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ABSTRACT. The application of the monotone iterative method to neutral differential equations

with deviating arguments is considered in this paper. We formulate existence results giving suffi-

cient conditions which guarantee that such problems have solutions. This approach is new and to

the Authors’ knowledge, this is the first paper when the monotone iterative method is applied to

neutral first–order differential equations with deviating arguments. An example is given to illustrate

theoretical results. One may apply a numerical method based on the proposed monotone iterative

method to obtain a numerical solution of our problems.
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1. INTRODUCTION

In this paper, we investigate initial value problems for first order neutral differ-

ential equations with delayed arguments of the form:

(1.1)

{

x′(t) = f(t, x′(t), x′(β(t)), x(t), x(α(t))), t ∈ J = [0, T ],

x(0) = 0,

where

H1 : f ∈ C(J × IR × IR × IR × IR, IR), α, β ∈ C(J, J) and α(t) ≤ t, β(t) ≤ t on J .

If f does not depend on the second and third arguments, then problem (1.1) is

not of neutral type which was considered, for example, in paper [1].

Also in this paper, we discuss the following problem:

(1.2)

{

x′(t) = g(t, x′(t), x′(β(t)), x(t), x(α(t))), t ∈ J = [0, T ],

x(T ) = 0,

where

H1
1 : g ∈ C(J × IR × IR × IR × IR, IR), α, β ∈ C(J, J) and α(t) ≥ t, β(t) ≥ t on J .
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If g does not depend on the second and third arguments then problem (1.2) is

not of neutral type which was discussed, for example, in paper [2].

An interesting and fruitful technique for proving existence results for nonlinear

differential problems is the monotone iterative method (see, for example, [3] for de-

tails). We have many applications of this method both to initial and boundary value

problems.

We want to apply the monotone iterative method also to the neutral differential

problems of types (1.1) and (1.2). To apply it, we first make the substitution y(t) =

x′(t). Then problem (1.1) is equivalent to the following equation:

(1.3) y(t) = f

(

t, y(t), y(β(t)),

∫ t

0

y(s)ds,

∫ α(t)

0

y(s)ds

)

≡ (Fy)(t), t ∈ J.

Similarly, problem (1.2) takes now the form:

(1.4) y(t) = g

(

t, y(t), y(β(t)),−

∫ T

t

y(s)ds,−

∫ T

α(t)

y(s)ds

)

≡ (Gy)(t), t ∈ J.

2. MAIN RESULTS

First of all, we investigate problems (1.3) and (1.1).

We say that u ∈ C(J, IR) is called a lower solution of (1.3) if

u(t) ≤ (Fu)(t), t ∈ J,

and it is an upper solution of (1.3) if the above inequality is reversed.

Now we formulate conditions under which problem (1.3) has extremal solutions

in a corresponding sector bounded by lower and upper solutions of problem (1.3).

Theorem 2.1. Let assumption H1 hold. Let y0, z0 ∈ C(J, IR) be the lower and upper

solutions of (1.3), respectively and y0(t) ≤ z0(t), t ∈ J. In addition, let us assume

that the following assumptions hold:

H2 : f is nondecreasing with respect to the last three variables,

H3 : there exists a constant K > −1, such that

f(t, u, v1, v2, v3) − f(t, ū, v1, v2, v3) ≤ K(ū − u)

for y0 ≤ u ≤ ū ≤ z0.

Then problem (1.3) has, in the sector [y0, z0]∗, minimum and maximum solutions,

where

[y0, z0]∗ = {v ∈ C(J, IR) : y0(t) ≤ v(t) ≤ z0(t), t ∈ J} .
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Proof. Let

yn+1(t) = (Fyn)(t) − K[yn+1(t) − yn(t)], t ∈ J,

zn+1(t) = (Fzn)(t) − K[zn+1(t) − zn(t)], t ∈ J

for n = 0, 1, . . . , with the operator F defined as in formula (1.3).

Observe that functions y1, z1 are well defined. First, we prove that

(2.1) y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Put p = y0 − y1, q = z1 − z0. It leads to

p(t) ≤ (Fy0)(t) − (Fy0)(t) − Kp(t) = −Kp(t)

q(t) ≤ (Fz0)(t) − (Fz0)(t) − Kq(t) = −Kq(t).

This shows that y0(t) ≤ y1(t), z1(t) ≤ z0(t), t ∈ J. Now, we put p = y1 − z1. In view

of assumptions H2, H3 we have

p(t) = (Fy0)(t) − (Fz0)(t) − K[y1(t) − y0(t) − z1(t) + z0(t)] ≤ −Kp(t).

Hence, y1(t) ≤ z1(t) on J. It proves (2.1).

In the next step we show that y1, z1 are the lower and upper solutions of problem

(1.3). Note that

y1(t) = (Fy0)(t) − (Fy1)(t) + (Fy1)(t) − K[y1(t) − y0(t)] ≤ (Fy1)(t),

z1(t) = (Fz0)(t) − (Fz1)(t) + (Fz1)(t) − K[z1(t) − z0(t)] ≥ (Fz1)(t),

by assumptions H2, H3. This proves that y1, z1 are the lower and upper solutions of

problem (1.3).

Using the mathematical induction, we can show that

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ yn+1(t) ≤ zn+1(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t)

for t ∈ J and n = 0, 1, . . . .

It is easy to see that sequences {yn, zn} converge uniformly and monotonically to

the limit functions y and z, respectively; where y and z are solutions of the following

problems:

y(t) = (Fy)(t), t ∈ J,

z(t) = (Fz)(t), t ∈ J

with y0 ≤ y ≤ z ≤ z0.

Now, we need to show that y and z are extremal solutions of problem (1.3) in

the sector [y0, z0]∗. Let v be any solution of problem (1.3) such that y0 ≤ v ≤ z0. Put

p = y1 − v, q = v − z1. Then, in view of assumptions H2 and H3, we see that

p(t) = (Fy0)(t) − K[y1(t) − y0(t)] − (Fv)(t) ≤ −Kp(t),

q(t) = (Fv)(t) − (Fz0)(t) + K[z1(t) − z0(t)] ≤ −Kq(t).

This shows that y1 ≤ v ≤ z1. By induction, we can show that

yn ≤ v ≤ zn.
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Now, if n → ∞, then we have the assertion of this theorem.

Our next theorem concerns the case when problem (1.3) has a unique solution.

Theorem 2.2. Let all assumptions of Theorem 2.1 be satisfied. In addition, we

assume that Assumption H4 hold, where

H4 : there exists nonnegative constants M1, M2, M3, M4, −K ≤ M1 such that

(2.2) ρ ≡ M1 + M2 + T (M3 + M4) < 1

and

f(t, u1, v1, v2, v3) − f(t, ū1, v̄1, v̄2, v̄3) ≤ M1(u1 − ū1) + M2(v1 − v̄1)

+M3(v3 − v̄3) + M4(v4 − v̄4)

if y0(0) ≤ ū1 ≤ u1 ≤ z0(0), y0(β(t)) ≤ v̄1 ≤ v1 ≤ z0(β(t)),
∫ t

0
y0(s)ds ≤ v̄2 ≤ v2 ≤

∫ t

0
z0(s)ds,

∫ α(t))

0
y0(s)ds ≤ v̄3 ≤ v3 ≤

∫ α(t))

0
z0(s)ds.

Then problem (1.3) has, in the sector [y0, z0]∗, a unique solution.

Proof. Theorem 2.1 guarantees that functions y and z are extremal solutions of

problem (1.3) and y0(t) ≤ y(t) ≤ z(t) ≤ z0(t), t ∈ J. We need to show that

y(t) = z(t), t ∈ J. Put p = z − y. Then p(t) ≥ 0, t ∈ J. Moreover, in view of

Assumption H4, we get

0 ≤ p(t) = (Fz)(t) − (Fy)(t)

≤ M1p(t) + M2p(β(t)) + M3

∫ t

0
p(s)ds + M4

∫ α(t)

0
p(s)ds

≤ ρ maxs∈J p(s),

so

max
t∈J

p(t)(1 − ρ) ≤ 0.

Hence, max
t∈J

p(t) ≤ 0. This shows that y(t) = z(t), t ∈ J, so the proof is complete.

Theorem 2.3. Let all assumptions of Theorem 2.2 hold. Then problem (1.1) has, in

the sector [y0, z0]∗∗, a unique solution x, where

[y0, z0]∗∗ =

{

v ∈ C(J, IR) :

∫ t

0

y0(s)ds ≤ v(t) ≤

∫ t

0

z0(s)ds, t ∈ J

}

.

Proof. From Theorem 2.2, we see that y0(t) ≤ y(t) ≤ z0(t), t ∈ J, where y is the

unique solution of problem (1.3). This means that y0 ≤ x′ ≤ z0, so

∫ t

0

y0(s)ds ≤ x(t) ≤

∫ t

0

z0(s)ds, t ∈ J,

where x is a unique solution of problem (1.1).
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Example 2.4. Let M2, M3, M4 ≥ 0, B > 0 and α, β ∈ C(J, J), α(t) ≤ t, β(t) ≤ t

with J = [0, T ]. Consider the following linear neutral differential problem:

(2.3)

{

x′(t) = M2x(β(t)) + M3x
′(t) + M4x

′(α(t)) + B, t ∈ J,

x(0) = 0,

where ρ1 ≡ M2 + (M3 + M4)T < 1.

In this case, we have

(Fu)(t) = M2u(β(t)) + M3

∫ t

0

u(s)ds + M4

∫ α(t))

0

u(s)ds + B.

Take y0(t) = 0, z0(t) = a > 0, t ∈ J and

(2.4) a[1 − ρ1] > B.

Then

(Fy0)(t) = B > 0 = y0(t), t ∈ J,

(Fz0)(t) = a [M2 + M3t + M4α(t)] + B ≤ aρ1 + B < a = z0(t), t ∈ J,

in view of condition (2.4). This shows that all assumptions of Theorem 2.3 holds, so

problem (2.3) has a unique solution in the region [y0, z0]∗∗.

Theorem 2.2 gives the sufficient conditions under which problem (1.3) has the

unique solution. Now, we are going to discuss again this problem giving another

sufficient conditions which guarantee that (1.3) has the unique solution. To do it,

first, we need some properties connected with delay differential inequalities.

Lemma 2.5. Let α ∈ C(J, J), α(t) ≤ t on J. Suppose that p ∈ C1(J, IR) and

(2.5)

{

q′(t) ≤ N(t)p(α(t)), t ∈ J,

q(0) ≤ 0,

where N ∈ C(J, IR+) and IR+ = [0,∞).

In addition, assume that
∫ T

0

N(t)dt < 1.

Then q(t) ≤ 0 on J.

Proof. We need to prove that q(t) ≤ 0, t ∈ J. Suppose that the above inequality is

not true. Then, we can find t0 ∈ (0, T ] such that q(t0) > 0. Put

q(t1) = max
[0,t0]

q(t) > 0.

Integrating the differential inequality in (2.5) from 0 to t1, we obtain

q(t1) ≤

∫ t1

0

N(t)q(α(t))dt ≤ q(t1)

∫ t1

0

N(t)dt ≤ q(t1)

∫ T

0

N(t)dt < q(t1).
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It contradicts assumption that q(t0) > 0. This shows that q(t) ≤ 0 on J and the proof

is complete.

Lemma 2.6. Let α ∈ C(J, J), α(t) ≤ t on J. Suppose that K ∈ C(J, IR), L ∈

C(J, IR+), q ∈ C1(J, IR) and

(2.6)

{

q′(t) ≤ K(t)q(t) + L(t)q(α(t)), t ∈ J,

q(0) ≤ 0.

In addition assume that

H5 :
∫ T

0
L(t)e−

R

t

α(t) K(s)ds
dt < 1.

Then q(t) ≤ 0 on J.

Proof. Indeed, the assertion holds if L(t) = 0, t ∈ J. Let
∫ T

0
L(t)dt > 0. Put

p(t) = e−
R

t

0
K(s)dsq(t), t ∈ J.

This yields p(0) = q(0) ≤ 0, and

p′(t) = e−
R

t

0 K(s)ds [−K(t)q(t) + q′(t)]

so

(2.7)

{

p′(t) ≤ L(t)e−
R

t

α(t) K(s)ds
p(α(t)), t ∈ J,

p(0) ≤ 0.

In view of Lemma 2.5, p(t) ≤ 0 on J, by Assumption H5. This also proves that

q(t) ≤ 0 on J and the proof is complete.

Remark 2.7. Note that Assumption H5 holds if:
∫ T

0

L(t)dt < 1 provided that K(t) ≥ 0, t ∈ J,

and
∫ T

0

L(t)e−
R

t

0 K(s)dsdt < 1 provided that K(t) ≤ 0, t ∈ J.

We see that the above two conditions do not depend on α.

Remark 2.8. If we assume that K(t) = K, then Assumption H5 takes the form:
∫ T

0

L(t)eK[α(t)−t]dt < 1.

Remark 2.9. Let all assumptions of Lemma 2.6 hold with q ∈ C1(J, IR+) and q(0) =

0 instead of q ∈ C1(J, IR) and q(0) ≤ 0, respectively. Then q(t) = 0 on J.

Theorem 2.10. Let all assumptions of Theorem 2.1 be satisfied. Assume that f does

not depend on the third variable. In addition, we assume that Assumption H6 hold,

where
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H6 : there exists nonnegative constants M1, M3, M4, −K ≤ M1 < 1 such that

(2.8) B

∫ T

0

eA[α(t)−t]dt < 1

with

A =
M3

1 − M1
, B =

M4

1 − M1

and

(2.9)
f(t, u1, v1, v2, v3) − f(t, ū1, v1, v̄2, v̄3)

≤ M1(u1 − ū1) + M3(v3 − v̄3) + M4(v4 − v̄4)

if y0(0) ≤ ū1 ≤ u1 ≤ z0(0),
∫ t

0
y0(s)ds ≤ v̄2 ≤ v2 ≤

∫ t

0
z0(s)ds,

∫ α(t))

0
y0(s)ds ≤ v̄3 ≤

v3 ≤
∫ α(t))

0
z0(s)ds.

Then problem (1.3) has, in the sector [y0, z0]∗, a unique solution.

Proof. Repeating the proof of Theorem 2.2, we have

0 ≤ p(t) = (Fz)(t) − (Fy)(t)

≤ M1p(t) + M3

∫ t

0
p(s)ds + M4

∫ α(t)

0
p(s)ds,

so

(2.10) 0 ≤ p(t) ≤ A

∫ t

0

p(s)ds + B

∫ α(t)

0

p(s)ds,

where p is defined as in the proof of Theorem 2.2.

Put
∫ t

0
p(s)ds = q(t). Then q(0) = 0, q′(t) = p(t). Now, inequality (2.10) is

replaced by

(2.11)

{

0 ≤ q′(t) ≤ Aq(t) + Bq(α(t)), t ∈ J,

q(0) = 0.

It yields q(t) = 0, t ∈ J, by Remark 2.9. This proofs that
∫ t

0
p(s)ds = 0 for all t ∈ J,

so p(t) = 0, t ∈ J. It means that y(t) = z(t), t ∈ J and the proof is complete.

Now, we are able to formulate the following result.

Theorem 2.11. Let all assumptions of Theorem 2.10 hold. Then problem (1.1) has,

in the sector [y0, z0]∗∗, a unique solution x, where

[y0, z0]∗∗ =

{

v ∈ C(J, IR) :

∫ t

0

y0(s)ds ≤ v(t) ≤

∫ t

0

z0(s)ds, t ∈ J

}

.

Example 2.12. Consider the following linear problem:

(2.12)

{

x′(t) = λx′(t) + γx(t) + δ, t ∈ J = [0, T ],

x(0) = 0,

where λ < 1, γ, δ > 0.
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Note that

X(t) =
b

a

(

eat − 1
)

with a =
γ

1 − λ
, b =

δ

1 − λ

is the unique solution of problem (2.12).

Putting x′ = y, we translate problem (2.12) into the following one

(2.13) y(t) = a

∫ t

0

y(s)ds + b ≡ (Fy)(t).

Let y0(t) = 0, z0(t) = beat + c, where c ≥ 0 (if c > 0, then we need to assume that

aT ≤ 1). Then

(Fy0)(t) = b > 0 = y0(t),

(Fz0)(t) = a
∫ t

0
[beas + c] ds + b ≤ a

∫ t

0
beasds + b + c = beat + c = z0(t).

It proves that y0 and z0 are lower and upper solutions of (2.13), respectively. This

shows that all assumptions of Theorem 2.1 are satisfied with K = 0 in Assumption

H3.

Note that condition (2.9) holds with M1 = 0, M3 = a, M4 = 0, so all assumptions

of Theorem 2.10 hold with B = 0 in condition (2.8). In view of Theorem 2.11, problem

(2.12) has a unique solution x and

0 ≤ x(t) ≤

∫ t

0

z0(t)dt =
b

a

(

eat − 1
)

+ ct, t ∈ J.

Now we discuss problems (1.4) and (1.2).

For problem (1.4), we introduce the same definition of the lower and upper solu-

tions as for equation (1.3) with operator G instead of F. Note that in this case, we

assume that the upper solution is less than the lower solution of problem (1.4).

Theorem 2.13. Let Assumption H1
1 hold. Let y0, z0 ∈ C(J, IR) be the lower and upper

solutions of (1.4), respectively, and z0(t) ≤ y0(t), t ∈ J. In addition, we assume that

the following assumptions hold:

H6 : g is nonincreasing with respect to the last three variables,

H7 : there exists a constant K > 1, such that

g(t, u, v1, v2, v3) − g(t, ū, v1, v2, v3) ≥ −K(ū − u)

for z0 ≤ u ≤ ū ≤ y0.

Then problem (1.4) has, in the sector [z0, y0]1, minimum and maximum solutions,

where

[z0, y0]1 = {v ∈ C(J, IR) : z0(t) ≤ v(t) ≤ y0(t), t ∈ J} .
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Proof. Now, we define only the sequences {yn, zn} by formulas:

yn+1(t) = (Gyn)(t) + K[yn+1(t) − yn(t)], t ∈ J,

zn+1(t) = (Gzn)(t) + K[zn+1(t) − zn(t)], t ∈ J

for n = 0, 1, . . . with the operator G defined as in formula (1.4). We omit the proof,

since it is similar to the proof of Theorem 2.1.

Theorem 2.14. Let all assumptions of Theorem 2.13 hold. Then problem (1.2) has,

in the sector [z0, y0]2, extremal solutions, where

[z0, y0]2 =

{

v ∈ C(J, IR) :

∫ t

T

y0(s)ds ≤ v(t) ≤

∫ t

T

z0(s)ds, t ∈ J

}

.

Proof. From Theorem 2.13, we see that z0(t) ≤ z(t) ≤ y(t) ≤ y0(t), t ∈ J, where z

and y are minimal and maximal solutions of problem (1.4), respectively, in the sector

[z0, y0]1. Hence:

z0(t) ≤ x′(t) ≤ X ′(t) ≤ y0(t), t ∈ J,

where x and X are solutions of problem (1.2). Integrating it from t to T , we have

the assertion.

Example 2.15. Consider the following linear problem:

(2.14)

{

x′(t) = 2x′(t) + x(t) + 1, t ∈ J = [0, T ], T ≤ 2
3
,

x(T ) = 0.

Note that

(2.15) X(t) = eT−t − 1, t ∈ J

is the unique solution of problem (2.14).

Putting x′ = y, we translate problem (2.14) into the following one

(2.16) y(t) = 2y(t) −

∫ T

t

y(s)ds + 1 ≡ (Gy)(t), t ∈ J

(see the definition of operator G in Section 1).

Let y0(t) = 0, z0(t) = −3, so z0(t) ≤ y0(t), t ∈ J. Then

(Gy0)(t) = 1 > 0 = y0(t),

(Gz0)(t) = −6 + 3
∫ T

t
ds + 1 ≤ −3 = z0(t).

This proves that y0, z0 are lower and upper solutions of problem (2.16), respectively.

Moreover, Assumptions H5, H6 hold with K = 2. Problem (2.16) has the minimal

and maximal solutions z, y and z0(t) ≤ z(t) ≤ y(t) ≤ y0(t), t ∈ J, by Theorem 2.13.

Now, we need to show that problem (2.16) has the unique solution in the sector

[z0, y0]1. To do it we put p = y − z, so p(t) ≥ 0 on J. Then

p(t) = y(t) − z(t) = (Gy)(t) − (Gz)(t) = 2p(t) − 2

∫ T

t

p(s)ds,
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so

(2.17) p(t) = 2

∫ T

t

p(s)ds.

Put Q(t) =
∫ T

t
p(s)ds. Then, equation (2.17) is replaced by

{

Q′(t) = −2Q(t), t ∈ J,

Q(T ) = 0.

Indeed, Q(t) = 0, t ∈ J is the unique solution, so
∫ T

t
p(s)ds = 0, t ∈ J. Because

p(t) ≥ 0, t ∈ J, it proves that p(t) = 0 on J. Hence, problem (2.16) has the unique

solution in the sector [z0, y0]1. Problem (2.14) has the unique solution in the sector

Q = [
∫ T

0
y0(s)ds,

∫ T

t
z0(s)ds], so Q = [0, 3(T − t)]. Note that the solution X of

problem (2.14) belongs to the sector Q, where X is defined by formula (2.15).

Example 2.16. Consider the following linear problem:

(2.18)

{

x′(t) = bx′(t) − be−x(α(t)) + d, t ∈ J = [0, T ], T ≤

x(T ) = 0,

where α ∈ C(J, J), α(t) ≥ t and b > 1, d ≥ b. By the substitution x′ = y, in the

place of problem (2.18) we have

(2.19) y(t) = by(t) − be
R

T

α(t) y(s)ds + d ≡ (Gy)(t).

Put y0(t) = 0, z0(t) = −a, t ∈ J with a = d
b−1

. Note that z0(t) < y0(t), t ∈ J, and

(Gy0)(t) = −b + d ≥ 0 = y0(t), t ∈ J,

(Gz0)(t) = −ba − be−a(T−α(t)) + d ≤ −ba + d = −a = z0(t), t ∈ J.

In view of Theorem 2.13, problem (2.18) has the extremal solutions in the region

[z0, y0]1. By Theorem 2.14, problem (2.18) has a solution in the sector [0, a[T − t]].
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