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ABSTRACT. We consider forced second order differential equation with p-Laplacian and damping

in the form of

(r(t)φα0
(x′))

′
+ p(t)φα0

(x′) +

N∑

j=0

qj(t)φαj
(x) = e(t),

where φα (u) := |u|
α

sgnu, αj > 0, j = 0, 1, 2, . . . , N , and r, p, qj , e ∈ C ([0,∞), R) with r (t) > 0

on [0,∞). Interval oscillation criteria of the El-Sayed type and the Kong type are obtained. These

criteria are further extended to equations with deviating arguments. Our work generalizes, unifies,

and improves many existing results in the literature.
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1. INTRODUCTION

We are concerned with the oscillatory behavior of forced second order differential

equations with p-Laplacian and damping in the form of

(1.1) (r(t)φα0
(x′))

′
+ p(t)φα0

(x′) +

N∑

j=0

qj(t)φαj
(x) = e(t),

where φα (u) := |u|α sgn u and αj > 0, j = 0, 1, 2, . . . , N , such that

(1.2) αj > α0, j = 1, 2, . . . , l; and αj < α0, j = l + 1, l + 2, . . . , N.

Throughout this paper and without further mention we assume that r, p, qj , e ∈

C ([0,∞),R) with r (t) > 0 on [0,∞). Our interest is to establish oscillation criteria

for Eq. (1.1) without assuming that p (t), qj (t) , j = 0, 1, 2, . . . , N , and e(t) are of

definite sign.

As usual, a solution x(t) of Eq. (1.1) is said to be oscillatory if it is defined on

some ray [T,∞) with T ≥ 0, and has unbounded set of zeros. Eq. (1.1) is said
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to be oscillatory if every solution extendible throughout [tx,∞) for some tx ≥ 0 is

oscillatory.

In the last 50 years, there has been extensive work on oscillation and nonoscilla-

tion of various differential equations, see [1, 3, 4, 5, 6, 7, 8, 10, 16, 17, 18, 19, 28, 23]

and the references cited therein.

Special cases of Eq. (1.1) has been studied by many authors. When α0 = N =

1, r (t) = 1, p (t) = q0 (t) = 0, and q1 (t) ≥ 0, Kartsatos [16, 17] initiated an approach

for oscillation under the assmption that e (t) is the second derivative of an oscillatory

function. This method was further developed by different authors, See Keener [18],

Kong and Wong [21], Kong and Zhang [22], Rankin [27], Skidmore and Leighton [29],

Skidmore and Bowers [28], Teufel [35], and Wong [36].

Results were also obtained for oscillation of special cases of Eq. (1.1) without

imposing the assumption that e (t) is the second derivative of an oscillatory function.

Most of them were for the case when α0 = 1, r(t) = 1, and p(t) = 0. For instance, see

Nasr [24] for N = 1 and α1 > 1, Sun and Wong [32] for αj < 1, and Sun and Wong

[33] and Sun and Meng [31] for mixed nonlinearities. Among them, there were interval

oscillation criteria which can be regarded as generalizations of the one by El-Sayed

[9] for second order forced linear differential equations, and other interval oscillation

criteria can be regarded as generalizations of the one by Kong [19] established initially

for the second order homogeneous linear equations, see also [20]. Recently, Hassan,

Erbe and Peterson [14] discussed the oscillation of an equation with p-Lapacian,

more specifically, they established oscillation criteria of El-Sayed-type for Eq. (1.1)

with p(t) = 0.

Motivated by above, in this paper, we will establish interval oscillation criteria

of both the El-Sayed-type and the Kong-type for the more general equation (1.1).

Our results generalize, unify, and improve existing results in the literature, especially

those established in [5, 9, 11, 14, 19, 24, 20, 30, 31, 32, 33, 37]. We will also extend

our work to a functional differential equation with deviating arguments.

This paper is organized as follows: after this introduction, we state our main

results for Eq. (1.1) in section 2. All proofs are given in section 3. Extensions to a

functional differential equation is presented in Section 4.

2. MAIN RESULTS

To state our main results, we begin with the following lemma which improves

[33, Lemma 1].

Lemma 2.1. Let

m :=
α0

N − l

N∑

j=l+1

α−1
j and n :=

α0

l

l∑

j=1

α−1
j .
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Then for any δ ∈ (m,n), there exists an N-tuple (η1, η2, . . . , ηN) with ηj > 0 satisfying

(2.1)
N∑

j=1

αjηj = α0 and

N∑

j=1

ηj = δ.

We note from the definition of m and n and (1.2) that 0 < m < 1 < n. In the

following, we will use the values of δ in the interval (m, 1] to establish interval criteria

for oscillation of Eq. (1.1). Our first result provides an oscillation criterion of the

El-Sayed-type.

Theorem 2.2. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants ai

and bi with T ≤ ai < bi such that

(2.2) qj (t) ≥ 0 for t ∈ [ai, bi] and j = 1, 2, . . . , N,

and

(2.3) (−1)i e (t) ≥ 0 for t ∈ [ai, bi] .

Assume further that for i = 1, 2, there exists ui ∈ C1 [ai, bi] satisfying ui (ai) =

ui (bi) = 0 and ui (t) 6≡ 0 on [ai, bi] such that

(2.4) sup
δ∈(m,1]

∫ bi

ai

[
Q (t) |ui (t)|

α0+1 − ρ(t)r(t) |u′i (t)|
α0+1

]
dt > 0,

where

(2.5) ρ (t) := exp

∫ t

0

p (s)

r (s)
ds

and

(2.6) Q (t) := ρ (t)

(
q0 (t) +

[
|e(t)|

1 − δ

]1−δ N∏

j=1

(
qj(t)

ηj

)ηj

)

with ηj defined as in Lemma 2.1 based on δ. Here we use the convention that 01−δ = 1

and (1 − δ)1−δ = 1 for δ = 1. Then Eq. (1.1) is oscillatory.

Remark 2.3. (i) We will see from the proof of Lemma 2.1 in Section 3 that for each

δ ∈ (m, 1], the constants ηi, i = 1, . . . , N , can be constructed explicitly, and hence

the function Q in (2.6) is explicitly given.

(ii) We observe that in Theorem 2.2, if the supremum in (2.4) is assumed at

δ = 1, the effect of e(t) is neglected in some extent. This implies that the magnitude

of e(t) in [ai, bi] cannot be large. For otherwise, the supremum would have been taken

at some δ ∈ (m, 1).

(iii) Contrast to the results in the literature, by choosing different values of αj ,

Eq. (1.1) allows the terms of the unknown function to be all sublinear, all superliner,

or mixed.
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Following Philos [24], Kong [19], and Kong [20], we say that for any a, b ∈ R

such that a < b, a function H (t, s) belongs to a function class H(a, b), denoted by

H ∈ H(a, b), if H ∈ C (D,R), where D := {(t, s) : b ≥ t ≥ s ≥ a}, which satisfies

(2.7) H (t, t) = 0, H (b, s) > 0 and H (s, a) > 0 for b > s > a,

and H (t, s) has continuous partial derivatives ∂H (t, s) /∂t and ∂H(t, s)/∂s on [a, b]×

[a, b] such that

(2.8)
∂H (t, s)

∂t
= (α0 + 1) h1 (t, s)H

α0
α0+1 (t, s)

and

(2.9)
∂H (t, s)

∂s
= (α0 + 1)h2 (t, s)H

α0
α0+1 (t, s) ,

where h1, h2 ∈ Lloc (D,R). Next, we use the function class H(a, b) to establish an

oscillation criterion for Eq. (1.1) of the Kong-type.

Theorem 2.4. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants

ai and bi with T ≤ ai < bi such that (2.2) and (2.3) hold. Assume further that for

i = 1, 2, there exists ci ∈ (ai, bi) and Hi ∈ H(ai, bi) such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Q (s)Hi (s, ai) − ρ (s) r(s) |hi1 (s, ai)|

α0+1] ds

(2.10) +
1

Hi (bi, ci)

∫ bi

ci

[
Q (s)Hi (bi, s) − ρ (s) r(s) |hi2 (bi, s)|

α0+1] ds
}
> 0,

where ρ (t) and Q (t) are defined by (2.5) and (2.6), respectively. Then Eq. (1.1) is

oscillatory.

Remark 2.5. When p (t) = 0, Theorem 2.2 unifies and improves Theorems 2.1 and

2.2 in [14]. When α0 = 1 and p (t) = 0, Theorem 2.2 unifies and improves Theorems 1

and 2 in [33], and Theorem 2.4 unifies and improves Theorems 1 and 2 in [31].

Example. Consider the following forced second order differential equations with

mixed nonlinearities and damping

(r(t)φα0
(x′))

′
− r2 (t) |cos 4t|α0+1 φα0

(x′) + c0 cos 4t φα0
(x)

(2.11) +c1 sin 2t φ 1

2
α0

(x) + c2 sin 2t φ 3

2
α0

(x) = −f (t) cos 2t, t ≥ 0,

where α0, cj > 0, j = 0, 1, 2, r (t) > 0 on [0,∞) and f (t) ∈ C [0,∞) is any nonnegative

function. Here we have

p (t) = −r2 (t) |cos 4t|α0+1 , q0 (t) = c0 cos 4t, qj = cj sin 2t, j = 1, 2,

and

e (t) = −f (t) cos 2t, α1 =
1

2
α0, α2 =

3

2
α0.
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For any T ∈ R, we choose h large enough so that 2hπ ≥ T and let

a1 = 2hπ, b1 = a2 = 2hπ +
π

4
, b2 = 2hπ +

π

2
, h = 0, 1, 2, . . . .

Then (2.2) and (2.3) hold. For any δ ∈
(

2
3
, 1
]
, set

η 1 =
1

2
(3δ − 2) , η2 =

1

2
(2 − δ) .

We take the test function u(t) = sin 4t. Then u(ak) = u(bk) = 0, u(t) 6≡ 0 on [ak, bk],

k = 1, 2, and

Q (t) = ρ (t)
[
c0 cos 4t+ λ (sin 2t)δ (−f (t) cos 2t)1−δ

]
,

where

ρ (t) = exp

(
−

∫ t

0

r (s) |cos 4s|α0+1 ds

)
,

and

λ = 2−δ (1 − δ)δ−1

(
1

c1
(3δ − 2)

) 1

2
(2−3δ) (

1

c2
(2 − δ)

) 1

2
(δ−2)

.

Thus
∫ π

4

0

Q (t) |ui (t)|
α0+1 dt

=

∫ π
4

0

ρ (t)
[
c0 cos 4t+ λ (sin 2t)δ (−f (t) cos 2t)1−δ

]
sinα0+1 4t dt

and
∫ π

4

0

ρ(t)r(t) |u′i (t)|
α0+1

dt =
1

4α0+1

(
1 − exp

(
−

∫ π
4

0

r (s) |cos 4s|α0+1 ds

))
.

It is easy to see that (2.4) is satisfied and hence Eq. (2.11) is oscillatory if

sup
δ∈( 2

3
,1]

∫ π
4

0

ρ (t)
[
c0 cos 4t+ λ (sin 2t)δ (−f (t) cos 2t)1−δ

]
sinα0+1 4t dt

>
1

4α0+1

(
1 − exp

(
−

∫ π
4

0

r (s) |cos 4s|α0+1 ds

))
.

3. PROOFS

Proof of Lemma 2.1. Let

η1
j :=

{
0, j = 1, 2, . . . , l
α0α−1

j

N−l
, j = l + 1, . . . , N

and η2
j :=

{
α0α−1

j

l
, j = 1, 2, . . . , l

0, j = l + 1, . . . , N.

Clearly, for i = 1, 2, we get
N∑

j=1

αjη
i
j = α0.
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Moreover,
N∑

j=1

η1
j = m and

N∑

j=1

η2
j = n.

For k ∈ [0, 1] let

ηj (k) := (1 − k) η1
j + kη2

j , j = 1, 2, . . . , N and k ∈ R.

Then it is easy to see that

N∑

j=1

αjηj (k) = α0, k ∈ [0, 1].

Furthermore, since ηj (0) = η1
j and ηj (1) = η2

j , we have

N∑

j=1

ηj (0) = m and

N∑

j=1

ηj (1) = n.

By the continuous dependence of ηj (k) on k there exists k∗ ∈ (0, 1) such that ηj :=

ηj (k∗) satisfies that
N∑

j=1

ηj = δ.

Note that ηj > 0 for j = 1, 2, . . . , N and
∑N

j=1 αjηj = α0. �

Proof of Theorem 2.2. Assume Eq. (1.1) has a nonoscillatory solution x(t) on

[0,∞). Then, without loss of generality, assume x (t) > 0 for all t ≥ T ≥ 0, where T

depends on the solution x (t). When x (t) is an eventually negative, the proof follows

the same way except that the interval [a2, b2], instead of [a1, b1], is used. Define

(3.1) z (t) := ρ (t)
r(t)φα0

(x′(t))

φα0
(x(t))

, t ≥ T.

It follows from (1.1) and (2.5) that for t ≥ T , z (t) satisfies the first order nonlinear

Riccati equation

(3.2) z′ (t) = −ρ (t)

N∑

j=0

qj(t)x
αj−α0 (t) + ρ (t) e(t)x−α0(t) −

α0 |z (t)|
α0+1

α0

(ρ (t) r(t))
1

α0

.

From the assumption, there exists a nontrivial interval [a1, b1] ⊂ [T,∞) such that

(2.2) and (2.3) hold with i = 1.

(I) We first consider the case where the supremum in (2.4) is assumed at δ = 1.

From (2.3), we have that for t ∈ [a1, b1]

(3.3) z′ (t) ≤ −ρ (t)
N∑

j=0

qj(t)x
αj−α0 (t) −

α0 |z (t)|
α0+1

α0

(ρ (t) r(t))
1

α0

.
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Let ηj, j = 1, 2, . . . , N , be defined as in Lemma 2.1 with δ = 1. Then ηj , j =

1, 2, . . . , N , satisfies (2.1) with δ = 1. From (2.1) we have

N∑

j=1

αjηj − α0

N∑

j=1

ηj = 0.

Using the Arithmetic-geometric mean inequality, see [2, Page 17], we have

(3.4)

N∑

j=1

ηjvj ≥

N∏

j=1

v
ηj

j , for any vj ≥ 0, j = 1, . . . , N.

Then for t ∈ [a1, b1]

N∑

j=0

qj(t)x
αj−α0 (t) = q0 (t) +

N∑

j=1

ηj

qj(t)

ηj

xαj−α0 (t)

≥ q0 (t) +

N∏

j=1

[
qj(t)

ηj

]ηj

xηj(αj−α0) (t) = q0 (t) +

N∏

j=1

[
qj(t)

ηj

]ηj

.

This together with (3.3) shows that

(3.5) z′ (t) ≤ −Q (t) −
α0 |z (t)|

α0+1

α0

(ρ (t) r(t))
1

α0

,

where Q (t) is defined by (2.6) with δ = 1. Multiplying both sides of (3.5) by

|u1 (t)|α0+1, integrating from a1 to b1, and using integration by parts, we find that

∫ b1

a1

Q (t) |u1 (t)|α0+1 dt(3.6)

≤

∫ b1

a1

[
(α0 + 1)φα0

(u1(t))u
′

1 (t) z (t) −
α0 |u1 (t)|α0+1

(ρ (t) r(t))
1

α0

|z (t)|
α0+1

α0

]
dt

≤

∫ b1

a1

[
(α0 + 1) |u′1 (t)| |u1 (t)|α0 |z (t)| −

α0 |u1 (t)|α0+1

(ρ (t) r(t))
1

α0

|z (t)|
α0+1

α0

]
dt.

Let α := α0+1
α0

. Define A and B by

Aα :=
α0 |u1 (t)|α0+1

(ρ (t) r(t))
1

α0

|z (t)|α and B α−1 := |u′1 (t)| (α0ρ (t) r(t))
1

α0+1 .

It is easy to establish the following inequality:

(3.7) αAB α−1 − Aα ≤ (α− 1)B α,

we get

(α0 + 1) |u′1 (t)| |u1 (t)|α0 |z (t)| −
α0 |u1 (t)|α0+1

(ρ (t) p(t))
1

α0

|z (t)|α ≤ ρ(t)r(t) |u′1 (t)|
α0+1

,
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which together with (3.6) implies that

∫ b1

a1

Q (t) |u1 (t)|α0+1 dt ≤

∫ b1

a1

ρ(t)r(t) |u′1 (t)|
α0+1

dt.

This leads to a contradiction to (2.4).

(II) Now, we consider the case where the supremum in (2.4) is assumed at δ ∈

(m, 1). Let η̃j = δ−1ηj , j = 1, 2, . . . , N . Then from (3.2) we see that for t ∈ [a1, b1],

(3.8) z′ (t) = −ρ (t)

N∑

j=0

qj(t)x
αj−α0 (t) − ρ (t) |e(t)| x−α0(t) −

α0 |z (t)|
α0+1

α0

(ρ (t) r(t))
1

α0

.

Let η0 := 1− δ. Then using the Arithmetic-geometric mean inequality (3.4) we have

for t ∈ [a1, b1]

|e(t)|x−α0(t) +

N∑

j=1

qj(t)x
αj−α0 (t)

= (1 − δ)
|e(t)|

1 − δ
x−α0 (t) +

N∑

j=1

ηj

qj(t)

ηj

xαj−α0 (t)

≥

[
|e(t)|

1 − δ

]1−δ

x−α0(1−δ) (t)

N∏

j=1

[
qj(t)

ηj

]ηj

xηj(αj−α0) (t)

=

[
|e(t)|

1 − δ

]1−δ N∏

j=1

[
qj(t)

ηj

]ηj

.

This together with (3.8) shows that

(3.9) z′ (t) ≤ −Q (t) −
α0|z(t)|

α0+1

α0

(ρ (t) r(t))
1

α0

,

where Q (t) is defined by (2.6) with δ ∈ (m, 1) . The rest of the proof is similar to

Part (I) and hence is omitted. �

Proof of Theorem 2.4. Assume Eq. (1.1) has a nonoscillatory solution x(t)

on [0,∞). Then without loss of generality, assume x (t) > 0 for all t ≥ T ≥ 0, where

T depends on the solution x (t). Define z(t) by (3.1). From (3.5) and (3.9), we get

that

(3.10) z′ (t) ≤ −Q (t) −
α0 |z (t)|

α0+1

α0

(ρ (t) r(t))
1

α0

.
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Multiplying both sides of (3.10), with t replaced by s, by H1 (b1, s) and integrating

with respect to s from c1 to b1, we find that
∫ b1

c1

Q (s)H1 (b1, s) ds

≤ −

∫ b1

c1

z′ (s)H1 (b1, s) ds−

∫ b1

c1

α0 |z (s)|
α0+1

α0

(ρ (s) r(s))
1

α0

H1 (b1, s) ds.

By using integration by parts and from (2.7) and (2.9), we obtain that

∫ b1

c1

Q (s)H1 (b1, s) ds

≤ z (c1)H1 (b1, c1) +

∫ b1

c1

[
(α0 + 1) h12 (b1, s)H

α0
α0+1

1 (b1, s) z (s)

−
α0 |z (s)|

α0+1

α0 H1 (b1, s)

(ρ (s) r(s))
1

α0

]
ds

≤ z (c1)H1 (b1, c1) +

∫ b1

c1

[
(α0 + 1) |h12 (b1, s) |H

α0
α0+1

1 (b1, s) |z (s) |

−
α0 |z (s)|

α0+1

α0 H1 (b1, s)

(ρ (s) r(s))
1

α0

]
ds.(3.11)

Let α = α0+1
α0

. Define A and B by

Aα :=
α0 |z (s)|αH1 (b1, s)

(ρ (s) r(s))
1

α0

and Bα−1 := (α0ρ (s) r(s))
1

α0+1 |h12 (b1, s)| .

Then, using the inequality (3.7), we get that

(α0 + 1) |h12 (b1, s)|H
α0

α0+1

1 (b1, s) |z (s)| −
α0 |z (s)|

α0+1

α0 H1 (b1, s)

(ρ (s) r(s))
1

α0

≤ ρ (s) r(s) |h12 (b1, s)|
α0+1 .

This together with (3.11) shows that

(3.12)
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s) − ρ (s) r(s) |h12 (b1, s)|

α0+1] ds ≤ z (c1) .

Similarly, multiplying both sides of (3.9), with t replaced by s, by H1 (s, a1) and

integrating by parts from a1 to c1, we see that

(3.13)
1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1) − ρ (s) r(s) |h11 (s, a1)|

α0+1] ds ≤ −z (c1) .

Combining (3.12) and (3.13) we get that

1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1) − ρ (s) r(s)hα0+1

11 (s, a1)
]
ds
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+
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s) − ρ (s) r(s)hα0+1

12 (b1, s)
]
ds ≤ 0.

This contradicts (2.10) with i = 1. �

4. EXTENSIONS TO EQUATIONS WITH DEVIATING ARGUMENTS

In the last section, we extend the interval oscillation criteria for Eq. (1.1) in

section 2 to the equations in the form of

(4.1) (r(t)φα0
(x′(t)))

′
+

N∑

j=0

qj(t)φαj (x(gj(t))) = e(t),

where αj, r, qj, e satisfy the assumptions for Eq. (1.1) and gj : R → R+ such that

limt→∞ gj(t) = ∞, j = 0, 1, . . . , N .

The following lemma plays a key role in the proof of the oscillation criteria for

Eq. (4.1)

Lemma 4.1. Let

g∗ (t) = min {t, g0 (t) , . . . , gn (t)} and g∗ (t) = max {t, g0 (t) , . . . , gn (t)} .

Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants ai, bi ∈ [T,∞) with

ai < bi, such that

(4.2) qj (t) ≥ 0 for t ∈ [g∗ (ai) , g
∗ (bi)] , j = 0, 1, 2, . . . , N,

and

(4.3) (−1)i e (t) ≥ 0, for t ∈ [g∗ (ai) , g
∗ (bi)] .

Assume Eq. (4.1) has a nonoscillatory solution x(t) on [0,∞). Then for t ∈ [ai, bi]

with i = 1, 2,

x (gj (t))

x (t)
≥ ψj,i (t) , for i = 1, 2 and j = 0, 1, 2, . . . , N ,

where

(4.4) ψj,i (t) :=






δj,i (t) , gj (t) < t

1, gj (t) = t

ζj,i (t) , gj (t) > t

with

δj,i (t) :=

∫ gj(t)

gj(ai)

ds

r
1

α0 (s)

(∫ t

gj(ai)

ds

r
1

α0 (s)

)
−1

and

ζj,i (t) :=

∫ gj(bi)

gj(t)

ds

r
1

α0 (s)

(∫ gj(bi)

t

ds

r
1

α0 (s)

)
−1

.
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Proof. Without loss of generality, we may assume x(gj(t)) > 0, j = 0, 1, . . . , N ,

for all t ≥ T ≥ 0, where T depends on the solution x (t). From (4.1), we find that

r(t)φα0
(x′(t)) is nonincreasing on [g∗ (a1) , g

∗ (b1)].

When gj (t) < t, we have that, for t ∈ [a1, g
∗ (b1)]

x (t) − x (gj (t)) =

∫ t

gj(t)

φ−1
α0

(r(s)φα0
(x′(s)))

r
1

α0 (s)
ds

≤ φ−1
α0

(r(gj (t))φα0
(x′(gj (t))))

∫ t

gj(t)

ds

r
1

α0 (s)
,

where φ−1
α0

is the inverse function of φα0
, and so

(4.5)
x (t)

x (gj (t))
≤ 1 +

φ−1
α0

(r(gj (t))φα0
(x′(gj (t))))

x (gj (t))

∫ t

gj(t)

ds

r
1

α0 (s)
.

We also see that for t ∈ [a1, g
∗ (b1)]

x (gj (t)) > x (gj (t)) − x (gj (a1)) =

∫ gj(t)

gj(a1)

φ−1
α0

(r(s)φα0
(x′(s)))

r
1

α0 (s)
ds

≥ φ−1
α0

(r(gj (t))φα0
(x′(gj (t))))

∫ gj(t)

gj(a1)

ds

r
1

α0 (s)
,

which implies that for t ∈ (a1, g
∗ (b1)]

(4.6)
φ−1

α0
(r(gj (t))φα0

(x′(gj (t))))

x (gj (t))
<

1
∫ gj(t)

gj(a1)
ds

r
1

α0 (s)

.

Therefore, the combination of (4.5) and (4.6) shows that for t ∈ (a1, g
∗ (b1)]

x (t)

x (gj (t))
<

∫ t

gj(a1)
ds

r
1

α0 (s)∫ gj(t)

gj(a1)
ds

r
1

α0 (s)

=
1

δj,1 (t)
.

Hence

(4.7) x (gj (t)) > δj,1 (t)x (t) , for t ∈ [a1, g
∗ (b1)] ,

whereas, when gj (t) > t, we have, for t ∈ [g∗ (a1) , b1]

x (gj (t)) − x (t) =

∫ gj(t)

t

φ−1
α0

(r(s)φα0
(x′(s)))

r
1

α0 (s)
ds

≥ φ−1
α0

(r(gj (t))φα0
(x′(gj (t))))

∫ gj(t)

t

ds

r
1

α0 (s)
,

and so

(4.8)
x (t)

x (gj (t))
≤ 1 −

φ−1
α0

(r(gj (t))φα0
(x′(gj (t))))

x (gj (t))

∫ gj(t)

t

ds

r
1

α0 (s)
.
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Also, we see that, for t ∈ [g∗ (a1) , b1]

−x (gj (t)) < x (gj (b1)) − x (gj (t)) =

∫ gj(b1)

gj(t)

φ−1
α0

(r(s)φα0
(x′(s)))

r
1

α0 (s)
ds

≤ φ−1
α0

(r(gj (t))φα0
(x′(gj (t))))

∫ gj(b1)

gj(t)

ds

r
1

α0 (s)
,

which implies for t ∈ [g∗ (a1) , b1), that

(4.9) −
φ−1

α0
(r(gj (t))φα0

(x′(gj (t))))

x (gj (t))
<

1
∫ gj(b1)

gj(t)
ds

r
1

α0 (s)

.

Thus, (4.8) and (4.9) imply, for t ∈ [g∗ (a1) , b1)

x (t)

x (gj (t))
<

∫ gj(b1)

t
ds

r
1

α0 (s)∫ gj(b1)

gj(t)
ds

r
1

α0 (s)

=
1

ζj,1 (t)
.

Hence

(4.10) x (gj (t)) > ζj,1 (t) x (t) , for t ∈ [g∗ (a1) , b1] .

From (4.7) and (4.10), we get

x (gj (t)) ≥ ψj,1 (t)x (t) , for j = 0, 1, 2, . . . , N and t ∈ [a1, b1] . �

Using Lemma 4.1, we can now easily prove the following oscillation criteria for

Eq. (4.1) as in Theorems 2.2–2.4.

Theorem 4.2. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants ai

and bi with T ≤ ai < bi, such that (4.2) and (4.3) hold. Assume further that there

exists u ∈ C1 [ai, bi] satisfying u (ai) = u (bi) = 0, i = 1, 2, u (t) 6≡ 0 on [ai, bi] such

that for i = 1, 2,

sup
δ∈(m,1]

∫ bi

ai

[
Qi (t) |ui (t)|

α0+1 − r(t) |u′1 (t)|
α0+1

]
dt > 0,

where

(4.11) Qi (t) := q0 (t)ψα0

0,i (t) +

[
|e(t)|

1 − δ

]1−δ N∏

j=1

(
qj(t)ψ

αj

j,i (t)

ηj

)ηj

with ψj,i given in (4.4) and ηj as in Lemma 2.1 based on δ. Here we use the convention

that 01−δ = 1 and (1 − δ)1−δ = 1 when δ = 1. Then Eq. (4.1) is oscillatory.

Theorem 4.3. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants ai

and bi with T ≤ ai < bi such that (2.2) and (2.3) hold. Assume further that there

exist ci ∈ (ai, bi) and Hi ∈ H(ai, bi) such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Qi (s)Hi (s, ai) − r(s) |hi1 (s, ai)|

α0+1] ds
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+
1

Hi (bi, ci)

∫ bi

ci

[
Qi (s)Hi (bi, s) − r(s) |hi2 (bi, s)|

α0+1] ds
}
> 0,

where Qi (t) is defined by (4.11). Then Eq. (4.1) is oscillatory.

Proof of Theorems 4.2 and 4.3. Without loss of generality, we may assume

x (t) , x(gj(t)) > 0, j = 0, 1, . . . , N , for all t ≥ T ≥ 0, where T depends on the

solution x (t). Define

z (t) :=
r(t)φα0

(x′(t))

φα0
(x(t))

.

Then for t ≥ T , z satisfies that

z′ (t) = −

N∑

j=0

qj(t)
xαj (gj (t))

xα0 (t)
xαj−α0 (t) + e(t)x−α0(t) −

α0 |z (t)|
α0+1

α0

r
1

α0 (t)
.

From the assumption, there exist constants a1 and b1 with a1 < b1 and [g∗ (a1) , g
∗ (b1)] ⊂

[t0,∞) such that (4.2) and (4.3) hold with i = 1. Then from Lemma 4.1 we have that

for t ∈ [a1, b1] and j = 0, 1, 2, . . . , N

[x (gj (t))]αj

[x (t)]α0
=

[
x (gj (t))

x (t)

]αj

[x (t)]αj−α0 ≥ ψ
αj

j,1 (t) [x (t)]αj−α0 .

The rest of the proof is similar to those of Theorem 2.2 and 2.4, and is hence omit-

ted. �
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