

2m∑

j=0

ajy
(j)(t) +

2m∑

j=0

bjy
(j)(t − τ)

where aj , bj, and α 6= 0 are real constants. Here τ > 0 is a constant delay. In proving our results

we make use of Pontryagin’s theory for quasi-polynomials.
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1. INTRODUCTION

The aim of this paper is to derive robust algorithmic criteria for asymptotic

stability of the zero solution of the neutral delay differential equation

(1.1) y(2m+1)(t) + αy(2m+1)(t − τ) =

2m∑

j=0

ajy
(j)(t) +

2m∑

j=0

bjy
(j)(t − τ)

where τ > 0, −1 < α < 1, α 6= 0, and aj, bj are constants. In a previous paper [1] we

considered the higher even order case which has a different analysis and results than

the odd case. In [2], we considered equation (1.1) with α = 0, and in [3] we considered

equation (1.1) with α = 0 and m = 1 which arose from a robotic model with damping

and delay, and in [4] we considered (1.1) with α = m = 0 and a0, b0 complex. There

are no practical stability criteria of the zero solution of (1.1) for m > 1. For study

of asymptotic stability of restricted special cases of (1.1) with special values of m

see [5,6,7]. For stability and oscillation of certain third order equations see [8,9].

Generally, including delays in a differential equation has a destabilizing effect. Our

work on non-neutral delay equations certainly upholds this, but when the order is 2

or higher there are rare cases when the delay has a stabilizing effect. We raise the
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same question as whether inclusion of a “neutral term” can have a stabilizing effect.

In Example 4.1, we obtain an affirmative answer. In [10,11,12] study of necessary

conditions or sufficient conditions are derived using Lyapunov’s direct (or second)

method. For studies of systems that may shed light on (1.1) see [11,12]. The study

on systems does not, however, yield practical stability criteria of (1.1). For further

study on asymptotic stability see [11-16]. It is clear that with 4m + 3 independent

parameters in (1.1) one cannot expect to get regions of stability. Our goal is to derive

robust algorithmic type stability criteria.

Regarding the stabilizing effect of delay and/or neutrality, our view is that part

of the jth derivative term of the equation

(1.2) y(2m+1)(t) =

2m∑

j=0

pjy
(j)(t)

is delayed and the remaining part is not. Note that with τ = 0 the zero solution of

(1.1) or (1.2) is asymptotically stable if and only if all the characterstic roots of a real

polynomial

(1.3) x2m+1 − p2mx2m − p2m−1x
2m−1 − p2m−2x

2m−2 − · · · − p0 = 0

are in complex left half plane. Relative to (1.1), we view

(1.4) pj =
aj + bj

1 + α
, j = 0, 1, . . . , 2m.

Here we incorporate both delay and neutrality. By Routh-Hurwitz Criterion [20] all

roots of (1.3) have negative real parts if and only if

(1.5) βj > 0, j = 1, 2, . . . , 2m + 1,

where the βj are the following determinants:

β1 = −p2m,

β2 =

∣∣∣∣∣
−p2m −p2m−2

1 −p2m−1

∣∣∣∣∣ ,

βk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−p2m −p2m−2 −p2m−4 . . . −p2(m−k)+2

1 −p2m−1 −p2m−3 . . . −p2(m−k)+3

0 −p2m −p2m−2 . . . −p2(m−k)+4

0 1 −p2m−1 . . . −p2(m−k)+5

...
...

...
...
...

0 0 0 . . . −p2m−k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k = 3, . . . 2m,

with −p2m+1−j = 0 for j > 2m + 1. In previous papers, [3,21] we have found cases

(although rare) when the zero solution of (1.2) is unstable while the zero solution of

(1.1) is asymptotically stable. We are also interested in whether neutrality alone can

stabilize the solutions. In this case, the terms on the left side of (1.1) are merged
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into (1 + α)y(2m+1)(t) while the right side is unchanged. If we maintain delays but

compare nonneutral with neutral we would use results in [2] rather than Routh-

Hurwitz Criteria. As noted above, we will produce an example where the neutral

term has a stabilizing effect with the other delays in place.

This paper is organized as follows. In Section 2, we present the tools used in our

asymptotic stability analysis. In Section 3 we give our main results and some special

cases. In Section 4 we present some examples.

2. BACKGROUND

In this section, we identify the characteristic function of (1.1) in order to study the

asymptotic stability of the zero solution. We also cite the main results of Pontryagin

related to asymptotic stability [20] and the applications of Pontryagin’s results [21,

§13.7–13.9].

The characteristic function of (1.1) is given by

Ĥ(s) = s2m+1 + αe−sτs2m+1 −
2m∑

j=0

ajs
j −

2m∑

j=0

bje
−sτsj.(2.1)

Multiplying (2.1) by esτ yields

esτĤ(s) = esτs2m+1 + αs2m+1 −
2m∑

j=0

ajs
jesτ −

2m∑

j=0

bjs
j .(2.2)

Letting s = z
τ
, we examine the zeros of

H(z) = τ 2m+1ezĤ
(z

τ

)
= z2m+1ez + αz2m+1 −

2m∑

j=0

Ajz
jez −

2m∑

j=0

Bjz
j(2.3)

where

Aj = ajτ
2m+1−j and Bj = bjτ

2m+1−j , j = 0, . . . , 2m.(2.4)

The following can be found in [22, Theorem 6.1].

Theorem 2.1 In order that all solutions of (1.1) approach zero as t → ∞ it is

necessary and sufficient that all zeros of (2.1), or equivalently (2.3), have negative

real parts and are bounded away from the imaginary axis, i.e., there is a positive real

number ν such that Re z ≤ −ν for every zero z of H(z).

We first determine the conditions under which all zeros of (2.1), or equivalently

(2.2), have negative real parts and then find conditions under which the zeros are

bounded uniformly away from the imaginary axis. The function (2.3) is a special

function, usually called an exponential polynomial or a quasi-polynomial. The prob-

lem of analyzing the distribution of the zeros in the complex plane of such functions

has received a great deal of attention.
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Definition 2.1 Let h(z, w) be a polynomial in the two variables z and w (with

complex coefficients),

h(z, w) =
∑

m,n

amnz
mwn

where m and n are nonnegative integers. We call the term arsz
rws the principal term

of h(z, w) if ars 6= 0, and for each term amnz
mwn with amn 6= 0, we have r ≥ m and

s ≥ n.

Note that H(z) = h(z, ez) where

h(z, w) = z2m+1w + αz2m+1 −
2m∑

j=0

Ajz
jw −

2m∑

j=0

Bjz
j .(2.5)

It is clear from Definition 2.1 that h(z, w) of (2.5) has principal term z2m+1w. We

now cite two theorems of Pontryagin, see [22,23].

Theorem 2.2 Let H(z) = h(z, ez), where h(z, w) is a polynomial with a principal

term. We separate the function H(iy) into real and imaginary parts; that is, we set

H(iy) = F (y) + iG(y). If all the zeros of the function H(z) lie in the open left half

plane, then the zeros of the functions F (y) and G(y) are real, are interlacing, and

∆(y) = G′(y)F (y)− G(y)F ′(y) > 0(2.6)

for all real y. Moreover, in order that all the zeros of the function H(z) lie in the open

left half plane, it is sufficient that any one of the following conditions be satisfied:

(a): All the zeros of the functions F (y) and G(y) are real and interlace, and the

inequality (2.6) is satisfied for at least one value of y.

(b): All the zeros of the function F (y) are real and for each of these zeros y = y0

the inequality (2.6) is satisfied; that is, F ′(y0)G(y0) < 0.

(c): All the zeros of the function G(y) are real and for each of these zeros y = y0

the inequality (2.6) is satisfied; that is, G′(y0)F (y0) > 0.

In our case,

H(iy) = (iy)2m+1eiy + α(iy)2m+1 −
2m∑

j=0

Aj(iy)jeiy −
2m∑

j=0

Bj(iy)j;(2.7)

equivalently,

H(iy) = (iy)2m+1eiy + α(iy)2m+1 −
m∑

j=0

A2j(iy)2jeiy −
m−1∑

j=0

A2j+1(iy)2j+1eiy

−
m∑

j=0

B2j(iy)2j −
m−1∑

j=0

B2j+1(iy)2j+1.

(2.8)

(Here and in the rest of this paper if a summation goes from 0 to −1, then the

sum is taken to be zero.)
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Now

H(iy) = (−1)my2m+1i(cos y + i sin y) + iα(−1)my2m+1

−
m∑

j=0

A2j(−1)jy2j(cos y + i sin y)

−
m−1∑

j=0

A2j+1(−1)jiy2j+1(cos y + i sin y) −
m∑

j=0

B2j(−1)jy2j

−
m−1∑

j=0

B2j+1(−1)jiy2j+1 = F (y) + iG(y)

(2.9)

where

F (y) = (−1)m+1y2m+1 sin y −
m∑

j=0

A2j(−1)jy2j cos y

−
m−1∑

j=0

A2j+1(−1)j+1y2j+1 sin y −
m∑

j=0

B2j(−1)jy2j

(2.10)

and

G(y) = (−1)my2m+1 cos y + α(−1)my2m+1 −
m∑

j=0

A2j(−1)jy2j sin y

−
m−1∑

j=0

A2j+1(−1)jy2j+1 cos y −
m−1∑

j=0

B2j+1(−1)jy2j+1.

(2.11)

In order to study the location of the zeros of H(z) we study the zeros of F and

G. To do so, we need the following result which is useful in determining whether all

roots of F and G are real. Let f(z, u, v) be a polynomial in z, u, and v, which we

write in the form

f(z, u, v) =
∑

m,n

zmφ(n)
m (u, v)(2.12)

where φ
(n)
m (u, v) is a polynomial of degree n, homogeneous in u and v, and let

zrφ
(s)
r (u, v) be the principal term of f(z, u, v), and let φ∗(s)(u, v) denote the coeffi-

cient of zr in f(z, u, v), so that

φ∗(s)(u, v) =
∑

n≤s

φ(n)
r (u, v).

(The Principal term for the polynomials of the form (2.12) is analogous to that defined

in Definition 2.1, see [23, pages 440-443]). Also we let

Φ∗(s)(z) = φ∗(s)(cos z, sin z).

Theorem 2.3 Let f(z, u, v) be a polynomial with principal term zrφ
(s)
r (u, v) and

assume that u2 + v2 is not a factor of φ
(s)
r (u, v). If ǫ is such that Φ∗(s)(ǫ + iy) 6= 0

for all real y, then in the strip −2πk + ǫ ≤ Re z ≤ 2πk + ǫ, the function F (z) =

f(z, cos z, sin z) will have, for all sufficiently large values of k, exactly 4sk + r zeros.
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Thus, in order for the function F (z) to have only real roots, it is necessary and

sufficient that in the real interval −2πk + ǫ ≤ x ≤ 2πk + ǫ, it has exactly 4sk + r real

roots for all sufficiently large k.

Note that the functions F (y) and G(y) in (2.10) and (2.11) have principal terms

(−1)m+1y2m+1 sin y and (−1)my2m+1 cos y, respectively. The condition that u2+v2 not

be a factor of zrφ
(s)
r (u, v) is frequently overlooked. When s = 1, it is not an issue. This

condition is satisfied by polynomials f(z, u, v) derived from function h(z, w) in (2.12)

with a principal term. As well, if f(z, u, v) is derived from function involving sin z

and cos z, the Pythagorean identity could be used to make this condition satisfied.

None the less this condition is needed for Theorem 2.3 to be true as stated.

For the case in point, s = 1 and r = 2m + 1. Therefore G(y) (given in (2.11))

has all real zeros if and only if G(y) has 4k + 2m + 1 zeros in (−2kπ, 2kπ) for k

sufficiently large, and the same holds for F given in (2.10) with (−2kπ, 2kπ) replaced

by (−2kπ + ǫ, 2kπ + ǫ) where 0 < ǫ < π.

3. MAIN RESULTS

In this section we present the main results of this paper. We first describe the

asymptotic behavior of the zeros of G. Throughout this paper for x real and a > 0,

[x]a denotes the unique real number in the interval [0, a) for which x − [x]a is an

integer multiple of a. We will use a = π and a = 2π.

See Kuang [16, p. 65] for the following result:

Lemma 3.1 A necessary condition for the zero solution of (1.1) to be asymptot-

ically stable is that |α| ≤ 1.

In this paper we will only consider |α| < 1. The root analysis of (2.1) or (2.3) is

an open problem for the case |α| = 1. See special examples of α = −1 in [23] . We

consider the following necessary conditions

Lemma 3.2 If the zero solution of (1.1) is asymptotically stable, then (A0 +

B0)(A0 + A1 + B1) > 0.

Proof. Theorem 2.2 and the fact that y = 0 is a zero of G yield ∆(0) =

G′(0)F (0) = (A0 + B0)(A0 + A1 + B1) > 0.

Theorem 3.1 Suppose that |α| < 1 and that all zeros of H(z) are in the open

left half plane (i.e. Re z < 0 for every zero z of H(z)). Then all zeros of H(z) are

bounded away from imaginary axis (i.e. there η > 0 for which ℜz < −η for every

zero z of H(z)).

Proof. Assume otherwise. Then there is a sequence zn = αn + iβn of zeros of H(z)

where αn < 0, and αn → 0. If {βn} were bounded, then H(z) would have a zero on

the imaginary axis. Thus we may assume that βn → ∞ and βn > 0. From H(z) = 0



STABILITY TESTS FOR NEUTRAL DELAY DIFFERENTIAL EQUATIONS 229

and (2.3)

|1 + αe−zn| =

∣∣∣∣

∑m

j=0 Ajz
j
n +

∑m

j=0 Bjz
j
ne−zn

z2m+1
n

∣∣∣∣(3.1)

≤
m∑

j=0

|Aj|
|zn|2m+1−j

+
m∑

j=0

|Bj|e−αn

|zn|2m+1−j
→ 0

Since αn → 0 and βn → ∞, |zn| → ∞ and the right hand side of (3.7) tends to

0 as n → ∞. But

|1 + αe−zn| = (1 + αe−αn cos βn)2 + (αe−αn sin βn)2(3.2)

≥ (1 − |α|e−αn)2 → (1 − |α|)2.

Since |α| < 1, we have arrived at a contradiction. When α = −1, the implication

of Theorem 3.1 can fail. See [23] for an example where all roots lie in the open left

half plane but are not bounded away from the imaginary axis, and yet there are

unbounded solutions. The authors have not seen such phenomena when α = 1.

We now examine asymptotic behavior of the zeros of G. We denote

(3.3) δ1 = cos−1(−α) = π − cos−1(α),

(3.4) δ2 = 2π − cos−1(−α) = π + cos−1(α).

Lemma 3.3 Suppose −1 < α < 0 or 0 < α < 1. For n sufficiently large, the

interval (nπ, (n+1)π) contains exactly one zero ρn of G, and limk→∞[ρ2k]2π = δ1 and

limk→∞[ρ2k+1]2π = δ2.

Proof. From (2.11), y = 0 is zero of G, and

G(nπ) = (−1)m+n(nπ)2m+1 + α(−1)m(nπ)2m+1 −
m−1∑

j=0

A2j+1(−1)j+n(nπ)2j+1

−
m−1∑

j=0

B2j+1(−1)j(nπ)2j+1.

(3.5)

Since G(nπ) is a polynomial of degree 2m + 1 in nπ there can be at most 2m + 1

zeros of G that are multiples of π. All other zeros of G are the roots of the equation

w(y) = η(y)(3.6)

where

w(y) = y2(cot y + α csc y) +
m−1∑

j=0

A2j+1(−1)m+j−1

y2(m−j)−2
cot y(3.7)

+
m−1∑

j=0

B2j+1(−1)m+j−1

y2(m−j)−2
csc y.



230 B. CAHLON AND D. SCHMIDT

and

η(y) = A2my +

m−1∑

j=0

A2j(−1)m+j

y2(m−j)−1
.(3.8)

For n sufficiently large, w resembles the function cot y + α csc y on (nπ, (n +1)π)

in that w(nπ+) = −w((n + 1)π−) = ∞, and thus (nπ, (n + 1)π) contains at least one

root of (3.2). Here w(a+) and w(a−) denote the right and left hand limits of w at a,

respectively. Now (2.11) yields

cos y + α =
A2m sin y

y
+

m−1∑

j=0

(−1)m+jA2j

y2(m−j)+1
sin y −

m−1∑

j=0

(−1)m+j−1B2j+1

y2(m−j)

−
m−1∑

j=0

(−1)m+j−1A2j+1

y2(m−j)
cos y.(3.9)

It follows from (3.9) that

(3.10) lim
G(y)=0
y→∞

cos y + α = 0.

If the root ρn of G in (nπ, (n + 1)π) is unique for n sufficiently large, then (3.10)

yields

lim
k→∞

[ρ2k]2π = δ1

and

lim
k→∞

[ρ2k+1]2π = δ2.

Let ǫ = min(π/2, δ1/2). For j sufficiently large, it is easily seen that w′(y) < ζ ′(y)

for all y ∈ (2jπ + δ1 − ǫ/2, 2jπ + δ1 + ǫ/2), or y ∈ (2jπ + δ2 − ǫ/2, , 2jπ + δ2 + ǫ/2)

and uniqueness of the zero ρn of G now follows. (A more detailed analysis of this

inequality appears in Lemma 3.5 below.)

We now give a far reaching necessary condition for the asymptotic stability of

the zero solution of (1.1).

Theorem 3.2 Assume −1 < α < 1. If the zero solution of (1.1) is asymptotically

stable, then A1 + A0 + B1 < 0 and A0 + B0 < 0.

Proof. Assume the zero solution of (1.1) is asymptotically stable. From Theorems

2.1 and 2.2 and equations (2.10) and (2.11)

∆(0) = (A1 + A0 + B1)(A0 + B0) > 0.(3.11)

It follows from Theorems 2.1-2.3 that G has all real zeros and for k sufficiently large

[−2kπ, 2kπ] contains precisely 4k + 2m+ 1 zeros of G. Since y = 0 is a zero of G and

G is odd, (0, 2kπ) contains precisely 2k + m zeros r1 < r2 < · · · < r2k+m of G where

k is sufficiently large. By Lemma 3.1, r2k+m ∈ ((2k − 1)π, 2kπ) and [r2k+m]2π → δ2

as k → ∞. From (2.10) it follows that F (r2k+m) has sign (−1)m for k sufficiently

large. By Theorems 2.1 and 2.2, the zeros of F and G interlace and thus the F (rj)
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must strictly alternate in sign (where r0 = 0). Thus (−1)mF (0)F (r2k+m) > 0, and

since (−1)mF (r2k+m) > 0, F (0) = −(A0 + B0) > 0. Thus A0 + B0 < 0, and by (3.8)

A1 + A0 + B1 < 0. The proof is complete.

Evidently if A1+A0+B1 ≥ 0 or A0+B0 ≥ 0, then the zero solution of (1.1) is not

asymptotically stable. In this paper Z+ denotes the set of all nonnegative integers.

The following theorem combines Theorems 2.1, 3.1, and 3.2 to obtain a char-

acterization for asymptotic stability of the zero solution of (1.1). It involves rather

complex conditions of requiring that G has all real zeros and infinitely many sign

conditions on F . Subsequently, we will reduce these to a finite number of conditions.

Theorem 3.3 The zero solution of (1.1) is asymptotically stable if and only if

1.: A0 + B0 < 0, A1 + A0 + B1 < 0,

2.: G has all real zeros, and

3.: (−1)nF (rn) > 0, (n = 1, 2, . . .)

where r1 < r2 < r3 < · · · are the positive zeros of G.

Proof. Necessity of 1. and 2. follows from Theorems 3.1, 2.1 and 2.2. Between

consecutive zeros of G, G′ must properly change sign. Since G′(0) = −(A1+A0+B1) >

0, G′(rn) has sign (−1)n for n = 1, 2, . . ., and now 3. follows from Theorems 2.1

and 2.2. For sufficiency, 1. and 2. yield that G′(rn) has sign (−1)n as above for

n = 1, 2, . . .. Now 3. yields that G′(rn)F (rn) > 0 for n = 1, 2, . . . . Sufficiency now

follows from the parities of F and G and from Theorems 2.1, 3.1, and 2.2c.

Remark 3.1 We first consider the case of pure delay, i.e. Aj = 0, j = 0, 1, . . . , 2m.

In this case,

G(y) = (−1)my2m+1 cos y + α(−1)my2m+1 −
m−1∑

j=0

B2j+1(−1)jy2j+1(3.12)

and

F (y) = (−1)m+1y2m+1 sin y −
m∑

j=0

B2j(−1)jy2j.(3.13)

The nonzero zeros of G are the roots of

cos y + α = ζ(y)(3.14)

where

ζ(y) =

m−1∑

j=0

B2j+1(−1)j+m

y2(m−j)
.(3.15)

By Theorem 3.2, B1 < 0 is necessary for the zero solution of (1.1) to be asymp-

totically stable. We assume B1 < 0. Observe that limy→0+ ζ(y) = (−1)m+1∞. Let ℓ
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be the largest index so that B2ℓ+1 6= 0, and thus

ζ(y) =

ℓ∑

j=0

B2j+1(−1)j+m

y2(m−j)
.

If B2ℓ+1(−1)ℓ+m > 0, then ζ is eventually decreasing and convex, and if B2ℓ+1(−1)ℓ+m <

0, then ζ is eventually increasing and concave. In either case, limy→∞ ζ(y) = 0. We

obtain a value Y1 so that ζ is either decreasing and convex or increasing and concave

on [Y1,∞). It can be seen that if ζ ′′ > 0 (respectively, ζ ′′ < 0) in an interval [Y1,∞),

then ζ > 0 and ζ ′ < 0 (respectively, ζ < 0 and ζ ′ > 0) on [Y1,∞).

We have

ζ ′′(y) =
ℓ∑

j=0

2(m − j)(2m − 2j + 1)B2j+1(−1)j+m

y2m−2j+2
,(3.16)

and ζ ′′ is of constant sign on [Y1,∞) if

(3.17) |B2ℓ+1| >
1

(m − ℓ)(2m − 2ℓ + 1)

ℓ−1∑

j=0

(m − j)(2m − 2j + 1)|B2j+1|
Y

2(ℓ−j)
1

.

Of course, (3.17) only applies when ell > 1. If ℓ ≥ 1. If ℓ = 0, we only need

|B1| > 0 (see Theorem 3.2) and we take Y1 = 1. When ℓ > 1, (3.17) holds if

|B2ℓ+1| >
1

(m − ℓ)(2m − 2ℓ + 1)

ℓ−1∑

j=0

(m − j)(2m − 2j + 1)|B2j+1|
Y

2(ℓ−j)
1

.

Further this holds if

(3.18) Y1 = max



1,

(∑ℓ−1
j=0(m − j)(2m − 2j + 1)|B2j+1|
(m − ℓ)(2m − 2ℓ + 1)|B2ℓ+1|

)1
2



 .

Figures 1-4 depict equation (3.12) for all combinations of signs of α and (−1)ℓ+mB2ℓ+1

for y > Y1. Two periods of cos y + α are shown. Selection of a constant Y below is

broken into the four cases delineated by these figures. Specifically, solutions of (3.12)

are restricted to certain subintervals revealed in the figures.

If α > 0 and (−1)ℓ+mB2ℓ+1 < 0 or if α < 0 and (−1)ℓ+mB2ℓ+1 > 0, we select

Y2 ≥ 1 sufficiently large so that if y ≥ Y2, then

|ζ(y)| = |
m−1∑

j=0

B2j+1(−1)j+m

y2(m−j)
| ≤

ℓ∑

j=0

|B2j+1|
y2(m−j)

≤ 1

y2(m−ℓ)

ℓ∑

j=0

|B2j+1| ≤ 1 − |α|.

That is, we take

Y2 = max

(

1,

( ℓ∑

j=0

|B2j+1|/(1 − |α|)
) 1

2(m−ℓ)

)

.(3.19)

We let

(3.20) Y = max(Y1, Y2)
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If α > 0 and (−1)ℓ+mB2ℓ+1 > 0 or if α < 0 and (−1)ℓ+mB2ℓ+1 < 0, we select

Y2 ≥ 1 sufficiently large so that if y ≥ Y2, then

|ζ(y)| ≤ |α|.

As in (3.18), we take

Y2 = max

(

1,

( ℓ∑

j=0

|B2j+1|
|α|

) 1
2(m−ℓ)

)

.(3.21)

In these latter cases we also choose Y3 ≥ 1 sufficiently large so that if y ≥ Y3, then

(3.22) |ζ ′(y)| ≤
ℓ∑

j=0

|B2j+1|2(m − j)

y2(m−j)+1
≤ 1

y2m−2ℓ+1

ℓ∑

j=0

2(m − j)|B2j+1| <
√

1 − α2.

That is, we take

(3.23) Y3 = max

(
1,

( ℓ∑

j=0

2(m − j)|B2j+1|/
√

1 − α2

) 1
2m−2ℓ+1

)
.

Let

Y = max(Y1, Y2, Y3).(3.24)

Now select the integer θ so that

(3.25) Y ∈ (2(θ − 1)π, 2θπ].

Lemma 3.4 Suppose that Aj = 0, j = 0, 1, . . . , 2m, and B1 < 0.The function G

has all real zeros if and only if G has 2θ + m + 2 zeros in the interval (0, 2(θ + 1)π).

Proof. From Remark 3.1 using the intermediate value theorem and opposing con-

vexity (on appropriate subsets of (2(n − 3/2)π, 2nπ) of cos y + α and ζ(y) for or

(−1)ℓ+mB2ℓ+1α < 0, it can be seen that (3.12) has precisely two roots in (2(n −
1)π, 2nπ) when n ≥ θ + 1. For (−1)ℓ+mB2ℓ+1α > 0 it can be seen that (3.12) has

precisely two roots in (2(n − 1)π, 2nπ) when n ≥ θ + 1 making use of the fact the

derivative of cos y + α dominates ζ ′(y) in the appropriate subset of (2(n − 1)π, 2nπ).

Now the proof follows from Theorem 2.2 since G has precisely 4k + 2m + 1 zeros in

[−2kπ, 2kπ] for k sufficiently large if and only if G has exactly 2θ + m + 2 zeros in

(0, 2(θ + 1)π].

Remark 3.2 In the pure delay case (Aj = 0, j = 0, 1, . . . , 2m), we now ob-

tain a stopping criterion for checking condition 3. in Theorem 3.4. If α > 0 and

(−1)ℓ+mB2ℓ+1 > 0 or if α < 0 and (−1)ℓ+mB2ℓ+1 < 0, then | cos rn| < |α| and so

| sin rn| >
√

1 − α2 where rn > 2πθ (See Figures 1 and 2). In this case, we choose the

first index N > θ + 1 so that

(3.26)
|B2j |

r
2(m−j)+1
N

<

√
1 − α2

m + 1
(j = 0, ..., m)
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If α > 0 and (−1)ℓ+mB2ℓ+1 < 0 or if α < 0 and (−1)ℓ+mB2ℓ+1 > 0, then for rn > 2πθ,

| cos rn| decreases to |α| so that | sin rn| increases to
√

1 − α2. For this case we choose

the first index N1 > θ so that (see Figures 3 and 4)

| sin rN1 | >

√
1 − α2

2
.

We choose the first index N2 > θ + 1 so that

(3.27)
|B2j |

r
2(m−j)+1
N2

<

√
1 − α2

2(m + 1)
(j = 0, ..., m).

Let N = max(N1, N2). In either case, we can see from (3.13) that when n ≥ N

(3.28) sgnF (rn) = (−1)m+1sgn(sin rn).

Figure 1: roots of w = ζ , α > 0, (−1)ℓ+mB2ℓ+1 > 0

Figure 2: roots of w = ζ , α < 0, (−1)ℓ+mB2ℓ+1 < 0

Figure 3: roots of w = ζ , α < 0, (−1)ℓ+mB2ℓ+1 > 0
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Figure 4: roots of w = ζ , α > 0, (−1)ℓ+mB2ℓ+1 < 0

If k > θ + 1, then there are 2k + m roots in (0, 2kπ), and the two roots in

(2(k−1)π, 2kπ) are r2k+m−1 and r2k+m. At these two points the sin function is positive

and negative, respectively, and (3.25) yields that (−1)nF (rn) > 0 for n = 2k + m− 1

and n = 2k + m.

Theorem 3.5 (Algorithmic Stability Test I) Suppose that Aj = 0, j =

0, 1, . . . , 2m. The zero solution of (1.1) is asymptotically stable if and only if

1.: B0 < 0 and B1 < 0,

2.: G has 2θ + m + 2 zeros in (0, 2(θ + 1)π), and

3.: (−1)nF (rn) > 0, n = 0, 1, 2, . . . , N where θ is given in (3.22), N is given in

Remark 3.2, and r1 < r2 < · · · are the positive zeros of G.

Proof. The proof is revealed in Remarks 3.1 and 3.2.

Examples revealing the utility of this algorithm are given in Section 4.

Our next discussion results in a robust algorithmic stability test that applies

to the general case of (1.1). It comes at a cost in that it is not as sharp as the

development of Algorithmic Stability Tests I. Particularly, the condition for G to

have all real zeros is not as straightforward as Lemma 3.4. In addition, the stopping

criteria are not as sharp. Never the less, it can be implemented and applied to the

general case.

Lemma 3.3 reveals that for n sufficiently large (nπ, (n+1)π) contains exactly one

zero of G and that consecutive zeros in (2(n−1)π, 2nπ) converge to δ1 and δ2 modulo

2π, respectively, where δ1 and δ2 are defined in (3.3) and (3.4).

Lemma 3.5 Let k ∈ Z+. If

2k ≥ max(M1, M2, M3)

where M1, M2, and M3 are positive integers defined in (3.29, 3.30), and (3.35) below,

then the interval [2kπ, (2k + 2)π) contains exactly two roots of G, one in (2kπ +

δ1/2, 2kπ + δ1/2 + π/2) and one in (2kπ + δ2/2 + π/2, 2kπ + δ2/2 + π) .
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Proof. Let M1 be a positive integer such that all zeros of G that are multiples of π

are in (0, M1π). Using (3.1) and the same approach in deriving Y1 in Remark 3.1,

M1 =

u
v 1 +

(
m−1∑

j=0

|A2j+1| + |B2j+1|
(1 − |α|)π2(m−j)

) 1
2

}
~(3.29)

suffices. Here J K denotes the greatest integer function.

We now use (3.9) to obtain an integer M2 so that if 2k ≥ M2, then G has at least

one zero in (2kπ + δ1/2, 2kπ + δ1/2 + π/2) and at least one zero in (2kπ + δ2/2 +

π/2, 2kπ + δ2/2+π) and no zero in [2kπ, 2(k +1)π] outside of these two subintervals.

The evaluation of the left side of (3.9) at the endpoints of these intervals are of

opposite sign. Let µ = min(| cos(δ1/2)+α|, | cos(δ1/2+π/2)+α|) = min(| cos(δ2/2+

π/2)+α|, | cos(δ2+π)+α)|). It can been seen that µ = min(|−sin δ1/2+α|, | cos δ1/2+

α|)=min(α+
√

1−α
2

,
√

1+α
2

−α) =
√

1+|α|
2

−|α|. Observe that | cos y +α| ≥ µ when y

is in [2kπ, 2(k + 1)π) and outside of these two subintervals. The desire root location

is guaranteed if the right side of (3.9) is less than µ on all of [2kπ, 2(k + 1)π). This,

in turn, holds if

|A2m|
y

+
m−1∑

j=0

|A2j |
y2(m−j)+1

+
m−1∑

j=0

|B2j+1|
y2(m−j)

+
m−1∑

j=0

|A2j+1|
y2(m−j)

≤ µ,

which is equivalent to

y >
1

µ

(
|A2m| +

m−1∑

j=0

|A2j |
y2(m−j)

+

m−1∑

j=0

|B2j+1|
y2(m−j)−1

) +

m−1∑

j=0

|A2j+1|
y2(m−j)−1

)
.

The latter inequality holds for y ≥ nπ if

nπ >
1

µ

(
|A2m| +

m−1∑

j=0

|A2j |
(nπ)2(m−j)

+
m−1∑

j=0

|B2j+1|
(nπ)2(m−j)−1

+
m−1∑

j=0

|A2j+1|
(nπ)2(m−j)−1

)
,

or, equivalently,

n >
1

µ

( |A2m|
π

+

m∑

j=0

|A2j|
π2(m−j)+1

+

m−1∑

j=0

|B2j+1|
π2(m−j)

+

m−1∑

j=0

|A2j+1|
π2(m−j)

)
.

We take

M2 =

t
1 +

1

µ

( |A2m|
π

+

m−1∑

j=0

|A2j |π + |B2j+1| + |A2j+1|
π2(m−j)

)|
(3.30)

suffices.

Now we determine M3 so that if 2k ≥ M3, then w − η is strictly decreasing on

(2kπ + δ1/2, 2kπ + δ1/2+π/2) and on (2kπ + δ2/2+π/2, 2kπ+ δ2/2+π). Recall that

the roots of G that are not multiples of π are solutions of (3.6) (that is, w(y) = η(y))

where w and η are given in (3.7) and (3.8). Thus if 2k ≥ max(M1, M2, M3), then
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(2kπ + δ1/2, 2kπ + δ1/2 + π/2) and (2kπ + δ2/2 + π/2, 2kπ + δ2/2 + π) each contain

exactly one zero of G. Using (3.7) and (3.8),

w′(y) − η′(y) = −y2 csc2 y − αy2 csc y cot y + 2y cot y + 2αy csc y(3.31)

−
m−1∑

j=0

A2j+1(−1)m+j−1(2(m − j) − 2)

y2(m−j)−1
cot y

−
m−1∑

j=0

A2j+1(−1)m+j−1

y2(m−j)−2
csc2 y

−
m−1∑

j=0

B2j+1(−1)m+j−1((2(m − j) − 2)

y2(m−j)−1
csc y

−
m−1∑

j=0

B2j+1(−1)m+j−1

y2(m−j)−2
csc y cot y

− A2m −
m−1∑

j=0

A2j(−1)m+j(2(m − j) − 1)

y2(m−j)

On (2kπ + δ1/2, 2kπ + δ1/2 + π/2) ∪ (2kπ + δ2/2 + π/2, 2kπ + δ2/2 + π)

(3.32) | sin y| >

√
1 − |α|

2
and | cos y| <

√
1 + |α|

2

so that

(3.33) 1 ≤ | csc y| <

√
2

1 − |α| and | cot y| <

√
1 + |α|
1 − |α| .

Let

ν =

2

(
1 − |α|

√
1+|α|

2

)

1 − |α| =
2 − |α|

√
2
√

1 + |α|
1 − |α| ,(3.34)

ν1 =

√
1 + |α|
1 − |α| and ν2 =

√
2

1 − |α|

It is evident that ν > 0. For y in this union of intervals,

w′(y) − η′(y) ≤ −y2ν + 2y(ν1 + |α|ν2) +

m−1∑

j=0

|A2j+1|(2(m− j) − 2)

y2(m−j)−1
ν1(3.35)

+
m−1∑

j=0

|A2j+1|
y2(m−j)−2

ν2
2 +

m−1∑

j=0

|B2j+1|(2(m − j) − 2)

y2(m−j)−1
ν1ν2+

+
m−1∑

j=0

|B2j+1|
y2(m−j)−2

ν2 + |A2m| +
m−1∑

j=0

|A2j |(2(m− j) − 1)

y2(m−j)
.
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From (3.35), w′(y) − η′(y) < 0 if

y >
1

ν

(
2(ν1 + |α|ν2)

y
+

m−1∑

j=0

|A2j+1|(2(m − j) − 2)ν1

y2(m−j)
+

m−1∑

j=0

|A2j+1|ν2
2

y2m−j)+1
(3.36)

+

m−1∑

j=0

|B2j+1(2(m − j) − 2)ν1ν2

y2(m−j)
+

m−1∑

j=0

|B2j+1|ν2

y2(m−j)−1

+
|A2m|

y
+

m∑

j=0

|A2j |(2(m − j) − 1)

y2(m−j)+1

)
.

The same inequality holds for y ∈ (2kπ + δ2/2 + π/2, 2kπ + δ2/2 + π]. As above the

latter inequality holds for y ≥ nπ if

nπ >
1

ν

(
2(ν1 + |α|ν2)

π
+

m−1∑

j=0

|A2j+1|
(

2(m − j − 1)ν1

π2(m−j)
+

ν2
2

π2(m−j)−1

)
(3.37)

+
m−1∑

j=0

|B2j+1|
(

2(m − j − 1)ν1ν2

π2(m−j)
+

ν2

π2(m−j)−1

)

|A2m|
π

+
m−1∑

j=0

|A2j|(2(m − j) + 1)

π2(m−j)+1

)
.

As above,

M3 =

t
1 +

1

ν

(
2(ν1 + |α|ν2)

π2
+

m−1∑

j=0

|A2j+1|
(

2(m − j − 1)ν1

π2(m−j)+1
+

ν2
2

π2(m−j)

)
(3.38)

+
m−1∑

j=0

|B2j+1|
(

2(m − j − 1)ν1ν2

π2(m−j)+1
+

ν2

π2(m−j)

)

|A2m|
π2

+

m−1∑

j=0

|A2j |(2(m − j) + 1)

π2(m−j+1)

)|

suffices.

The proof is now complete.

Remark 3.3 Recall that G has all real zeros if and only if G has 4k+2m+1 zeros

in (−2kπ, 2kπ) (or, equivalently, 2k + m zeros in (0, 2kπ)) for all sufficiently large k.

From Lemma 3.3, it follows that if G has all real zeros and m is even, [ρ2j ]2π → δ1

and [ρ2j+1]2π → δ2 when G has all real zeros. Also if m is odd [ρ2j+1]2π] → δ1 and

[ρ2j ]2π → δ2 Here ρ1 < ρ2 < ρ3 < · · · are the positive zeros of G, and [a]2π is the

unique real number in [0, 2π] for which a − [a]2π is an integer.

If m is odd, (2.10) yields

F (ρ2j+1) = ρ2m+1
2j+1

(
sin ρ2j+1 −

m∑

ℓ=0

A2ℓ(−1)ℓ cos ρ2j+1

ρ
2(m−ℓ)+1
2j+1
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−
m−1∑

ℓ=0

A2ℓ+1(−1)ℓ+1 sin ρ2j+1

ρ
2(m−ℓ)
2j+1

−
m∑

ℓ=0

B2ℓ(−1)ℓ

ρ
2(m−ℓ)+1
2j+1

)

(3.39)

F (ρ2j) = ρ2m+1
2j

(

sin ρ2j −
m∑

ℓ=0

A2ℓ(−1)ℓ cos ρ2j

r
2(m−ℓ)+1
2j

−
m−1∑

j=0

A2ℓ+1(−1)ℓ+1 sin ρ2j

ρ
2(m−ℓ)
2j

−
m∑

j=0

B2ℓ(−1)ℓ

ρ
2(m−ℓ)+1
2j

)
,

(3.40)

and if m is even

F (ρ2j+1) = ρ2m+1
2j+1

(
− sin ρ2j+1 −

m∑

ℓ=0

A2ℓ(−1)ℓ cos ρ2j+1

r
2(m−ℓ)+1
2j+1

−
m−1∑

ℓ=0

A2ℓ+1(−1)ℓ+1 sin ρ2j+1

r
2(m−ℓ)
2j+1

−
m∑

ℓ=0

B2ℓ(−1)ℓ

ρ
2(m−ℓ)+1
2j+1

)
,

(3.41)

F (ρ2j) = ρ2m+1
2j

(

− sin ρ2j −
m∑

ℓ=0

A2ℓ(−1)ℓ cos ρ2j

r
2(m−ℓ)+1
2j

−
m−1∑

ℓ=0

A2ℓ+1(−1)ℓ+1 sin ρ2j

ρ
2(m−ℓ)
2j

−
m∑

ℓ=0

B2ℓ(−1)ℓ

ρ
2(m−ℓ)+1
2j

)
.

(3.42)

As in the proof of Lemma 3.5, for y in either of the intervals (2kπ + δ1/2, 2kπ +

δ1/2 + π/2) and (2kπ + δ2/2 + π/2, 2kπ + δ2/2 + π),

(3.43) | sin y| >

√
1 − |α|

2
.

We further choose the first positive integers N1, N2, and N3 such that

m∑

ℓ=0

|A2ℓ|
(N1π)2(m−ℓ)+1

<
1

3

√
1 − |α|

2
,(3.44)

m−1∑

ℓ=0

|A2ℓ+1|
(N2π)2(m−ℓ)

<
1

3

√
1 − |α|

2
,(3.45)

m∑

ℓ=0

|B2ℓ|
(N3π)2(m−ℓ)+1

<
1

3

√
1 − |α|

2
.(3.46)

(We could provide explicit expression for N1, N2, and N3, but they would be

overestimates.)

For m even we have a similar result

Theorem 3.6 General Algorithmic Stability Test Let 2N be the smallest

even integer greater than or equal to max{N1, N2, N3, M1, M2, M3} The zero solution

of (1.1) is asymptotically stable if and only if

: 1. A0 + B0 < 0, A1 + A0 + B1 < 0,
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: 2. G has 2N + m distinct zeros r1 < r2 < · · · < r2N+m in (0, 2Nπ), and

: 3. (−1)nF (ρn) > 0 (n = 1, . . . , 2N + m).

Proof. Necessity follows immediately from Theorem 3.3 and Theorem 2.3 and the

fact that each interval (nπ, (n + 1)π) contains exactly one zero of G for n ≥ 2N .

For sufficiency, Lemma 3.4 yields that G has all real and distinct zeros. Now let

r2N+m+1 < r2N+m+2 < · · · be the remaining positive zeros of G. Lemma 3.4 and

Remark 3.3 now imply that (−1)nF (rn) > 0 for all n > 2N + m. Sufficiency now

follows from Theorem 3.6.

4. EXAMPLES

Example 4.1 Consider equation (1.1) with m = 1, a0 = a1 = a2 = 0, i.e.

y(3)(t) + αy(3)(t − τ) = b0y(t− τ) + b1y′(t − τ) + b2y
′′(t − τ),(4.1)

where

B0 = b0τ
3 = −0.6, B1 = b1τ

2 = −1.0, B2 = bτ = −1.8, and α = 0.7.(4.2)

Since B0 = −0.6 < 0 and B1 = −1.0 < 0, the necessary conditions of Theorem 3.2

are satisfied.

The roots of G (w(y) = ζ(y) )

In this example, we apply Algorithmic Stability Test I. From (3.17), (3.20), and

(3.23), Y1 = 1, Y2
.
=
√

1/0.7 = 1.19522, and Y3
.
= 1.409. From (3.24), and (3.25),

Y
.
= 1.409 and θ = 1. Condition 1. of Theorem 3.5 is satisfied since B0 = −0.6 < 0,

B1 = −1.0 < 0. Also, G has five zeros in (0, 4π), which are r1
.
= .6754939316,
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r2
.
= 1.6754939316, r3

.
= 4.230322227, r4

.
= 8.475177921, and r5

.
= 10.34786440.

Figure 1 below shows the roots of w = ζ in (0, 50). Simple calculations yield that

N = 3. For Condition 3. of Theorem 3.5 we found F (0) = −B0 = 0.6 > 0, and

F (r1)
.
= −0.0285994403, F (r2)

.
= 0.224720799, F (r3)

.
= −98.68903150. We also

found F (r4)
.
= 366.3420167, and F (r5)

.
= −1075.760380. By Algorithmic Stability

Test I (Theorem 3.5) the zero solution of (4.1) is asymptotically stable.

In this example we also examine the effect of the neutrality. We take the left side

of equation (4.1) to be (1+α)y(3)(t) while the right side of the equation stays the same,

and equation (4.1) turn into a non-neutral equation. We examine the zeros of G for the

non-neutral equation. We found that r1 = 0.359544451, F (r1) = 0.2324182884 > 0,

and F (0) = 0.3529411765 > 0. Here r1 is the first positive zero of G. Since F (r1) > 0

and F (0) > 0 by Theorem 2.2 the zero solution of the non-neutral equation is not

asymptotically stable. In this case neutrality can stabilize the solution. Had we

chosen to drop the delay term in (4.1) for comparison sake, the zero solution in

the non-neutral equation is also not asymptotically stable. For examples where delay

stabilized solutions see [1,2]. It would be interesting to find sufficient conditions when

delay and/or neutrality has a stabilizing effect.

Example 4.2 Consider (1.1) with m = 3 and a0 = a1 = a2 = a3 = a4 = 0, i.e.

y(7)(t) + αy(7)(t − τ) = b0y(t − τ) + b1y(t− τ) + b1y
′(t − τ) + b2y

′′(t − τ) + b3y
′′′(t − τ)

+b4y
(4)(t − τ) + b5y

(5)(t − τ) + b6y
(6)(t − τ)

(4.3)

where B0 = −1, B1 = −0.1, B2 = −5, B3 = −0.5, B4 = −0.5, B5 = −0.75,

B6 = −0.1, and α = 0.5.

Figure 2

In this example we apply Algorithmic Stability Test I. Here Y1
.
= 1.776388,

Y2
.
= 1.643316 and Y3 = 2, and thus θ = 1. Here B0 = −1 < 0, B1 = −0.1 < 0,

and Condition 1. of Theorem 3.5 is satsified. For the necessary conditions of Lemma

3.2 to be satisfied, G must have seven zeros in (0, 4π]. However, G has only 5 real
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zeros in (0, 4π] (see Figure 2 above), and therefore the zero solution of (4.2) is not

asymptotically stable.

In the table below we list the zeros of G, rj, and the values of F (rj) as well as

j2ℓ+1 = δ1 + 2ℓπ and j2ℓ = δ2 + 2ℓπ.

Table I

r1 = .4579295023 F (r1) = 0.025565527

r2 = 1.7278059166 F (r2) = 33.27245293

r3 = 4.371467592 F (r3) = −29360.46730

r4 = 8.276724857 F (r4) = 2.396404151× 106 j3 = 8.377580410

r5 = 10.55180474 F (r5) = −1.328590735× 107 j4 = 10.47197551

r6 = 14.60258862 F (r6) = 1.255746270× 108 j5 = 14.66076572

r7 = 17.28120581 F (r7) = −3.392953508× 108 j6 = 16.75516083

r8 = 20.427766131 F (r8) = 1.536210457× 109 j7 = 20.94395102

r9 = 23.56439208 F (r9) = −3.094519561× 109 j8 = 23.03834613

r10 = 26.70869065 F (r10) = 9.656954062× 109 j9 = 27.22713633

r11 = 29.84736057 F (r11) = −1.658144432× 1010 j10 = 29.32153144

r12 = 32.99067642 F (r12) = 4.132616518× 1010 j11 = 33.51032164

r13 = 36.13031875 F (r13) = −6.418103666× 1010 j12 = 35.60471675

r14 = 39.27310485 F (r14) = 1.375970956× 1011 J13 = 39.79350695

r15 = 42.41330367 F (r15) = −1.994559795× 1011 j14 = 41.88790206

Notice that in this example interlacing holds, m = 3 is odd and [r2j ]2π → δ1

and [r2j+1]2π → δ2 as indicated in Remark 3.2. In the next examples we consider the

general case with m = 1 and m = 2.

Example 4.3 Consider equation (1.1) with m = 1,

y(3)(t) + αy(3)(t − τ) = a0y(t) + a1y
′(t) + a2y

′′ + b0y(t− τ)(4.4)

+ b1y
′(t − τ) + b2y

′′(t − τ),

where

B0 = b0τ
3 = −0.6, B1 = b1τ

2 = −1.0, B2 = bτ = −1.8, and α = 0.5.(4.5)

A0 = a0τ
3 = −0.1, A1 = a1τ

2 = −0.5, A2 = aτ = −2.0.(4.6)

Since A0 +B0 = −0.7 < 0 and A1 +A0 +B1 = −1.6 < 0, the necessary conditions

of Theorem 3.2 are satisfied. In this example, we apply the General Algorithmic

Stability Test (Theorem 3.6). From (3.44-3.45) simple calculations yield that N1 = 6,

N2 = 1 and N3 = 1. From (3.29), (3.30), and (3.38), M1 = 2, M2 = 4, and

M3 = 2. Thus 2N = 6. Condition 2. of Theorem 3.6 is satisfied since G has

seven zeros in (0, 6π). The zeros in (0, 6π) are r1
.
= .9097378425, r2

.
= 2.027759247,

r3
.
= 4.234896050, r4

.
= 8.383600807, r5

.
= 10.48518367, r6

.
= 14.66567268, and

r7
.
= 16.76256628 . For Condition 3. of Theorem 3.6 we found F (0) = −B0 =
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0.6 > 0, and F (r1)
.
= −1.609304304, F (r2)

.
= 3.355507965, F (r3)

.
= −80.81862227,

F (r4)
.
= 449.9490905, F (r5)

.
= −1091.170401, F (r6)

.
= 2547.927736 and F (r7)

.
=

−4316.872095. By the General Algorithmic Stability Test (Theorem 3.6) the zero

solution of (4.3) is asymptotically stable.

Example 4.4 Consider equation (1.1) with m = 2, and α = −0.5,

y(5)(t) + αy(5)(t − τ) = a0y(t) + a1y
′(t) + a2y

′′(t) + a3y
(3)(t) + a4y

(4)(t)(4.7)

+b0y(t− τ) + b1y
′(t − τ) + b2y

′′(t − τ) + b3y
(3)(t − τ) + b4y

(4)(t − τ),

where

(4.8)

B0 = b0τ
5 = −2, B1 = b1τ

4 = −1.0, B2 = b2τ
3 = 1, B3 = b3τ

2 = −3.0 B4 = b4 = 3.0τ

(4.9)

A0 = a0τ
5 = −1.0, A1 = a1τ

4 = −3.0, A2 = a3
τ = 0, A3 = a3τ

2 = 2.0, A4 = a4τ = 5.0

Since A0 +B0 = −3 < 0 and A1 +A0 +B1 = −5 < 0, the necessary conditions of

Theorem 3.2 are satisfied. In this example, we apply the General Algorithmic Stability

Test (Theorem 3.6) . From (3.44-3.45) simple calculations yield that N1 = 10, N2 = 2

and N3 = 6. From (3.29), (3.30), and (3.38), M1 = 2, M2 = 7, and M3 = 9. Thus

2N = 10. Condition 2. of Theorem 3.6 requires that G has 12 distinct zeros in

(0, 10π). However G has only 10 zeros in (0, 10π), and therefore Condition 2. fails,

and the zero solution of (4.4) is not asymptotically stable.

In Table II below several of the zeros of G and the values of F at those zeros are

listed. This gives a glimpse of the behavior of the zeros of G

Table II

r1 = .7547435366 F (r1) = −1.165341368

r2 = 4.331028041 F (r2) = 1196.878949

r3 = 6.782099205 F (r3) = −22761.16415

r4 = 11.06830728 F (r4) = 1.180597 × 105 j3 = 8.377580410

r5 = 13.28129758 F (r5) = −4.846455503× 105 j4 = 10.47197551

r6 = 17.51126300 F (r6) = 1.22679629× 106 j5 = 14.66076572

r7 = 19.66080574 F (r7) = −3.103639402× 106 j6 = 16.75516083

r8 = 23.87156246 F (r8) = 5.940874433× 106 j7 = 20.94395102

r9 = 25.99745791 F (r9) = −1.191474658× 107 j8 = 23.03834613

r10 = 30.19978300 F (r10) = 1.966969751× 107 j9 = 27.22713633

r11 = 32.31448044 F (r11) = −3.428782565 × 1017 j10 = 29.32153144

r12 = 36.51241587 F (r12) = 5.15909466× 107 j11 = 33.510332164

r13 = 38.62096342 F (r13) = −8.194528127 × 107 j12 = 35.60471675

r14 = 42.81633650 F (r14) = 1.157095837× 108 j13 = 39.79350695

r15 = 44.92115307 F (r15) = −− 1.719797454× 108 j14 = 41.88790206
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While trying to build examples we noticed that it is extremely difficult to come

up with the zero solution being asymptotically stable when the order gets higher.

Perhaps, there is a physical interpretation to this phenomenon which we do not

understand. We leave it open to the reader to come up with more examples with odd

higher order with many parameters and some physical interpretation of the difficulties

of coming up with zero asymptotic solution of higher order delay differential equations.
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