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ABSTRACT. By using the well-known Guo-Krasnoselskii fixed point theorem, in this paper, some

results of one positive solution to a class of nonlinear first-order semipositone problems of impulsive

dynamic equations on time scales are obtained. One example is given to illustrate the main results

in this paper.
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1. INTRODUCTION

Let T be a time scale, i.e., T is a nonempty closed subset of R. Let 0, T be points

in T, an interval (0, T )
T

denoting time scales interval, that is, (0, T )
T

:= (0, T ) ∩ T.

Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area

of investigation, since it is a lot richer than the corresponding theory of differential

equations without impulse effects. Moreover, such equations may exhibit several real

world phenomena in physics, biology, engineering, etc. (see [3, 4, 20]). At the same

time, the boundary value problems for impulsive differential equations and impulsive

difference equations have received much attention [2, 10, 17, 18, 21–23, 25–28, 30,

32]. On the other hand, recently, the theory of dynamic equations on time scales has

become a new important branch (see, for example, [1, 6, 7, 16, 19]). Naturally, some

authors have focused their attention on the boundary value problems of impulsive

dynamic equations on time scales [5, 8, 9, 12–15, 24, 33]. However, to the best of our

knowledge, few papers concerning PBVPs of impulsive dynamic equations on time

scales with semi-position condition.

In this paper, we are concerned with the existence of positive solutions for the

following PBVPs of impulsive dynamic equations on time scales with semi-position
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condition

(1.1)











x△(t) + f(t, x(σ(t))) = 0, t ∈ J := [0, T ]
T

, t 6= tk, k = 1, 2, . . . , m,

x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T )),

where T is an arbitrary time scale, T > 0 is fixed, 0, T ∈ T , f ∈ C (J × [0,∞) , (−∞,∞)),

Ik ∈ C ([0,∞) , [0,∞)) , tk ∈ (0, T )
T
, 0 < t1 < . . . < tm < T, and for each

k = 1, 2, . . . , m, x(t+k ) = limh→0+ x(tk + h) and x(t−k ) = limh→0− x(tk + h) repre-

sent the right and left limits of x(t) at t = tk. We always assume that following

hypothesis holds (semi-position condition):

(H) There exists a positive number M > 0 such that

Mx − f(t, x) ≥ 0 for x ∈ [0,∞) , t ∈ [0, T ]
T

.

By using the well-known Guo-Krasnoselskii fixed point theorem [11], some exis-

tence criteria of positive solution to problem (1.1) are established. We note that for

the case T = R and Ik(x) ≡ 0, k = 1, 2, . . . , m, problem (1.1) reduces to the problem

studied by [29] and for the case Ik(x) ≡ 0, k = 1, 2, . . . , m, problem (1.1) reduces to

the problem (in the one-dimension case) studied by [31].

In the remainder of this section, we state the Guo-Krasnoselskii fixed point the-

orem [11].

Theorem 1.1 (Guo-Krasnoselskii). Let X be a Banach space and K ⊂ X be a

cone in X. Assume Ω1, Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2

and Φ : K ∩ (Ω2\Ω1) → K is a completely continuous operator such that, either:

(i) ‖Φx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Φx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω2; or

(ii) ‖Φx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Φx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω2.

Then Φ has at least one fixed point in K ∩ (Ω2\Ω1).

2. SOME RESULTS ON TIME SCALES

In this section, we state some fundamental definitions and results concerned time

scales, so that the paper is self-contained. For more details, one can refer to [1, 6, 7,

16, 19].

Definition 2.1. Assume that x : T →R and fix t ∈ T (if t = supT, we assume

t is not left-scattered). Then x is called differential at t ∈ T if there exists a θ ∈ R

such that for any given ε > 0, there is an open neighborhood U of t such that

|x(σ(t)) − x(s) − θ |σ(t) − s|| ≤ ε |σ(t) − s| , s ∈ U.

In this case, θ is called the delta derivative of x at t ∈ T and denote it by θ = x△(t).
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If F△(t) = f(t), then we define the delta integral by

∫ t

a

f(s)△s = F (t) − F (a).

Lemma 2.1. If f ∈ Crd and t ∈ Tk, then

∫ σ(t)

t

f(s)△s = µ(t)f(t),

where µ(t) = σ(t) − t is the graininess function.

Lemma 2.2. If f△ ≥ 0, then f is increasing.

Lemma 2.3. Assume that f, g : T →R are delta derivative at t, then

(fg)△(t) = f△(t)g(t) + f(σ(t))g△(t) = f(t)g△(t) + f△(t)g(σ(t)).

Definition 2.2. A function p : T →R is regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ Tk.

The set of all regressive and rd-continuous functions will be denoted by R.

Definition 2.3. We define the set R+ of all positively regressive elements of R

by

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Definition 2.4. If p ∈ R, then the delta exponential function is given by

ep(t, s) =







exp
(

∫ t

s
p(τ)△τ

)

if µ(τ) = 0,

exp
(

∫ t

s
1

µ(τ)
Log(1 + p(τ)µ(τ))△τ

)

if µ(τ) 6= 0,

where Log is the principal logarithm.

Lemma 2.4. If p ∈ R, then

(1) ep(t, t) ≡ 1;

(2) ep(t, s) = 1
ep(s,t)

;

(3) ep(t, u)ep(u, s) = ep(t, s);

(4) e△p (t, t0) = p(t)ep(t, t0), for t ∈ Tk and t0 ∈ T.

Lemma 2.5. If p ∈ R+ and t0 ∈ T, then

ep(t, t0) > 0 for all t ∈ T.
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3. PRELIMINARIES

Throughout the rest of this paper, we always assume that the points of impulse

tk are right-dense for each k = 1, 2, . . . , m.

We define

PC = {x ∈ [0, σ(T )]T → R : xk ∈ C(Jk, R), k = 1, 2, . . . , m and there exist

x(t+k ) and x(t−k ) with x(t−k ) = x(tk), k = 1, 2, . . . , m
}

,

where xk is the restriction of x to Jk = (tk, tk+1]T ⊂ (0, σ(T )]T, k = 1, 2, . . . , m and

J0 = [0, t1]T, Jm+1 = {σ(T )}.

Let

X = {x : x ∈ PC, x(0) = x(σ(T ))}

with the norm ‖x‖ = sup t∈[0,σ(T )]T
|x(t)| . Then X is a Banach space.

Lemma 3.1. Suppose M > 0 and h : [0, T ]T → R is rd-continuous, then x is a

solution of

x(t) =

∫ σ(T )

0

G(t, s)h(s)△s +
m

∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T,

where G(t, s) =

{

eM (s,t)eM (σ(T ),0)
eM (σ(T ),0)−1

, 0 ≤ s ≤ t ≤ σ(T ),
eM (s,t)

eM (σ(T ),0)−1
, 0 ≤ t < s ≤ σ(T ),

if and only if x is a solution

of the boundary value problem










x△(t) + Mx(σ(t)) = h(t), t ∈ J := [0, T ]
T

, t 6= tk, k = 1, 2, . . . , m,

x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T )).

Proof. Since the proof similar to that of [Lemma 3.1, 33], we omit it here.

Lemma 3.2. Let G(t, s) be defined as Lemma 3.1, then

1

eM(σ(T ), 0) − 1
≤ G(t, s) ≤

eM(σ(T ), 0)

eM(σ(T ), 0) − 1
for all t, s ∈ [0, σ(T )]T.

Proof. It is obviously, so we omit it here.

Remark 3.1. Let G(t, s) be defined as Lemma 3.1, then
∫ σ(T )

0
G(t, s)△s = 1

M
.

For u ∈ X, we consider the following prblem:

(3.1)










x△(t) + Mx(σ(t)) = Mu(σ(t)) − f(t, u(σ(t))), t ∈ [0, T ]
T

, t 6= tk, k = 1, 2, . . . , m,

x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T )).

It follows from Lemma 3.1 that problem (3.1) has a unique solution:

x(t) =

∫ σ(T )

0

G(t, s)hu(s)△s +
m

∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T,
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where hu(s) = Mu(σ(s)) − f(s, u(σ(s))).

We define an operator Φ : X → X by

Φ(u)(t) =

∫ σ(T )

0

G(t, s)hu(s)△s +

m
∑

k=1

G(t, tk)Ik(u(tk)), t ∈ [0, σ(T )]T.

Lemma 3.3. Φ : X → X is completely continuous.

Proof. The proof is divided into three steps.

Step 1: To show that Φ : X → X is continuous.

Let {un}
∞
n=1 be a sequence such that un → u (n → ∞) in X. Since f(t, u) and

Ik(u) are continuous in x, we have

|hun
(t) − hu(t)| = |M(un − u) − (f(t, un) − f(t, u))| → 0 (n → ∞),

|Ik(un(tk)) − Ik(u(tk))| → 0 (n → ∞).

So

|Φ(un)(t) − Φ(u)(t)|

=

∣

∣

∣

∣

∣

∫ σ(T )

0

G(t, s) [hun
(s) − hu(s)]△s +

m
∑

k=1

G(t, tk) [Ik(un(tk)) − Ik(u(tk))]

∣

∣

∣

∣

∣

≤
eM(σ(T ), 0)

eM (σ(T ), 0) − 1

[

∫ σ(T )

0

|hun
(t) − hu(t)|△s +

m
∑

k=1

|Ik(un(tk)) − Ik(u(tk))|

]

→ 0 (n → ∞),

which lead to ‖Φun − Φu‖ → 0 (n → ∞) . That is, Φ : X → X is continuous.

Step 2: To show that Φ maps bounded sets into bounded sets in X.

Let B ⊂ X be a bounded set, that is, ∃ r > 0 such that ∀ u ∈ B we have

‖u‖ ≤ r. Then, for any u ∈ B, in virtue of the continuity of f(t, u) and Ik(u), there

exist c > 0, ck > 0 such that

|f(t, u)| ≤ c, |Ik(u)| ≤ ck, k = 1, 2, . . . , m.

We get

|Φ(u)(t)| =

∣

∣

∣

∣

∣

∫ σ(T )

0

G(t, s)hu(s)△s +

m
∑

k=1

G(t, tk)Ik(u(tk))

∣

∣

∣

∣

∣

≤

∫ σ(T )

0

G(t, s) |hu(s)|△s +
m

∑

k=1

G(t, tk) |Ik(u(tk))|

≤
eM(σ(T ), 0)

eM(σ(T ), 0) − 1

[

σ(T ) (Mr + c) +

m
∑

k=1

ck

]

.

Then we can conclude that Φu is bounded uniformly, and so Φ(B) is a bounded set.

Step 3: To show that Φ maps bounded sets into equicontinuous sets of X.
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Let t1, t2 ∈ [0, σ(T )]T, u ∈ B, then

|Φ(u)(t1) − Φ(u)(t2)|

≤

∫ σ(T )

0

|G(t1, s) − G(t2, s)| |hu(s)|△s +
m

∑

k=1

|G(t1, tk) − G(t2, tk)| |Ik(u(tk))| .

The right-hand side tends to uniformly zero as |t1 − t2| → 0.

Consequently, Step 1-3 together with the Arzela-Ascoli Theorem show that Φ :

X → X is completely continuous.

Let

K = {u ∈ X : u(t) ≥ δ ‖u‖ , t ∈ [0, σ(T )]T} ,

where δ = 1
eM (σ(T ), 0)

∈ (0, 1). It is not difficult to verify that K is a cone in X.

From Lemma 3.2, it is easy to obtain following result:

Lemma 3.4. Φ maps K into K.

4. MAIN RESULTS

Let

f 0 = lim
u→0+

sup max
t∈[0,T ]

T

f(t, u)

u
, f∞ = lim

u→∞
sup max

t∈[0,T ]
T

f(t, u)

u
,

f0 = lim
u→0+

inf min
t∈[0,T ]

T

f(t, u)

u
, f∞ = lim

u→∞
inf min

t∈[0,T ]
T

f(t, u)

u
,

and

I0 = lim
u→0+

Ik(u)

u
, I∞ = lim

u→∞

Ik(u)

u
.

Now we state our main results.

Theorem 4.1. Suppose that

f0 > 0, f∞ <
δ − 1

δ
M ; I0 = 0, for any k.

Then the problem (1.1) has at least one positive solutions.

Proof. From the hypotheses we know there exist ε > 0 and L1 > r1 > 0 such

that

f(t, u) ≥ εu, Ik(u) ≤
(eM (σ(T ), 0) − 1)ε

MmeM (σ(T ), 0)
u, for any k, 0 < u ≤ r1;

f(t, u) ≤

(

δ − 1

δ
M − ε

)

u, u ≥ L1.

Let Ω1 = {u ∈ X : ‖u‖ < r1} . It follows that for u ∈ K with ‖u‖ = r1, we have

Φ(u)(t) =

∫ σ(T )

0

G(t, s)hu(s)△s +

m
∑

k=1

G(t, tk)Ik(u(tk))

≤

∫ σ(T )

0

G(t, s) (M − ε)u(σ(s))△s +
m

∑

k=1

G(t, tk)
(eM(σ(T ), 0) − 1)ε

MmeM (σ(T ), 0)
u(tk)
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≤
(M − ε)

M
‖u‖ +

eM(σ(T ), 0)

eM(σ(T ), 0) − 1

m
∑

k=1

(eM(σ(T ), 0) − 1)ε

MmeM (σ(T ), 0)
‖u‖

= ‖u‖ ,

which yields

(4.1) ‖Φu‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω1.

Set Ω2 =
{

u ∈ X : ‖u‖ < L1

δ

}

. Since u ∈ K ∩∂Ω2, we have u(t) ≥ δ ‖u‖ = L1. Hence

for u ∈ K ∩ ∂Ω2, we have

Φ(u)(t) =

∫ σ(T )

0

G(t, s)hu(s)△s +

m
∑

k=1

G(t, tk)Ik(u(tk))

≥

∫ σ(T )

0

G(t, s)hu(s)△s

≥

∫ σ(T )

0

G(t, s)

(

M +
1 − δ

δ
M + ε

)

u(σ(s))△s

≥
1

M

(

1

δ
M + ε

)

δ ‖u‖

≥ ‖u‖ ,

which implies

(4.2) ‖Φu‖ ≥ ‖u‖ , x ∈ K ∩ ∂Ω2.

Therefore, from (4.1), (4.2) and Theorem 1.1, it follows that Φ has a fixed point in

K ∩
(

Ω2\Ω1

)

, that is, the problem (1.1) has at least one positive solution.

Theorem 4.2. Suppose that

f∞ > 0, f 0 <
δ − 1

δ
M ; I∞ = 0, for any k.

Then the problem (1.1) has at least one positive solutions.

Proof. From the hypotheses we know there exist ε′ > 0 and L2 > r2 > 0 such

that

f(t, u) ≥ ε′u, Ik(u) ≤
(eM(σ(T ), 0) − 1)ε′

MmeM (σ(T ), 0)
u, for any k, u ≥ L2;

f(t, u) ≤

(

δ − 1

δ
M − ε′

)

u, 0 < u ≤ r2.

Let Ω1 =
{

u ∈ X : ‖u‖ < L2

δ

}

. Since u ∈ K ∩∂Ω1, we have u(t) ≥ δ ‖u‖ = L2. Hence

for u ∈ K ∩ ∂Ω1, we have

Φ(u)(t) =

∫ σ(T )

0

G(t, s)hu(s)△s +

m
∑

k=1

G(t, tk)Ik(u(tk))

≤

∫ σ(T )

0

G(t, s) (M − ε′) u(σ(s))△s +
m

∑

k=1

G(t, tk)
(eM(σ(T ), 0) − 1)ε′

MmeM (σ(T ), 0)
u(tk)
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≤
(M − ε′)

M
‖u‖ +

eM(σ(T ), 0)

eM(σ(T ), 0) − 1

m
∑

k=1

(eM(σ(T ), 0) − 1)ε′

MmeM (σ(T ), 0)
‖u‖

= ‖u‖ ,

which yields

(4.3) ‖Φu‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω1.

Set Ω2 = {x ∈ X : ‖u‖ < r2} . It follows that for u ∈ K with ‖u‖ = r2, we have

Φ(u)(t) =

∫ σ(T )

0

G(t, s)hu(s)△s +
m

∑

k=1

G(t, tk)Ik(u(tk))

≥

∫ σ(T )

0

G(t, s)hu(s)△s

≥

∫ σ(T )

0

G(t, s)

(

M +
1 − δ

δ
M + ε′

)

u(σ(s))△s

≥
1

M

(

1

δ
M + ε′

)

δ ‖u‖

≥ ‖u‖ ,

which implies

(4.4) ‖Φu‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω2.

Hence, from (4.3), (4.4) and Theorem 1.1, it follows that Φ has a fixed point in

K ∩
(

Ω1\Ω2

)

, that is, the problem (1.1) has at least one positive solution.

5. EXAMPLE

Example 5.1. Let T = [0, 1] ∪ [2, 3]. We consider the following problem on T

(5.1)















x△(t) + f(t, x(σ(t))) = 0, t ∈ [0, 3]
T

, t 6= 1
2
,

x
(

1
2

+
)

− x
(

1
2

−
)

= I(x(1
2
)),

x(0) = x(3),

where T = 3, f(t, x) = x − (t + 1)x2, and I(x) = x2.

Let M = 1, then δ = 1
2e2 , it is easy to see that

Mx − f(t, x) = (t + 1)x2 ≥ 0 for x ∈ [0,∞) , t ∈ [0, 3]
T

,

and

f0 ≥ 1, f∞ = −∞, and I0 = 0.

Therefore, by Theorem 4.1, it follows that the problem (5.1) has at least one positive

solution.
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