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NEW OSCILLATION CRITERIA FOR CERTAIN EVEN ORDER
DELAY DIFFERENTIAL EQUATIONS
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ABSTRACT. For even order delay differential equation of the form

[p(t)|x(n−1)(t)|α−1x(n−1)(t)]′ + F (t, x(g(t)) = 0, n even

where p ∈ C1([t0,∞); (0,∞)), F ∈ C([t0,∞) × R; R), g ∈ C([t0,∞); R), and α > 0 is a constant,

we obtain several new oscillation criteria without assumptions that has been required for the related

results obtained before, our results generalize and improve many known conclusions.
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1. INTRODUCTION

We are interested in obtaining results on the oscillation behavior of even order

delay differential equations of the form

[p(t)|x(n−1)(t)|α−1x(n−1)(t)]′ + F (t, x(g(t)) = 0, n even.(1.1)

Where α > 0 is a constant.

Throughout this paper, we shall suppose that

(A1) p(t) ∈ C1([t0,∞); (0,∞)), p′(t) ≥ 0, R(t) =
∫ t

t0

ds

p
1

α (s)
→ ∞(t → ∞).

(A2) g(t) ∈ C([t0,∞); R). There exists a function σ(t) ∈ C1([t0,∞); R+) such

that σ(t) ≤ inf{t, g(t)}, lim
t→∞

σ(t) = lim
t→∞

g(t) = ∞ and σ′(t) > 0 for t ≥ t0.

(A3) F (t, x) ∈ C([t0,∞) × R; R), sgnF (t, x) = sgnx. There exists a function

q(t) ∈ C([t0,∞); R+) such that F (t, x)sgnx ≥ q(t)|x|α for x 6= 0 and t ≥ t0;

By a solution of Eq. (1.1), we mean a function x(t) ∈ C1([Tx,∞); R) for some

Tx ≥ t0 which has the property that

p(t)|x(n−1)(t)|α−1x(n−1)(t) ∈ C1([Tx,∞); R)
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and satisfies Eq. (1.1) on [Tx,∞). A nontrivial solution of Eq. (1.1) is called oscillatory

if it has arbitrary large zero. Otherwise, it is called nonoscillatory. Eq. (1.1) is called

oscillatory if all of its solutions are oscillatory.

We say that a function H = H(t, s) belongs to the function class X, if H ∈

C(D; R+), where D = {(t, s) : t0 ≤ s ≤ t < ∞}, which satisfies H(t, t) = 0, H(t, s) >

0 for t > s, and has partial derivative
∂H

∂s
on D such that

∂H

∂s
= −h(t, s)

√
H(t, s) ,(1.2)

where h(t, s) are locally nonnegative continuous functions on D.

Recently, oscillation of differential equations has become an important area of

research due to the fact that such equations arise in many real life problems. In the

past few years, there have been some results on the oscillation theory for higher order

functional differential equations. We refer the reader to the research papers [1-14]

and the references cited there in.

The special case of Eq. (1.1) of the following differential equations

x′′(t) + q(t)x(t) = 0, t ≥ t0,(1.3)

[r(t)x′(t)]′ + c(t)x(t) = 0, t ≥ t0,(1.4)

[p(t)|x′(t)|α−1x′(t)]′ + q(t)|x(t)|α−1x(t) = 0, t ≥ t0(1.5)

and

[|x(n−1)(t)|α−1x(n−1)(t)]′ + F (t, x(g(t)) = 0, n even(1.6)

were studied in [10], [11], [12] and [13] respectively. In 1989, Philos [10] proved some

oscillation criteria of Eq. (1.3). In [11], Li gave some extensions to the results of Philos

[10] for equation (1.4). In 1999, J. V. Manojlovic [12] extend the results of Philos

and Li and established oscillation criteria for the equation (1.5). In 2004, Zhiting Xu

and Yong Xia [13] established oscillation criteria for the equation (1.6) and give the

following result.

Theorem A ([13, Theorem 2.2]) Let the function H ∈ X. If there exists a

nondecreasing function ρ ∈ C1([t0,∞); R+) such that

(C1) 0 < infs≥t0

{
lim inf

t→∞

H(t, s)

H(t, t0)

}
≤ ∞,

(C2) lim inf
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)[h(t, s)]α+1

[H(t, s)σn−2(s)σ′(s)]α
ds < ∞,

if there exists a continuous function ϕ ∈ C([t0,∞); R) such that for all t > T ≥ t0,

(C3) lim sup
t→∞

∫ ∞

t0
σn−2(s)σ′(s)ρ− 1

α (s)[ϕ+(s)]
α+1

α ds = ∞,
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(C4) lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)ρ(s)q(s) −

Θ−α(n, λ)

(α + 1)(α+1)

ρ(s)[h(t, s)]α+1

[H(t, s)σn−2(s)σ′(s)]α

]
ds ≥

ϕ(T ),

where ϕ+(s) = max{ϕ(s), 0}, Θ(n, λ) =
λ22−n

(n − 2)!

[
1
2
− |λ − 1

2
|
]n−2

, then Eq. (1.6) is

oscillatory.

In this paper, our aim is to study the more general equation (1.1) and estab-

lish oscillation criteria which further improve Theorem A. we suggest two different

approaches which allow one to remove condition (C2) in Theorem A. A modified in-

tegral averaging technique enables one to simplify essentially the proofs of oscillation

criteria.

2. MAIN RESULTS

First, we give the following lemmas for our results.

Lemma 2.1 [14] Let u(t) ∈ Cn([t0,∞); R+). If u(n)(t) is eventually of one sign for

all large t, say t1 > t0, then there exist a tx > t0 and an integer l, 0 ≤ l ≤ n, with n+ l

even for u(n)(t) ≥ 0 or n+ l odd for u(n)(t) ≤ 0 such that l > 0 implies that u(k)(t) > 0

for t > tx, k = 0, 1, 2, · · · , l − 1, and l ≤ n − 1 implies that (−1)l+ku(k)(t) > 0 for

t > tx, k = l, l + 1, · · · , n − 1.

Lemma 2.2 [14] If the function u(t) is as in Lemma 2.1 and u(n−1)(t)u(n)(t) ≤ 0

for t > tx, then there exists a constant θ, 0 < θ < 1, such that

u(t) ≥
θ

(n − 1)!
tn−1u(n−1)(t) for all large t,

and

u′(
t

2
) ≥

θ

(n − 2)!
tn−2u(n−1)(t) for all large t.

Lemma 2.3 [15] Let X and Y are nonnegative, then

Xλ + (λ − 1)Y λ − λXY λ−1 ≥ 0, λ > 1,

where equality holds if and only if X = Y .

Theorem 2.1 Let function H ∈ X. If there exists a positive, nondecreasing function

ρ(t) ∈ C1([t0,∞); (0,∞)) such that for some β ≥ 1,

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)ρ(s)q(s) −

βαC−α(n, θ)ρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(σn−2(s)σ′(s)H(t, s))α

]
ds = ∞,

(2.1)

where

h1(t, s) = h(t, s)
√

H(t, s) + H(t, s)
ρ′(s)

ρ(s)
, C(n, θ) =

θ

2(n − 2)!
,
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then Eq. (1.1) is oscillatory.

Proof . Suppose to the contrary that Eq. (1.1) has a nonoscillatory solution x(t),

without loss of generality, we assume that x(t) is an eventually positive solution of

Eq. (1.1), from (A2), there exists a number t1 ≥ t0 such that x(t) > 0, x(g(t)) > 0

for t ≥ t1. Then by Eq. (1.1), we have

(p(t)|x(n−1)(t)|α−1x(n−1)(t))′ = −F (t, x(g(t))) ≤ 0, t ≥ t1.(2.2)

Therefore p(t)|x(n−1)(t)|α−1x(n−1)(t) is decreasing and x(n−1)(t) is eventually of

one sign. We claim that

x(n−1)(t) > 0 for t ≥ t1.

Otherwise, if there exists t̃1 ≥ t1 such that x(n−1)(t̃1) < 0 , then for all t ≥ t̃1,

(2.3) p(t)|x(n−1)(t)|α−1x(n−1)(t) ≤ p(t1)|x
(n−1)(t1)|

α−1x(n−1)(t1) = −C(C > 0),

then we have x(n−1)(t) ≤ −
C

p
1

α (t)
, t ≥ t̃1.

Integrating the above inequality from t̃1 to t, we have

x(n−2)(t) ≤ x(n−2)(t̃1) − C(R(t) − R(t̃1)).

Letting t → ∞, from (A1), we get lim
t→∞

x(n−2)(t) = −∞, which implies x(n−1)(t)

and x(n−2)(t) are negative for all large t, from Lemma 2.1, no two consecutive deriva-

tives can be eventually negative, for this would imply that lim
t→∞

x(t) = −∞, a contra-

diction. Hence x(n−1)(t) ≥ 0 for t ≥ t1. From Eq. (1.1) and (A1), (A3) we have

αp(t)(x(n−1)(t))α−1x(n)(t) = [p(t)(x(n−1)(t))α]′ − p′(t)(x(n−1)(t))α ≤ 0, t ≥ t1,

this implies that x(n)(t) ≤ 0, t ≥ t1. From Lemma 2.1 again (note n is even), we have

x′(t) > 0, t ≥ t1.

Now from Eq. (1.1) and (A3) we have

[p(t)(x(n−1)(t))α]′ ≤ −q(t)xα(g(t)) ≤ −q(t)xα(σ(t)), t ≥ t1.(2.4)

By Lemma 2.2, we have

x′(
σ(t)

2
) ≥

θ

(n − 2)!
σn−2(t)x(n−1)(σ(t)) t ≥ t1.(2.5)

Let

w(t) = ρ(t)
p(t)(x(n−1)(t))α

xα(σ(t)
2

)
, t ≥ t1.(2.6)

Then for every t ≥ t1 , we get

w′(t) ≤ −ρ(t)q(t) +
ρ′(t)

ρ(t)
w(t) − αC(n, θ)

σn−2(t)σ′(t)

(ρ(t)p(t))
1

α

w
α+1

α (t).(2.7)
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Multiplying inequality (2.7) by H(t, s) and integrating it with respect s from T

to t (T ≥ t1), we have
∫ t

T

H(t, s)ρ(s)q(s)ds

≤ H(t, T )w(T ) +

∫ t

T

h1(t, s)w(s)ds

− αC(n, θ)

∫ t

T

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds

= H(t, T )w(T ) +

∫ t

T

[
h1(t, s)w(s) −

α

β
C(n, θ)H(t, s)

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)

]
ds

−
α(β − 1)

β
C(n, θ)

∫ t

T

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds.

(2.8)

Taking

X =

(
α

β
C(n, θ)H(t, s)σn−2(s)σ′(s)

)α/(α+1)
w(s)

(ρ(s)p(s))1/(α+1)
,

Y =
αα/(α+1)βα2/(α+1)

(α + 1)α

(ρ(s)p(s))α/(α+1)hα
1 (t, s)

(C(n, θ)σn−2(s)σ′(s)H(t, s))α2/(α+1)
, λ =

α + 1

α
.

According to the Lemma 2.3, we obtain for t > s ≥ t1,

h1(t, s)w(s) −α
β
C(n, θ)H(t, s)

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)

≤
βαρ(s)p(s)hα+1

1
(t,s)

(α+1)α+1(C(n,θ)σn−2(s)σ′(s)H(t,s))α .

Hence, (2.8) implies
∫ t

T

H(t, s)ρ(s)q(s)ds ≤ H(t, T )w(T ) +

∫ t

T

βαρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(C(n, θ)σn−2(s)σ′(s)H(t, s))α
ds

−
α(β − 1)

β
C(n, θ)

∫ t

T

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds.(2.9)

Using the properties of H(t, s), we conclude from (2.9) that, for all t ≥ T ≥ t1,
∫ t

T

[
H(t, s)ρ(s)q(s) −

βαρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(C(n, θ)σn−2(s)σ′(s)H(t, s))α

]
ds

≤ H(t, T )w(T ) ≤ H(t, t0)w(T ),

and for all t ≥ t1,
∫ t

t0

[
H(t, s)ρ(s)q(s) −

βαρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(C(n, θ)σn−2(s)σ′(s)H(t, s))α

]
ds

≤ H(t, t0)

[∫ T

t0

ρ(s)q(s)ds + w(T )

]
,(2.10)
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this gives

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)ρ(s)q(s) −

βαρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(C(n, θ)σn−2(s)σ′(s)H(t, s))α

]
ds

≤

∫ T

t0

ρ(s)q(s)ds + w(T ) < +∞,

which contradicts to (2.1). This completes the proof of Theorem 2.1.

Corollary 2.1. Every solution of Eq. (1.1) is oscillatory provided that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)q(s)ds = ∞,

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)p(s)hα+1
1 (t, s)

(σn−2(s)σ′(s)H(t, s))α
ds < ∞,

where H(t, s), h1(t, s), ρ(t) are the same as in Theorem 2.1.

Remark 2.1. If β = 1, Theorem 2.1 reduce to Theorem 1 in [13]. We note that

it suffices to satisfy (2.1) in Theorem 2.1 for any β ≥ 1. Parameter β introduce in

Theorem 2.1 plays an important role in the results that follow, and it is particularly

important in the sequel that β > 1.

With an appropriate choice of the functions H and ρ, one can derive from The-

orem 2.1 a number of oscillation criteria for Eq. (2.1). For example, consider a

Kamenev-type function H(t, s) defined by H(t, s) = (t − s)µ, µ > 1, (t, s) ∈ D,

choosing ρ(t) = tµ, then h1(t, s) =
µ(t − s)µ−1t

s
. Based on the above results we obtain

the following corollary.

Corollary 2.2. Every solution of Eq. (1.1) is oscillatory provided that for some

β ≥ 1,

lim sup
t→∞

1

tµ

∫ t

t0

[
(t − s)µsµq(s) −

βαµα+1

(α + 1)α+1

p(s)tα+1sµ−α−1(t − s)µ−α−1

(C(n, θ)σn−2(s)σ′(s))α

]
ds = ∞.

Corollary 2.3. Suppose that

lim sup
t→∞

1

tµ

∫ t

t0

sµ(t − s)µq(s)ds = ∞,

and

lim sup
t→∞

1

tµ−α−1

∫ t

t0

p(s)sµ−α−1(t − s)µ−α−1

(σn−2(s)σ′(s))α
ds < ∞

hold, then every solution of Eq. (1.1) is oscillatory.

Example. Consider the following equation

[t−ν |xn−1(t)|α−1xn−1(t)]′ + q(t)|x

(
t

2

)
|α−1x

(
t

2

)
= 0,(2.11)
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t ≥ t0, where ν is arbitrary positive constant and α > 0.

Here, p(t) = t−ν , q(t) ∈ C[t0,∞). It follows from Theorem 41 in [15] that

(t − s)µ ≥ tµ − µstµ−1, t ≥ s ≥ t0.

If q(s) ≥
c

sµ+1
, c > 0, we have

lim sup
t→∞

1

tµ

∫ t

t0

sµ(t − s)µq(s)ds ≥ lim sup
t→∞

1

tµ

∫ t

t0

sµ(tµ − µstµ−1)q(s)ds = ∞,

let µ = α + 1, if ν + (n − 2)α > 1, we have

lim sup
t→∞

1

tµ−α−1

∫ t

t0

p(s)sµ−α−1(t − s)µ−α−1

(σn−2(s)σ′(s))α
ds = 2(n−1)α lim sup

t→∞

∫ t

t0

1

sν+(n−2)α
ds < ∞,

then from Corollary 2.3, Eq. (2.11) is oscillatory.

Theorem 2.2. Let the functions H and ρ be the same as in Theorem 2.1, and assume

also that

inf
s≥t0

{
lim inf

t→∞

H(t, s)

H(t, t0)

}
> 0.(2.12)

If there exists a function ϕ ∈ C([t0,∞), R) such that for all T ≥ t0 and for some

β > 1,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)ρ(s)q(s) −

βαC−α(n, θ)ρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(σn−2(s)σ′(s)H(t, s))α

]
ds ≥ ϕ(T )

(2.13)

and

lim sup
t→∞

∫ ∞

t0

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

ϕ
α+1

α

+ (s)ds = ∞,(2.14)

where ϕ+(s) = max{ϕ(s), 0}, then every solution of Eq. (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, introduce the function w(t)

through (2.6), we arrive at the inequality (2.9) holds for all t > T ≥ t1 and for any

β > 1. Thus we have,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)ρ(s)q(s) −

βαC−α(n, θ)ρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(σn−2(s)σ′(s)H(t, s))α

]
ds

≤ w(T ) −
α(β − 1)

β
C(n, θ) lim inf

t→∞

1

H(t, T )

∫ t

T

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds.

(2.15)

It follows from (2.13) that

w(T ) ≥ ϕ(T ) +
α(β − 1)

β
C(n, θ) lim inf

t→∞

1

H(t, T )

∫ t

T

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds

(2.16)
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for all T ≥ t1 and for some β > 1. Consequently,

ϕ(T ) ≤ w(T ),(2.17)

and

lim inf
t→∞

1

H(t, t1)

∫ t

t1

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds ≤
βC−1(n, θ)

α(β − 1)
(w(t1) − ϕ(t1)) < ∞.

(2.18)

Now we shall prove that
∫ ∞

t1

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds < ∞.(2.19)

Suppose to the contrary, that is
∫ ∞

t1

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds = ∞.(2.20)

Condition (2.12) implies existence of a λ > 0 such that

lim inf
t→∞

H(t, s)

H(t, t0)
> λ > 0,(2.21)

and there exists a T1 > t1 > t0 such that

H(t, T1)

H(t, t0)
≥ λ

for all t ≥ T1.

On the other hand, by virtue of (2.20), for any positive number K, there exists

a T2 > T1 such that for all t ≥ T2,
∫ t

t1

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds ≥
K

λ
.

Using integration by parts, we conclude that, for all t ≥ T2,

1

H(t, t1)

∫ t

t1

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds

=
1

H(t, t1)

∫ t

t1

[
−

∂H(t, s)

∂s

∫ s

t1

σn−2(τ)σ′(τ)

(ρ(τ)p(τ))
1

α

w
α+1

α (τ)dτ

]
ds

≥
K

λ

1

H(t, t0)

∫ t

T1

[
−

∂H(t, s)

∂s

]
ds =

K

λ

H(t, T1)

H(t, t0)
,(2.22)

it follows from (2.22) that, for all t ≥ T2,

1

H(t, t1)

∫ t

t1

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds ≥ K.

Since K is an arbitrary positive constant,

lim inf
t→∞

1

H(t, t1)

∫ t

t1

H(t, s)
σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds = ∞.
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Which contradicts (2.18). Consequently, (2.19) holds, and, by virtue of (2.17),
∫ ∞

t1

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

ϕ
α+1

α

+ (s)ds ≤

∫ ∞

t1

σn−2(s)σ′(s)

(ρ(s)p(s))
1

α

w
α+1

α (s)ds < ∞.

Which contradicts (2.14), therefore, Eq. (1.1) is oscillatory.

Choosing H(t, s) = (t − s)µ, ρ(s) = sµ, it is not difficult to see that condition

(2.12) holds. Consequently, one immediately derives from Theorem 2.2 the following

useful oscillation test for Eq .(1.1).

Corollary 2.4. If there exists a function ϕ ∈ C([t0,∞), R) such that for all T ≥ t0,

and for some β > 1,

lim sup
t→∞

1

tµ

∫ t

T

[
(t − s)µsµq(s) −

βαµα+1

(α + 1)α+1

p(s)tα+1sµ−α−1(t − s)µ−α−1

(C(n, θ)σn−2(s)σ′(s))α

]
ds ≥ ϕ(T )

(2.23)

and

lim sup
t→∞

∫ t

t0

σn−2(s)σ′(s)

p
1

α (s)s
µ

α

ϕ
α+1

α

+ (s)ds = ∞(2.24)

hold, then Eq. (1.1) is oscillatory.

Theorem 2.3. Let the functions H, ρ and ϕ(s) be the same as in Theorem 2.2, and

assume also that (2.12) be satisfied. If for some β > 1, and for all T ≥ t0,

lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)ρ(s)q(s) −

βαC−α(n, θ)ρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(σn−2(s)σ′(s)H(t, s))α

]
ds ≥ ϕ(T )

(2.25)

and (2.14) holds, then every solution of Eq. (1.1) is oscillatory.

Proof. The conclusion of the theorem follows immediately from the properties of

the limits

ϕ(T ) ≤ lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)ρ(s)q(s) −

βαC−α(n, θ)ρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(σn−2(s)σ′(s)H(t, s))α

]
ds

≤ lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)ρ(s)q(s) −

βαC−α(n, θ)ρ(s)p(s)hα+1
1 (t, s)

(α + 1)α+1(σn−2(s)σ′(s)H(t, s))α

]
ds

and Theorem 2.2.

Corollary 2.5. If there exists a function ϕ ∈ C([t0,∞), R) such that for all T ≥ t0,

and for some β > 1,

lim inf
t→∞

1

tµ

∫ t

T

[
(t − s)µsµq(s) −

βαµα+1

(α + 1)α+1

p(s)tα+1sµ−α−1(t − s)µ−α−1

(C(n, θ)σn−2(s)σ′(s))α

]
ds ≥ ϕ(T )

(2.26)

and (2.24) hold, then Eq. (1.1) is oscillatory.



304 R. XU AND Y. LV

If we choosing H(t, s) = (t − s)µ, ρ(s) = 1, then condition (2.12) holds, and we

derives from Theorem 2.2 the following oscillation test for Eq. (1.1).

Corollary 2.6. If there exists a function ϕ ∈ C([t0,∞), R) such that for all T ≥ t0,

for some β > 1,

lim sup
t→∞

1

tµ

∫ t

T

[
(t − s)µq(s) −

βαµα+1C−α(n, θ)

(α + 1)α+1

p(s)(t − s)µ−α−1

(σn−2(s)σ′(s))α

]
ds ≥ ϕ(T )

(2.27)

and

lim sup
t→∞

∫ t

t0

σn−2(s)σ′(s)ϕ
α+1

α

+ (s)

p
1

α (s)
ds = ∞(2.28)

hold, then Eq. (1.1) is oscillatory.

Remark 2.2. The parameter β in Theorem 2.2 and Theorem 2.3 is strictly larger

than one. This allows us to eliminate the conditions similar to (C2) which have

been assumed in most papers on the subject and shorten significantly the proofs of

Theorem 2.2 and Theorem 2.3.
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