NONLINEAR FIRST-ORDER SEMIPOSITONE PROBLEMS OF IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES

DA-BIN WANG AND WEN GUAN

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China

ABSTRACT. By using the well-known Guo-Krasnoselskii fixed point theorem, in this paper, some results of one positive solution to a class of nonlinear first-order semipositone problems of impulsive dynamic equations on time scales are obtained. One example is given to illustrate the main results in this paper.

AMS (MOS) Subject Classification. 39A10, 34B15.

1. INTRODUCTION

Let **T** be a time scale, i.e., **T** is a nonempty closed subset of R. Let 0, T be points in **T**, an interval $(0,T)_{\mathbf{T}}$ denoting time scales interval, that is, $(0,T)_{\mathbf{T}} := (0,T) \cap \mathbf{T}$. Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area of investigation, since it is a lot richer than the corresponding theory of differential equations without impulse effects. Moreover, such equations may exhibit several real world phenomena in physics, biology, engineering, etc. (see [3, 4, 20]). At the same time, the boundary value problems for impulsive differential equations and impulsive difference equations have received much attention [2, 10, 17, 18, 21–23, 25–28, 30, 32]. On the other hand, recently, the theory of dynamic equations on time scales has become a new important branch (see, for example, [1, 6, 7, 16, 19]). Naturally, some authors have focused their attention on the boundary value problems of impulsive dynamic equations on time scales [5, 8, 9, 12–15, 24, 33]. However, to the best of our knowledge, few papers concerning PBVPs of impulsive dynamic equations on time scales with semi-position condition.

In this paper, we are concerned with the existence of positive solutions for the following PBVPs of impulsive dynamic equations on time scales with semi-position condition

(1.1)
$$\begin{cases} x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, \ t \in J := [0, T]_{\mathbf{T}}, \ t \neq t_k, \ k = 1, 2, \dots, m, \\ x(t_k^+) - x(t_k^-) = I_k(x(t_k^-)), \ k = 1, 2, \dots, m, \\ x(0) = x(\sigma(T)), \end{cases}$$

where **T** is an arbitrary time scale, T > 0 is fixed, $0, T \in \mathbf{T}$, $f \in C(J \times [0, \infty), (-\infty, \infty))$, $I_k \in C([0, \infty), [0, \infty))$, $t_k \in (0, T)_{\mathbf{T}}$, $0 < t_1 < \ldots < t_m < T$, and for each $k = 1, 2, \ldots, m$, $x(t_k^+) = \lim_{h \to 0^+} x(t_k + h)$ and $x(t_k^-) = \lim_{h \to 0^-} x(t_k + h)$ represent the right and left limits of x(t) at $t = t_k$. We always assume that following hypothesis holds (semi-position condition):

(H) There exists a positive number M > 0 such that

$$Mx - f(t, x) \ge 0 \text{ for } x \in [0, \infty), \ t \in [0, T]_{\mathbf{T}}$$

By using the well-known Guo-Krasnoselskii fixed point theorem [11], some existence criteria of positive solution to problem (1.1) are established. We note that for the case $\mathbf{T} = R$ and $I_k(x) \equiv 0, k = 1, 2, ..., m$, problem (1.1) reduces to the problem studied by [29] and for the case $I_k(x) \equiv 0, k = 1, 2, ..., m$, problem (1.1) reduces to the problem (in the one-dimension case) studied by [31].

In the remainder of this section, we state the Guo-Krasnoselskii fixed point theorem [11].

Theorem 1.1 (Guo-Krasnoselskii). Let X be a Banach space and $K \subset X$ be a cone in X. Assume Ω_1, Ω_2 are bounded open subsets of X with $0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2$ and $\Phi: K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$ is a completely continuous operator such that, either:

- (i) $\|\Phi x\| \leq \|x\|, x \in K \cap \partial\Omega_1$, and $\|\Phi x\| \geq \|x\|, x \in K \cap \partial\Omega_2$; or
- (ii) $\|\Phi x\| \ge \|x\|$, $x \in K \cap \partial\Omega_1$, and $\|\Phi x\| \le \|x\|$, $x \in K \cap \partial\Omega_2$.

Then Φ has at least one fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

2. SOME RESULTS ON TIME SCALES

In this section, we state some fundamental definitions and results concerned time scales, so that the paper is self-contained. For more details, one can refer to [1, 6, 7, 16, 19].

Definition 2.1. Assume that $x : \mathbf{T} \to R$ and fix $t \in \mathbf{T}$ (if $t = \sup \mathbf{T}$, we assume t is not left-scattered). Then x is called differential at $t \in \mathbf{T}$ if there exists a $\theta \in R$ such that for any given $\varepsilon > 0$, there is an open neighborhood U of t such that

$$|x(\sigma(t)) - x(s) - \theta |\sigma(t) - s|| \le \varepsilon |\sigma(t) - s|, \ s \in U.$$

In this case, θ is called the delta derivative of x at $t \in \mathbf{T}$ and denote it by $\theta = x^{\Delta}(t)$.

If $F^{\Delta}(t) = f(t)$, then we define the delta integral by

$$\int_{a}^{t} f(s) \Delta s = F(t) - F(a).$$

Lemma 2.1. If $f \in C_{rd}$ and $t \in \mathbf{T}^k$, then

$$\int_{t}^{\sigma(t)} f(s) \Delta s = \mu(t) f(t),$$

where $\mu(t) = \sigma(t) - t$ is the graininess function.

Lemma 2.2. If $f^{\triangle} \ge 0$, then f is increasing.

Lemma 2.3. Assume that $f, g: \mathbf{T} \to R$ are delta derivative at t, then

$$(fg)^{\triangle}(t) = f^{\triangle}(t)g(t) + f(\sigma(t))g^{\triangle}(t) = f(t)g^{\triangle}(t) + f^{\triangle}(t)g(\sigma(t)).$$

Definition 2.2. A function $p: \mathbf{T} \to R$ is regressive provided

$$1 + \mu(t)p(t) \neq 0$$
 for all $t \in \mathbf{T}^k$.

The set of all regressive and rd-continuous functions will be denoted by \mathcal{R} .

Definition 2.3. We define the set \mathcal{R}^+ of all positively regressive elements of \mathcal{R} by

$$\mathcal{R}^+ = \{ p \in \mathcal{R} : 1 + \mu(t)p(t) > 0 \text{ for all } t \in \mathbf{T} \}.$$

Definition 2.4. If $p \in \mathcal{R}$, then the delta exponential function is given by

$$e_p(t,s) = \begin{cases} \exp\left(\int_s^t p(\tau) \triangle \tau\right) & \text{if } \mu(\tau) = 0, \\ \exp\left(\int_s^t \frac{1}{\mu(\tau)} Log(1+p(\tau)\mu(\tau)) \triangle \tau\right) & \text{if } \mu(\tau) \neq 0, \end{cases}$$

where Log is the principal logarithm.

Lemma 2.4. If $p \in \mathcal{R}$, then

(1) $e_p(t,t) \equiv 1;$ (2) $e_p(t,s) = \frac{1}{e_p(s,t)};$ (3) $e_p(t,u)e_p(u,s) = e_p(t,s);$ (4) $e_p^{\triangle}(t,t_0) = p(t)e_p(t,t_0), \text{ for } t \in \mathbf{T}^k \text{ and } t_0 \in \mathbf{T}.$ Lemma 2.5. If $p \in \mathcal{R}^+$ and $t_0 \in \mathbf{T}$, then

$$e_p(t,t_0) > 0$$
 for all $t \in \mathbf{T}$.

3. PRELIMINARIES

Throughout the rest of this paper, we always assume that the points of impulse t_k are right-dense for each k = 1, 2, ..., m.

We define

$$PC = \{ x \in [0, \sigma(T)]_{\mathbf{T}} \to R : x_k \in C(J_k, R), \ k = 1, 2, \dots, m \text{ and there exist} \\ x(t_k^+) \text{ and } x(t_k^-) \text{ with } x(t_k^-) = x(t_k), \ k = 1, 2, \dots, m \},$$

where x_k is the restriction of x to $J_k = (t_k, t_{k+1}]_{\mathbf{T}} \subset (0, \sigma(T)]_{\mathbf{T}}, k = 1, 2, ..., m$ and $J_0 = [0, t_1]_{\mathbf{T}}, J_{m+1} = \{\sigma(T)\}.$

Let

$$X = \{ x : x \in PC, \ x(0) = x(\sigma(T)) \}$$

with the norm $||x|| = \sup_{t \in [0, \sigma(T)]_{\mathbf{T}}} |x(t)|$. Then X is a Banach space.

Lemma 3.1. Suppose M > 0 and $h : [0, T]_{\mathbf{T}} \to R$ is *rd*-continuous, then x is a solution of

$$x(t) = \int_0^{\sigma(T)} G(t,s)h(s) \Delta s + \sum_{k=1}^m G(t,t_k)I_k(x(t_k)), \ t \in [0,\sigma(T)]_{\mathbf{T}},$$

where $G(t,s) = \begin{cases} \frac{e_M(s,t)e_M(\sigma(T),0)}{e_M(\sigma(T),0)-1}, & 0 \le s \le t \le \sigma(T), \\ \frac{e_M(s,t)}{e_M(\sigma(T),0)-1}, & 0 \le t < s \le \sigma(T), \end{cases}$ if and only if x is a solution of the boundary value problem

$$\begin{cases} x^{\Delta}(t) + Mx(\sigma(t)) = h(t), \ t \in J := [0, T]_{\mathbf{T}}, \ t \neq t_k, \ k = 1, 2, \dots, m, \\ x(t_k^+) - x(t_k^-) = I_k(x(t_k^-)), \ k = 1, 2, \dots, m, \\ x(0) = x(\sigma(T)). \end{cases}$$

Proof. Since the proof similar to that of [Lemma 3.1, 33], we omit it here. Lemma 3.2. Let G(t, s) be defined as Lemma 3.1, then

$$\frac{1}{e_M(\sigma(T), 0) - 1} \le G(t, s) \le \frac{e_M(\sigma(T), 0)}{e_M(\sigma(T), 0) - 1} \text{ for all } t, s \in [0, \sigma(T)]_{\mathbf{T}}$$

Proof. It is obviously, so we omit it here.

Remark 3.1. Let G(t,s) be defined as Lemma 3.1, then $\int_0^{\sigma(T)} G(t,s) \Delta s = \frac{1}{M}$. For $u \in X$, we consider the following prolem:

$$\begin{cases}
(3.1) \\
x^{\Delta}(t) + Mx(\sigma(t)) = Mu(\sigma(t)) - f(t, u(\sigma(t))), \ t \in [0, T]_{\mathbf{T}}, \ t \neq t_k, \ k = 1, 2, \dots, m, \\
x(t_k^+) - x(t_k^-) = I_k(x(t_k^-)), \ k = 1, 2, \dots, m, \\
x(0) = x(\sigma(T)).
\end{cases}$$

It follows from Lemma 3.1 that problem (3.1) has a unique solution:

$$x(t) = \int_0^{\sigma(T)} G(t,s) h_u(s) \Delta s + \sum_{k=1}^m G(t,t_k) I_k(x(t_k)), \ t \in [0,\sigma(T)]_{\mathbf{T}},$$

where $h_u(s) = Mu(\sigma(s)) - f(s, u(\sigma(s))).$

We define an operator $\Phi: X \to X$ by

$$\Phi(u)(t) = \int_0^{\sigma(T)} G(t,s)h_u(s)\Delta s + \sum_{k=1}^m G(t,t_k)I_k(u(t_k)), \ t \in [0,\sigma(T)]_{\mathbf{T}}$$

Lemma 3.3. $\Phi: X \to X$ is completely continuous.

Proof. The proof is divided into three steps.

Step 1: To show that $\Phi : X \to X$ is continuous.

Let $\{u_n\}_{n=1}^{\infty}$ be a sequence such that $u_n \to u$ $(n \to \infty)$ in X. Since f(t, u) and $I_k(u)$ are continuous in x, we have

$$|h_{u_n}(t) - h_u(t)| = |M(u_n - u) - (f(t, u_n) - f(t, u))| \to 0 \ (n \to \infty),$$
$$|I_k(u_n(t_k)) - I_k(u(t_k))| \to 0 \ (n \to \infty).$$

So

$$\begin{split} |\Phi(u_n)(t) - \Phi(u)(t)| \\ &= \left| \int_0^{\sigma(T)} G(t,s) \left[h_{u_n}(s) - h_u(s) \right] \Delta s + \sum_{k=1}^m G(t,t_k) \left[I_k(u_n(t_k)) - I_k(u(t_k)) \right] \right| \\ &\leq \frac{e_M(\sigma(T),0)}{e_M(\sigma(T),0) - 1} \left[\int_0^{\sigma(T)} |h_{u_n}(t) - h_u(t)| \Delta s + \sum_{k=1}^m |I_k(u_n(t_k)) - I_k(u(t_k))| \right] \\ &\to 0 \ (n \to \infty), \end{split}$$

which lead to $\|\Phi u_n - \Phi u\| \to 0$ $(n \to \infty)$. That is, $\Phi : X \to X$ is continuous.

Step 2: To show that Φ maps bounded sets into bounded sets in X.

Let $B \subset X$ be a bounded set, that is, $\exists r > 0$ such that $\forall u \in B$ we have $||u|| \leq r$. Then, for any $u \in B$, in virtue of the continuity of f(t, u) and $I_k(u)$, there exist $c > 0, c_k > 0$ such that

$$|f(t,u)| \le c, |I_k(u)| \le c_k, k = 1, 2, \dots, m.$$

We get

$$\begin{aligned} |\Phi(u)(t)| &= \left| \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s + \sum_{k=1}^{m} G(t,t_{k})I_{k}(u(t_{k})) \right| \\ &\leq \int_{0}^{\sigma(T)} G(t,s)\left|h_{u}(s)\right|\Delta s + \sum_{k=1}^{m} G(t,t_{k})\left|I_{k}(u(t_{k}))\right| \\ &\leq \frac{e_{M}(\sigma(T),0)}{e_{M}(\sigma(T),0)-1} \left[\sigma(T)\left(Mr+c\right) + \sum_{k=1}^{m} c_{k} \right]. \end{aligned}$$

Then we can conclude that Φu is bounded uniformly, and so $\Phi(B)$ is a bounded set.

Step 3: To show that Φ maps bounded sets into equicontinuous sets of X.

Let
$$t_1, t_2 \in [0, \sigma(T)]_{\mathbf{T}}, u \in B$$
, then

$$\begin{aligned} &|\Phi(u)(t_1) - \Phi(u)(t_2)| \\ &\leq \int_0^{\sigma(T)} |G(t_1, s) - G(t_2, s)| \, |h_u(s)| \, \triangle s + \sum_{k=1}^m |G(t_1, t_k) - G(t_2, t_k)| \, |I_k(u(t_k))| \, . \end{aligned}$$

The right-hand side tends to uniformly zero as $|t_1 - t_2| \rightarrow 0$.

Consequently, Step 1-3 together with the Arzela-Ascoli Theorem show that Φ : $X \to X$ is completely continuous.

Let

$$K = \{ u \in X : u(t) \ge \delta \| u \|, \ t \in [0, \sigma(T)]_{\mathbf{T}} \},\$$

where $\delta = \frac{1}{e_M(\sigma(T), 0)} \in (0, 1)$. It is not difficult to verify that K is a cone in X.

From Lemma 3.2, it is easy to obtain following result:

Lemma 3.4. Φ maps K into K.

4. MAIN RESULTS

Let

$$f^{0} = \lim_{u \to 0^{+}} \sup \max_{t \in [0,T]_{\mathbf{T}}} \frac{f(t,u)}{u}, f^{\infty} = \lim_{u \to \infty} \sup \max_{t \in [0,T]_{\mathbf{T}}} \frac{f(t,u)}{u},$$
$$f_{0} = \lim_{u \to 0^{+}} \inf \min_{t \in [0,T]_{\mathbf{T}}} \frac{f(t,u)}{u}, f_{\infty} = \lim_{u \to \infty} \inf \min_{t \in [0,T]_{\mathbf{T}}} \frac{f(t,u)}{u},$$

and

$$I_0 = \lim_{u \to 0^+} \frac{I_k(u)}{u}, \ I_\infty = \lim_{u \to \infty} \frac{I_k(u)}{u}$$

Now we state our main results.

Theorem 4.1. Suppose that

$$f_0 > 0, \ f^{\infty} < \frac{\delta - 1}{\delta}M; \ I_0 = 0, \ \text{for any } k.$$

Then the problem (1.1) has at least one positive solutions.

Proof. From the hypotheses we know there exist $\varepsilon > 0$ and $L_1 > r_1 > 0$ such that

$$f(t,u) \ge \varepsilon u, \ I_k(u) \le \frac{(e_M(\sigma(T), 0) - 1)\varepsilon}{Mme_M(\sigma(T), 0)}u, \text{ for any } k, \ 0 < u \le r_1;$$
$$f(t,u) \le \left(\frac{\delta - 1}{\delta}M - \varepsilon\right)u, \ u \ge L_1.$$

Let $\Omega_1 = \{u \in X : ||u|| < r_1\}$. It follows that for $u \in K$ with $||u|| = r_1$, we have

$$\Phi(u)(t) = \int_0^{\sigma(T)} G(t,s)h_u(s)\Delta s + \sum_{k=1}^m G(t,t_k)I_k(u(t_k))$$

$$\leq \int_0^{\sigma(T)} G(t,s) \left(M-\varepsilon\right)u(\sigma(s))\Delta s + \sum_{k=1}^m G(t,t_k)\frac{(e_M(\sigma(T),0)-1)\varepsilon}{Mme_M(\sigma(T),0)}u(t_k)$$

$$\leq \frac{(M-\varepsilon)}{M} \|u\| + \frac{e_M(\sigma(T),0)}{e_M(\sigma(T),0) - 1} \sum_{k=1}^m \frac{(e_M(\sigma(T),0) - 1)\varepsilon}{Mme_M(\sigma(T),0)} \|u\|$$

= $\|u\|$,

which yields

$$(4.1) \|\Phi u\| \le \|u\|, \ u \in K \cap \partial\Omega_1.$$

Set $\Omega_2 = \left\{ u \in X : \|u\| < \frac{L_1}{\delta} \right\}$. Since $u \in K \cap \partial \Omega_2$, we have $u(t) \ge \delta \|u\| = L_1$. Hence for $u \in K \cap \partial \Omega_2$, we have

$$\Phi(u)(t) = \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s + \sum_{k=1}^{m} G(t,t_{k})I_{k}(u(t_{k}))$$

$$\geq \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s$$

$$\geq \int_{0}^{\sigma(T)} G(t,s)\left(M + \frac{1-\delta}{\delta}M + \varepsilon\right)u(\sigma(s))\Delta s$$

$$\geq \frac{1}{M}\left(\frac{1}{\delta}M + \varepsilon\right)\delta \|u\|$$

$$\geq \|u\|,$$

which implies

$$\|\Phi u\| \ge \|u\|, \ x \in K \cap \partial\Omega_2.$$

Therefore, from (4.1), (4.2) and Theorem 1.1, it follows that Φ has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$, that is, the problem (1.1) has at least one positive solution.

Theorem 4.2. Suppose that

$$f_{\infty} > 0, \ f^0 < \frac{\delta - 1}{\delta}M; \ I_{\infty} = 0, \ \text{for any } k.$$

Then the problem (1.1) has at least one positive solutions.

Proof. From the hypotheses we know there exist $\varepsilon' > 0$ and $L_2 > r_2 > 0$ such that

$$f(t,u) \ge \varepsilon' u, \ I_k(u) \le \frac{(e_M(\sigma(T), 0) - 1)\varepsilon'}{Mme_M(\sigma(T), 0)} u, \text{ for any } k, \ u \ge L_2;$$
$$f(t,u) \le \left(\frac{\delta - 1}{\delta}M - \varepsilon'\right) u, \ 0 < u \le r_2.$$

Let $\Omega_1 = \left\{ u \in X : \|u\| < \frac{L_2}{\delta} \right\}$. Since $u \in K \cap \partial \Omega_1$, we have $u(t) \ge \delta \|u\| = L_2$. Hence for $u \in K \cap \partial \Omega_1$, we have

$$\Phi(u)(t) = \int_0^{\sigma(T)} G(t,s)h_u(s)\Delta s + \sum_{k=1}^m G(t,t_k)I_k(u(t_k))$$

$$\leq \int_0^{\sigma(T)} G(t,s)\left(M - \varepsilon'\right)u(\sigma(s))\Delta s + \sum_{k=1}^m G(t,t_k)\frac{(e_M(\sigma(T),0) - 1)\varepsilon'}{Mme_M(\sigma(T),0)}u(t_k)$$

$$\leq \frac{(M-\varepsilon')}{M} \|u\| + \frac{e_M(\sigma(T),0)}{e_M(\sigma(T),0)-1} \sum_{k=1}^m \frac{(e_M(\sigma(T),0)-1)\varepsilon'}{Mme_M(\sigma(T),0)} \|u\|$$

= $\|u\|$,

which yields

$$(4.3) \|\Phi u\| \le \|u\|, \ u \in K \cap \partial\Omega_1.$$

Set $\Omega_2 = \{x \in X : ||u|| < r_2\}$. It follows that for $u \in K$ with $||u|| = r_2$, we have

$$\Phi(u)(t) = \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s + \sum_{k=1}^{m} G(t,t_{k})I_{k}(u(t_{k}))$$

$$\geq \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s$$

$$\geq \int_{0}^{\sigma(T)} G(t,s)\left(M + \frac{1-\delta}{\delta}M + \varepsilon'\right)u(\sigma(s))\Delta s$$

$$\geq \frac{1}{M}\left(\frac{1}{\delta}M + \varepsilon'\right)\delta \|u\|$$

$$\geq \|u\|,$$

which implies

$$(4.4) \|\Phi u\| \ge \|u\|, \ u \in K \cap \partial\Omega_2$$

Hence, from (4.3), (4.4) and Theorem 1.1, it follows that Φ has a fixed point in $K \cap (\overline{\Omega}_1 \setminus \Omega_2)$, that is, the problem (1.1) has at least one positive solution.

5. EXAMPLE

Example 5.1. Let $\mathbf{T} = [0, 1] \cup [2, 3]$. We consider the following problem on \mathbf{T}

(5.1)
$$\begin{cases} x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, \ t \in [0, 3]_{\mathbf{T}}, \ t \neq \frac{1}{2}, \\ x\left(\frac{1}{2}^{+}\right) - x\left(\frac{1}{2}^{-}\right) = I(x(\frac{1}{2})), \\ x(0) = x(3), \end{cases}$$

where T = 3, $f(t, x) = x - (t + 1)x^2$, and $I(x) = x^2$.

Let M = 1, then $\delta = \frac{1}{2e^2}$, it is easy to see that

$$Mx - f(t, x) = (t+1)x^2 \ge 0 \text{ for } x \in [0, \infty), \ t \in [0, 3]_{\mathbf{T}}$$

and

$$f_0 \ge 1, \ f^{\infty} = -\infty, \ \text{and} \ I_0 = 0.$$

Therefore, by Theorem 4.1, it follows that the problem (5.1) has at least one positive solution.

Acknowledgment: This work is supported by the Excellent Young Teacher Training Program of Lanzhou University of Technology (Q200907).

REFERENCES

- R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, *Results Math.*, 35:3–22, 1999.
- [2] R. P. Agarwal and D. O'Regan, Multiple nonnegative solutions for second order impulsive differential equations, *Appl. Math. Comput.*, 114:51–59, 2000.
- [3] D. D. Bainov and P. S. Simeonov, Systems with impulse effect: stability theorey and applications, Horwood, Chicester, 1989.
- [4] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical, Harlow, 1993.
- [5] A. Belarbi, M. Benchohra and A. Ouahab, Existence results for impulsive dynamic inclusions on time scales, *Electron. J. Qualitative Theory Differential Equations*, 12:1-22, 2005.
- [6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
- [7] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
- [8] M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, On first order impulsive dynamic equations on time scales, J. Difference Equ. Appl., 6:541–548, 2004.
- [9] M. Benchohra, S. K. Ntouyas and A. Ouahab, Existence results for second-order bounary value problem of impulsive dynamic equations on time scales, J. Math. Anal. Appl., 296:65–73, 2004.
- [10] M. Feng, B. Du and W. Ge, Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian, Nonlinear Anal., 70:3119-3126, 2009.
- [11] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- [12] F. Geng, D. Zhu and Q. Lu, A new existence result for impulsive dynamic equations on timescales, Appl. Math. Lett., 20:206–212, 2007.
- [13] F. Geng, Y. Xu and D. Zhu, Periodic boundary value problems for first-order impulsive dynamic equations on time scales, *Nonlinear Anal.*, 69:4074-4087, 2008.
- [14] J. R. Graef and A. Ouahab, Extremal solutions for nonresonance impulsive functional dynamic equations on time scales, *Appl. Math. Comput.*, 196:333-339, 2008.
- [15] J. Henderson, Double solutions of impulsive dynamic boundary value problems on time scale, J. Difference Equ. Appl., 8:345–356, 2002.
- [16] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, *Results Math.*, 18:18–56, 1990.
- [17] Z. He and J. S. Yu, Periodic boundary value problem for first order impulsive functional differential equations, J. Comput. Appl. Math., 138:205–217, 2002.
- [18] Z. He and X. Zhang, Monotone iteative technique for first order impulsive differential equations with peroidic boundary conditions, *Appl. Math. Comput.*, 156:605–620, 2004.
- [19] B. Kaymakcalan, V. Lakshmikantham and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
- [20] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

- [21] J. L. Li and J. H. Shen, Existence of positive periodic solutions to a class of functional differential equations with impulses, *Mathematica Applicata*, (17):456-463, 2004.
- [22] J. L. Li, J. J. Nieto and J. Shen, Impulsive periodic boundary value problems of first-order differential equastions, J. Math. Anal. Appl., 325:226–236, 2007.
- [23] J. L. Li and J. H. Shen, Positive solutions for first-order difference equation with impulses, Int. J. Differ. Equ., 2:225-239, 2006.
- [24] J. L. Li and J. H. Shen, Existence results for second-order impulsive boundary value problems on time scales, *Nonlinear Anal.*, 70:1648-1655, 2009.
- [25] X. Liu, Nonlinear boundary value problems for firster order impulsive integro-differential equations, Appl. Anal., 36:119–130, 1990.
- [26] J. J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl., 205:423–433, 1997.
- [27] J. J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Lett., 15:489–493, 2002.
- [28] J. J. Nieto, Periodic boundary value problems for first-order impulsive ordinary differential equations, Nonlinear Anal., 51:1223–1232, 2002.
- [29] S. Peng, Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 158:345–351, 2004.
- [30] Z. Qiu and S. Peng, Positive solutions for first order periodic boundary value problem with impulses, Journal of Guangdong University of Technology (Chinese), 24:85–88, 2007.
- [31] J. P. Sun and W. T. Li, Positive solution for system of nonlinear first-order PBVPs on time scales, *Nonlinear Anal.*, 62:131–139, 2005.
- [32] A. S. Vatsala and Y. Sun, Periodic boundary value problems of impulsive differential equations, *Appl. Anal.*, 44:145–158, 1992.
- [33] D. B. Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales, *Comput. Math. Appl.*, 56:1496-1504, 2008.