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ABSTRACT. In this paper we consider a Timoshenko system with a delay term in the feedback

and memory term. Under an appropriate assumption between the weight of the delay and the weight

of the damping, we prove a well posedness result. Furthermore an exponential stability result has

been shown if the weight of the damping is greater or equal to the weight of the delay. We distinguish

two cases: the case where the weight of the delay is less than the weight of the damping and the

case where the two weights are equal. In each case we introduce an appropriate Lyapunov functional

which leads to an exponential stability. This result extends the one in [15] and the recent result in

[23].
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1. INTRODUCTION

In this paper we consider the following Timoshenko system

(1.1)


ρ1ϕtt (x, t)−K (ϕx + ψ)x (x, t) = 0,

ρ2ψtt (x, t)− bψxx (x, t) +

∫ ∞
0

g(s)ψxx (x, t− s) ds

+K (ϕx + ψ) (x, t) + µ1ψt (x, t) + µ2ψt (x, t− τ) = 0,

where (x, t) ∈ (0, 1) × (0,+∞), τ > 0 represents the time delay and µ1, µ2 are two

positive constants. This system is subjected to the following boundary conditions

(1.2) ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0

and initial conditions

(1.3)
ϕ (x, 0) = ϕ0, ϕt (x, 0) = ϕ1, ψ (x, 0) = ψ0,

ψt (x, 0) = ψ1, ψt (x, t− τ) = f0 (x, t− τ)

The initial data (ϕ0, ψ0, ϕ1, ψ1, f0) are assumed to belong to a suitable functional

space.
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Problem (1.1)–(1.3) has been studied in [23] for g = 0 and in [15] for µ1 = µ2 = 0.

Our goal in this work is to extend the results in [23] and [15] to the case where g 6= 0

and µi 6= 0, i = 1, 2.

Using the energy method, we prove that solutions of (1.1)–(1.3) decay exponen-

tially to zero as time goes to infinity provided that µ1 ≥ µ2 and the relaxation function

g satisfies the following assumptions:

(G1): g : R+ → R+ is a C1 function satisfying

g(0) > 0, b−
∫ ∞

0

g(s)ds = b− g0 = l > 0.

(G2): There exists a positive constant ζ such that

(1.4) g′ (t) ≤ −ζg (t) , ∀t ≥ 0.

Let us first recall some result related to the problem we address.

In the absence of the viscoelastic damping (g = 0), problem (1.1)–(1.3) has been

studied recently by Said-Houari and Laskri [23]. Under the assumption µ1 ≥ µ2 , they

proved the well-posedness of the problem and established for µ1 > µ2 an exponential

decay result for the case of equal-speed wave propagation, i.e.

(1.5)
K

ρ1

=
b

ρ2

.

Subsequently, the work in [23] has been extended to the case of time-varying delay of

the form ψt (x, t− τ (t)) by Kirane, Said-Houari and Anwar [9]. First, by using the

variable norm technique of Kato, and under some restriction on the parameters µ1, µ2

and on the delay function τ(t), the system has been showed to be well-posed. Second,

under an hypothesis between the weight of the delay term in the feedback, the weight

of the term without delay and the wave speeds, an exponential decay result of the

total energy has been proved.

In the two papers [23] and [9] the authors have extended some works on the wave

equation with delay to the Timoshenko system with delay. The stability of the wave

equation with delay has become recently an active area of research and many authors

have shown that delays can destabilize a system that is asymptotically stable in the

absence of delays (see [6] for more details).

As it has been proved by Datko [5, Example 3.5], systems of the form{
wtt − wxx − awxxt = 0, x ∈ (0, 1), t > 0,

w (0, t) = 0, wx (1, t) = −kwt (1, t− τ) , t > 0,

where a, k and τ are positive constants become unstable for any arbitrarily small

values of τ and any values of a and k.
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Subsequently, Datko et al [6] treated the following one dimensional problem:

(1.6)


utt(x, t)− uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kut(1, t− τ), t > 0,

which models the vibrations of a string clamped at one end and free at the other

end, where u(x, t) is the displacement of the string. Also, the string is controlled by

a boundary control force (with a delay) at the free end. They showed that, if the

positive constants a and k satisfy

k
e2a + 1

e2a − 1
< 1,

then the delayed feedback system (1.6) is stable for all sufficiently small delays. On

the other hand, if

k
e2a + 1

e2a − 1
> 1,

then there exists a dense open set D in (0,+∞) such that for each τ ∈ D, system

(1.6) admits exponentially instable solutions.

Nicaise and Pignotti [17] have examined the problem

(1.7)


utt(x, t)−∆u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), x ∈ Ω, t ≥ 0

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ).

Using an observability inequality obtained with a Carleman estimate, they proved

that, under the assumption

(1.8) µ2 < µ1,

the energy is exponentially stable. On the contrary, if (1.8) does not hold, they found

a sequence of delays for which the corresponding solution of (1.7) is unstable. The

same results were shown if both the damping and the delay act in the boundary of

the domain.

The study of [17] was followed by [18] where the authors of this latter paper have

additionally established an exponential decay rate for problem (1.7) where both the

damping and the delay are acting on a part of the boundary. That is

∂u

∂ν
(x, t) = −µ1ut(x, t)−

∫ τ2

τ1

µ2(s)u(t− s)ds, x ∈ Γ1, t > 0,

where Γ1 is a part of the boundary of the domain Ω. Instead of (1.8), the result of

[18] holds under the assumption

µ1 >

∫ τ2

τ1

µ2(s)ds.
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Recently, Ammari et al [3] have treated the N−dimensional problem

(1.9)



utt(x, t)−∆u(x, t) + aut(x, t− τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

∂u

∂ν
(x, t) = −ku(x, t), x ∈ Γ1, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) x ∈ Ω,

ut (x, t) = g (x, t) , x ∈ Ω, t ∈ (−τ, 0)

where Ω is an open bounded domain of RN (N ≥ 2) with boundary ∂Ω = Γ0∪Γ1 and

Γ0 ∩ Γ1 = ∅. Under the usual geometric condition on the domain Ω, they proved an

exponential stability result, provided that the delay coefficient a is sufficiently small.

For µ1 = µ2 = 0, problem (1.1)–(1.3) has been recently investigated. To the

best of our knowledge, the first paper studied the Timoshenko system with memory

damping is the one of Ammar-Khodja et al. [2], where the authors considered a linear

Timoshenko-type system with memory of the form

ρ1ϕtt −K(ϕx + ψ)x = 0,

ρ2ψtt − bψxx +

∫ t

0

g(t− s)ψxx(s)ds+K(ϕx + ψ) = 0,

in (0, L)× (0,+∞), together with homogeneous boundary conditions. They used the

multiplier techniques and proved that the system is uniformly stable if and only if the

wave speeds are equal
(
K
ρ1

= b
ρ2

)
and g decays uniformly. Precisely, they proved an

exponential decay if g decays in an exponential rate and polynomially if g decays in a

polynomial rate. They also required some extra technical conditions on both g′ and

g′′ to obtain their result. Guesmia and Messaoudi [8] proved the same result without

imposing the extra technical conditions of [2]. Recently, Messaoudi and Mustafa

[10] improved the results of [2] and [8] by allowing more general decaying relaxation

functions and showed that the rate of decay of the solution energy is exactly the rate

of decay of the relaxation function. Also, Muñoz Rivera and Fernández Sare [22],

considered a Timoshenko-type system with past history acting only in one equation.

More precisely they looked into the following problem

(1.10)

 ρ1ϕtt −K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +

∫ ∞
0

g(t)ψxx(t− s, .)ds+K(ϕx + ψ) = 0

together with homogenous boundary conditions, and showed that the dissipation

given by the history term is strong enough to stabilize the system exponentially if

and only if the wave speeds are equal. They also proved that the solution decays

polynomially for the case of different wave speeds. This work was improved recently

by Messaoudi and Said-Houari [16], where the authors considered system (1.10) for

g decaying polynomially, and proved polynomial stability results for the equal and
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nonequal wave-speed propagation access under weaker conditions on the relaxation

function than those in [22].

The feedback of memory type has also been studied by Santos [24]. He considered

a Timoshenko system and showed that the presence of two feedbacks of memory type

at a subset of the boundary stabilizes the system uniformly. He also obtained the

energy decay rate which is exactly the decay rate of the relaxation functions. The

interested reader is referred to [1, 11, 13, 20, 21, 26] for the Timoshenko systems with

frictional damping and to [19, 12, 14, 15, 25] for Timoshenko systems with thermal

dissipation.

The paper is organized as follows: In section 2, and by using the semigroup

approach, we prove the well-posedness of the problem (1.1)–(1.3). In section 3, we

establish an exponential decay of the energy defined by (3.2) below provided that the

weight of the delay is less than the weight of the damping. This is the contents of

subsection 3.1. We also prove in subsection 3.2 the same exponential decay result even

if the weight of the delay is equal to the weight of the damping. In each subsection,

we introduce an appropriate Lyapunov functional which leads to the desired result.

2. WELL-POSEDNESS OF THE PROBLEM

In this section, we will use the semigroup approach and the Hille-Yosida theorem

to prove the existence and uniqueness of the solution of the problem (1.1)–(1.3) (or

equivalently problem (2.5)–(2.6)). We point out that the well-posedness in evolution

equations with delay is not always obtained. Recently, Dreher, Quintilla and Racke

[7] have shown some ill-posedness results for a wide range of evolution equations with

a delay term. In order to prove the well-posedness result we proceed as in [17] and

[23] and introduce the following new dependent variables:

(2.1) z (x, ρ, t) = ψt (x, t− τρ) , x ∈ (0, 1), ρ ∈ (0, 1) , t > 0.

Then, the above variable z satisfies the following equation

(2.2) τzt (x, ρ, t) + zρ (x, ρ, t) = 0, in (0, 1)× (0, 1)× (0,+∞) .

We then set the auxiliary variable (see [4])

(2.3) ηt(x, s) = ψ (x, t)− ψ (x, t− s) , s ≥ 0.

Hence, we obtain the following equation

(2.4) ηtt(x, s) + ηts(x, s) = ψt (x, t) .
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Therefore, problem (1.1)–(1.3) takes the form

(2.5)



ρ1ϕtt (x, t)−K (ϕx + ψ)x (x, t) = 0,

ρ2ψtt (x, t)− lψxx (x, t) +K (ϕx + ψ) (x, t)

+µ1ψt (x, t) + µ2z (x, 1, t)−
∫ ∞

0

g(s)ηtxx(x, s)ds = 0,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0,

ηtt(x, s) + ηts(x, s) = ψt (x, t)

where x ∈ (0, 1) , ρ ∈ (0, 1) and t > 0. The above system is subjected to the following

initial and boundary conditions

(2.6)



ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, t > 0,

z(x, 0, t) = ψt(x, t), x ∈ (0, 1) , t > 0,

ϕ (0, .) = ϕ0, ϕt (0, .) = ϕ1, in (0, 1)

ψ (0, .) = ψ0, ψt (0, .) = ψ1, x ∈ (0, 1) ,

z(x, 1, 0) = f0(x, t− τ), in (0, 1)× (0, τ),

ηt (x, 0) = 0, ∀t ≥ 0,

ηt (0, s) = ηt (1, s) = 0, ∀s ≥ 0,

η0 (x, s) = η0 (s) , ∀s ≥ 0.

Now, we discuss the well-posedness and the semigroup formulation of the initial-

boundary value problem (2.5)–(2.6). For this purpose let V := (ϕ, ϕt, ψ, ψt, z, η
t)
′
;

then V satisfies the problem

(2.7)

{
Vt (t) = A V (t) , t > 0,

V (0) = V0,

where V0 := (ϕ0, ϕ1, ψ0, ψ1, f0, η0)′ and the operator A is defined by

A



ϕ

u

ψ

v

z

w


=



u

K

ρ1

(ϕxx + ψx)

v

l

ρ2

ψxx −
K

ρ2

(ϕx + ψ) +
1

ρ2

∫ +∞

0

g (s)wxx(s)ds−
µ1

ρ2

v − µ2

ρ2

z (., 1)

−1

τ
zρ

−ws + v


We define the energy space

H := H1
0 (0, 1)×L2 (0, 1)×H1

0 (0, 1)×L2 (0, 1)×L2
(
(0, 1), L2 (0, 1)

)
×L2

g

(
R+, H1

0 (0, 1)
)
,
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where L2
g (R+, H1

0 (0, 1)) denotes the Hilbert space of H1
0 -valued functions on R+,

endowed with the inner product

(φ, ϑ)L2
g(R+,H1

0 (Ω)) =

∫ 1

0

∫ +∞

0

g (s)φx (s)ϑx (s) dsdx.

Clearly, H is a Hilbert space with respect to the inner product〈
V, Ṽ

〉
H

=

∫ 1

0

ρ1uũdx+

∫ 1

0

ρ2vṽdx+K

∫ 1

0

(ϕx + ψ) (ϕ̃x + ψ̃)dx

+l

∫ 1

0

ψxψ̃xdx+

∫ 1

0

∫ +∞

0

g(s)wx (s) w̃x (s) dxds+ ξ

∫ 1

0

∫ 1

0

zz̃dρdx

for V = (ϕ, u, ψ, v, z, w)′, Ṽ =
(
ϕ̃, ũ, ψ̃, ṽ, z̃, w̃

)′
and ξ is a positive constant such that

(2.8)

{
τµ2 < ξ < τ (2µ1 − µ2) if µ1 > µ2,

ξ = τµ if µ1 = µ2 = µ.

The domain of A is

D (A ) =



(ϕ, u, ψ, v, z, w)′ ∈H /ϕ , ψ ∈ H2 (0, 1) ∩H1
0 (0, 1) , u, v ∈ H1

0 (0, 1) ,

w ∈ L2
g (R+, H2 (0, 1) ∩H1

0 (0, 1)) ,

ws ∈ L2
g (R+, H1

0 (Ω)) , zρ ∈ L2 ((0, 1) , L2 (Ω)) ,

w (x, 0) = 0, z (x, 0) = v (x)


.

The well-posedness of problem (2.5)–(2.6) is ensured by

Theorem 2.1. Let V0 ∈H , then there exists a unique weak solution V ∈ C (R+; H )

of problem (2.7). Moreover, if V0 ∈ D (A ), then

V ∈ C (R+; D (A )) ∩ C1 (R+; H ) .

Proof. To prove Theorem 2.1, we use the semigroup approach. So, first, we prove

that the operator A is dissipative. Indeed, let V = (ϕ, u, ψ, v, z, w)′ ∈ D (A ), then

〈A V, V 〉H =

∫ 1

0

ρ1

(
K

ρ1

(ϕxx + ψx)

)
udx+K

∫ 1

0

(ϕx + ψ) (ux + v)dx

+l

∫ 1

0

ψxvdx+

∫ 1

0

ρ2

(
l

ρ2

ψxx −
K

ρ2

(ϕx + ψ)

+
1

ρ2

∫ +∞

0

g (s)wxx(s)ds−
µ1

ρ2

v − µ2

ρ2

z (., 1)

)
vdx

+

∫ 1

0

∫ +∞

0

g(s)wx (−ws + v)x dxds−
ξ

τ

∫ 1

0

∫ 1

0

zzρdρdx

It is clear that ∫ 1

0

∫ 1

0

zzρdρdx =
1

2

∫ 1

0

(
z2 (1)− z2 (0)

)
dx.
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Consequently, using the fact that z (0) = v and w (x, 0) = 0 (definition of D (A )),

we get

1

2
〈A V, V 〉H = −

(
µ1 −

ξ

2τ

)∫ 1

0

v2 (x) dx− ξ

2τ

∫ 1

0

z2(x, 1)dx

−µ2

∫ 1

0

v (x) z (x, 1) dx+
1

2

∫ 1

0

∫ ∞
0

g′(s)|wx(x, s)|2dsdx.(2.9)

Using Young’s inequality, we get

1

2
〈A V, V 〉H ≤ −

(
µ1 −

ξ

2τ
− µ2

2

)∫ 1

0

v2 (x) dx

−
(
ξ

2τ
− µ2

2

)∫ 1

0

z2(x, 1)dx+
1

2

∫ 1

0

∫ ∞
0

g′(s)|wx(x, s)|2dsdx.

Now, we distinguish two cases: first if ξ satisfies the first condition in (2.8), we can

find a positive constant C > 0, such that

1

2
〈A V, V 〉H ≤ −C

{∫ 1

0

v2 (x) dx+

∫ 1

0

z2(x, 1)dx

}
+

1

2

∫ 1

0

∫ ∞
0

g′(s)|wx(x, s)|2dsdx.

Second, if ξ satisfies the second condition in (2.8), we get

1

2
〈A V, V 〉H ≤

1

2

∫ 1

0

∫ ∞
0

g′(s)|wx(x, s)|2dsdx.

In both cases and since g is a non-increasing function, we deduce that

〈A V, V 〉H ≤ 0.

Which means that A is dissipative.

Next, we prove that −A is maximal. Indeed, let F = (f1, f2, f3, f4, f5, f6)′ ∈H ,

we prove that there exists V = (ϕ, u, ψ, v, z, w)′ ∈ D (A ) satisfying

(2.10) (λId−A )V = F,

which is equivalent to

(2.11)

λϕ− u = f1,

λu− K

ρ1

(ϕxx + ψx) = f2,

λψ − v = f3,

λv −
(
l

ρ2

ψxx −
K

ρ2

(ϕx + ψ) +
1

ρ2

∫ +∞

0

g (s)wxx(s)ds−
µ1

ρ2

v − µ2

ρ2

z (., 1)

)
= f4.

λz +
1

τ
zρ = f5

λw + ws − v = f6
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Suppose that we have found ϕ and ψ with the appropriate regularity. Therefore, the

first and the third equations in (2.11) give

(2.12)

{
u = λϕ− f1,

v = λψ − f3.

It is clear that u ∈ H1
0 (0, 1) and v ∈ H1

0 (0, 1). Furthermore, by using the fifth

equation in (2.11) we can find z with

(2.13) z (x, 0) = v (x) , for x ∈ (0, 1) .

Following the same approach as in [23] (see also [17]), we obtain, by using the fifth

equation in (2.11),

z (x, ρ) = v (x) e−λρτ + τe−λρτ
∫ ρ

0

f5 (x, σ) eλστdσ.

From (2.12), we obtain

(2.14) z (x, ρ) = λψ (x) e−λρτ − f3e
−λρτ + τe−λρτ

∫ ρ

0

f5 (x, σ) eλστdσ.

We note that the last equation in (2.11) with w (x, 0) = 0 has a unique solution

w (x, s) =

(∫ s

0

eλy (f6 (x, y) + v (x)) dy

)
e−λs

=

(∫ s

0

eλy (f6 (x, y) + λψ (x)− f3 (x)) dy

)
e−λs.(2.15)

By using (2.11), (2.12) and (2.15) the functions ϕ and ψ satisfy the following system

(2.16)


λ2ϕ− K

ρ1

(ϕxx + ψx) = f2 + λf1,(
λ2 +

µ1λ

ρ2

+
µ2λ

ρ2

e−λτ
)
ψ − l̃ψxx +

K

ρ2

(ϕx + ψ) = f̃

where

l̃ =
l

ρ2

+
λ

ρ2

∫ ∞
0

g (s) e−λs
(∫ s

0

eλydy

)
ds

and

f̃ = − 1

ρ2

∫ ∞
0

g (s) e−λs
(∫ s

0

eλy (f6 (x, y)− f3 (x))xx dy

)
ds−

(
λ+

µ1

ρ2

+
µ2

ρ2

e−λτ
)
f3

+
µ2τ

ρ2

e−λτ
∫ 1

0

f5 (x, σ) eλστdτ.

We have just to prove that (2.16) has a solution (ϕ, ψ) ∈ (H2 (0, 1) ∩H1
0 (0, 1))

2
and

replace in (2.12), (2.14) and (2.15) to get V = (ϕ, u, ψ, v, z, w)′ ∈ D (A ) satisfying

(2.10). Consequently, problem (2.16) is equivalent to the problem

(2.17) ζ ((ϕ, ψ) , (w, χ)) = l (w, χ)
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where the bilinear form ζ : [H1
0 (0, 1)×H1

0 (0, 1)]
2 → R and the linear form L :

H1
0 (0, 1)×H1

0 (0, 1)→ R are defined by

ζ ((ϕ, ψ) , (w, χ)) =

∫ 1

0

(
ρ1λ

2ϕw +K (ϕx + ψ) (wx + χ)
)
dx

+

∫ 1

0

((
ρ2λ

2 + µ1λ+ µ2λe
−λτ)ψχ+ l̃ρ2ψxχx

)
dx

and

L (w, χ) =

∫ 1

0

f̃χdx+

∫ 1

0

ρ1 (f2 + λf1)wdx.

It is easy to verify that ζ is continuous and coercive, and L is continuous. So ap-

plying the Lax-Milgram theorem, we deduce that for all (w, χ) ∈ H1
0 (0, 1)×H1

0 (0, 1),

problem (2.17) admits a unique solution (ϕ, ψ) ∈ H1
0 (0, 1)×H1

0 (0, 1). Applying the

classical elliptic regularity, it follows from (2.16) that (ϕ, ψ) ∈ H2 (0, 1) × H2 (0, 1).

Therefore, the operator λI −A is surjective for any λ > 0. Consequently, the result

of Theorem 2.1 follows from the Hille-Yosida theorem.

3. EXPONENTIAL STABILITY OF SOLUTION

In this section, we show that, under the assumption µ2 ≤ µ1 and for K
ρ1

= b
ρ2

, the

solution of problem (1.1)–(1.3) decays exponentially to the study state. To achieve

our goal we use the energy method to produce a suitable Lyapunov functional. We

will discuss two case, the case where µ2 < µ1 and the case µ2 = µ1. We will separate

the two cases since the proofs are slightly different.

3.1. Exponential stability for µ2 < µ1. In this subsection, we will prove that

under the assumption µ2 < µ1, and if the wave speeds are equal, the solution of

problem (1.1)–(1.3) decays exponentially to the steady state.

For ξ satisfying

(3.1) τµ2 < ξ < τ(2µ1 − µ2),

we define the energy functional of the solution of problem (1.1)–(1.3) as

E (t) = E(t, z, ϕ, ψ, ηt) =
1

2

∫ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t +K|ϕx + ψ|2 + lψ2

x

}
dx

+
ξ

2

∫ 1

0

∫ 1

0

z2(x, ρ, t)dρdx+
1

2

∫ 1

0

∫ ∞
0

g(s)|ηtx(x, s)|2dsdx.(3.2)

In the sequel, we will write for simplicity E(t) instead of E (t, z, ϕ, ψ, ηt) .

Now, we prove that the above energy E (t) is a non-increasing function along the

solution trajectories. More precisely we have the following result.
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Lemma 3.1. Assume that µ1 > µ2, then the energy E(t) is non-increasing and there

exists a positive constant C such that for any regular solution (ϕ, ψ, z, ηt) of problem

(2.5)–(2.6) and for any t ≥ 0, we have

dE (t)

dt
≤ −C

{∫ 1

0

ψ2
t (x, t) dx+

∫ 1

0

z2 (x, 1, t) dx

}
+

1

2

∫ 1

0

∫ ∞
0

g′(s)|ηtx(x, s)|2dsdx.(3.3)

Proof. To prove the above Lemma, we multiply the first equation in (2.5) by ϕt,

the second equation by ψt, using the fourth equation in (2.5) and performing an

integration by parts, we find

1

2

d

dt

[∫ 1

0

{
ρ1ϕ

2
t + ρ1ψ

2
t +K |ϕx + ψ|2 + lψ2

x

}
dx

]
+

1

2

d

dt

∫ ∞
0

g(s)|ηtx(x, s)|2ds

= −µ1

∫ 1

0

ψ2
t (x, t) dx− µ2

∫ 1

0

ψt (x, t) z (x, 1, t) dx(3.4)

+
1

2

∫ 1

0

∫ ∞
0

g′(s)|ηtx(x, s)|2ds.

Now, multiplying the third equation in (2.5) by ξ
τ
z, integrating the result over (0, 1)×

(0, 1) with respect to ρ and x respectively, we obtain

ξ

2

d

dt

∫ 1

0

∫ 1

0

z2(x, ρ, t)dρdx = − ξ
τ

∫ 1

0

∫ 1

0

zzρ(x, ρ, t)dρdx

= − ξ

2τ

∫ 1

0

∫ 1

0

∂

∂ρ
z2(x, ρ, t)dρdx(3.5)

=
ξ

2τ

∫ 1

0

(
z2(x, 0, t)− z2(x, 1, t)

)
dx.

From (3.2), (3.5) and (3.5), we find

dE (t)

dt
= −

(
µ1 −

ξ

2τ

)∫ 1

0

ψ2
t (x.t) dx− ξ

2τ

∫ 1

0

z2(x, 1, t)dx

−µ2

∫ 1

0

ψt (x, t) z (x, 1, t) dx+
1

2

∫ 1

0

∫ ∞
0

g′(s)|ηtx(x, s)|2dsdx.(3.6)

Now, using Young’s inequality in (3.6), we get

dE (t)

dt
≤ −

(
µ1 −

ξ

2τ
− µ2

2

)∫ 1

0

ψ2
t (x.t) dx

−
(
ξ

2τ
− µ2

2

)∫ 1

0

z2(x, 1, t)dx+
1

2

∫ 1

0

∫ ∞
0

g′(s)|ηtx(x, s)|2dsdx.(3.7)

Then, exploiting (3.1) and (3.2) our conclusion holds. This completes the proof of

Lemma 3.1.

Our first stability result reads as follows:



338 B. SAID-HOUARI AND R. RAHALI

Theorem 3.2. Let U0 ∈ D (A ). Assume that µ2 < µ1 and

(3.8)
K

ρ1

=
b

ρ2

.

Then there exist two positive constants C and γ independent of t such that

(3.9) E(t) ≤ Ce−γt, ∀t ≥ 0.

To derive the exponential decay of the solution, it is enough to construct a func-

tional L (t), equivalent to the energy E(t), satisfying

dL (t)

dt
≤ −ΛL (t), ∀t ≥ 0

where Λ is a positive constant. In order to obtain such a functional L , we need

several Lemmas.

Let us first define the following functional

(3.10) I1 (t) := −
∫ 1

0

(ρ1ϕtϕ+ ρ2ψtψ) dx− µ1

2

∫ 1

0

ψ2dx.

Then we have the following estimate.

Lemma 3.3. Let (ϕ, ψ, z, ηt) be the solution of (2.5)–(2.6), then for any ε, δ1 > 0,

we have the following result

dI1 (t)

dt
≤ −

∫ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t

)
dx+K

∫ 1

0

|ϕx + ψ|2 dx+ (l + εC∗ + δ1)

∫ 1

0

ψ2
xdx

+
µ2

2

4ε

∫ 1

0

z2 (x, 1, t) dx+
g0

4δ1

∫ 1

0

∫ ∞
0

g(s)|ηtx(x, s)|2dsdx,(3.11)

where C∗ = 1/π2 is the Poincaré constant.

Proof. By taking the time derivative of (3.10), we have

dI1 (t)

dt
= −

∫ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t

)
dx−

∫ 1

0

(ρ1ϕttϕ+ ρ2ψttψ) dx

−µ1

∫ 1

0

ψtψdx.

Therefore, by using the first and the second equations in (2.5) and integrations by

parts, we obtain from the above equality

dI1 (t)

dt
= −

∫ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t

)
dx+K

∫ 1

0

|ϕx + ψ|2 dx+ l

∫ 1

0

ψ2
xdx(3.12)

+µ2

∫ 1

0

z (x, 1, t)ψdx+

∫ 1

0

ψx (x, t)

∫ ∞
0

g(s)ηtx(x, s)dsdx.

By exploiting Young’s inequality and Poincaré’s inequality, we get for any ε > 0,

(3.13) µ2

∫ 1

0

z (x, 1, t)ψdx ≤ µ2
2

4ε

∫ 1

0

z2 (x, 1, t) dx+ C∗ε

∫ 1

0

ψ2
xdx.
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Moreover, Young’s inequality, Hölder’s inequality and (G2) imply that for any δ1 > 0,

(3.14)∫ 1

0

ψx (x, t)

∫ ∞
0

g(s)ηtx(x, s)dsdx ≤ δ1

∫ 1

0

ψ2
x (x, t) dx+

g0

4δ1

∫ 1

0

∫ ∞
0

g(s)|ηtx(x, s)|2dsdx.

Inserting the estimates (3.13) and (3.14) into (3.12), then (3.11) is fulfilled. Thus the

proof of Lemma 3.3 is finished.

Now, Let w be the solution of

(3.15) −wxx = ψx, w (0) = w (1) = 0.

Then, we have the following inequalities.

Lemma 3.4. The solution of (3.15) satisfies∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx

and ∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx

Proof. We multiply Equation (3.15) by w, integrate by parts and use the Cauchy-

Schwarz inequality to obtain ∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx

Next, we differentiate (3.15) with respect to t and by the same procedure, we obtain∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx

This completes the proof of Lemma 3.4.

Remark 3.5. The solution of (3.15) can be given explicitly as

w (x, t) = −
∫ x

0

ψ (y, t) dy + x

(∫ 1

0

ψ (y, t) dy

)
.

Next, we introduce the following functional

(3.16) I2 :=

∫ 1

0

(ρ2ψtψ + ρ1ϕtω) dx+
µ1

2

∫ 1

0

ψ2dx,

where w is the solution of (3.15). Then we have the following estimate.

Lemma 3.6. Let (ϕ, ψ, z, ηt) be the solution of (2.5)–(2.6), then for any δ1, λ2, λ̃2 >

0, we have

dI2 (t)

dt
≤ (δ1 + µ2C

∗λ2 − l)
∫ 1

0

ψ2
x (x, t) dx+

(
ρ2 +

ρ1

4λ̃2

)∫ 1

0

ψ2
t (x, t) dx

+ρ1λ̃2

∫ 1

0

ϕ2
t (x, t) dx+

µ2

4λ2

∫ 1

0

z2 (x, 1, t) dx(3.17)
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+
g0

4δ1

∫ 1

0

∫ ∞
0

g(s)|ηtx(x, s)|2dsdx.

Proof. By taking the derivative of (3.16) with respect to t and using the equations in

(2.5), we conclude

dI2 (t)

dt
= −l

∫ 1

0

ψ2
xdx+ ρ2

∫ 1

0

ψ2
t dx−K

∫ 1

0

ψ2dx+K

∫ 1

0

ω2
xdx

+ρ1

∫ 1

0

ϕtωtdx− µ2

∫ 1

0

ψz(x, 1, t) +

∫ 1

0

ψx(x, t)

∫ ∞
0

g(s)ηtx(x, s)dsdx.

Using the first inequality in Lemma 3.4, we get

dI2 (t)

dt
≤ −l

∫ 1

0

ψ2
xdx+ ρ2

∫ 1

0

ψ2
t dx+ ρ1

∫ 1

0

ϕtωtdx

−µ2

∫ 1

0

ψz(x, 1, t) +

∫ 1

0

ψx(x, t)

∫ ∞
0

g(s)ηtx(x, s)dsdx.(3.18)

By using Young’s inequality and the second inequality in Lemma 3.4, we have for any

λ̃2 > 0

(3.19) ρ1

∫ 1

0

ϕtωtdx ≤ ρ1λ̃2

∫ 1

0

ϕ2
t (x, t) dx+

ρ1

4λ̃2

∫ 1

0

ψ2
t (x, t) dx.

Similarly, Young’s inequality and Poincaré’s inequality give us the estimate

(3.20)

∣∣∣∣µ2

∫ 1

0

ψz (x, 1, t) dx

∣∣∣∣ ≤ µ2C
∗λ2

∫ 1

0

ψ2
xdx+

µ2

4λ2

∫ 1

0

z2 (x, 1, t) dx, ∀λ2 > 0.

Now, using the estimate (3.14) and inserting (3.19) and (3.20) into (3.18), then (3.17)

holds. Thus the proof of Lemma 3.6 is finished.

Next, we introduce the functional

J (t) : = ρ2

∫ 1

0

ψt (ϕx + ψ) dx+
ρ1l

K

∫ 1

0

ψxϕtdx

+
ρ1

K

∫ 1

0

ϕt

∫ ∞
0

g(s)ηtx(x, s)dsdx.(3.21)

Then we have the following result.

Lemma 3.7. Let (ϕ, ψ, z, ηt) be the solution of (2.5)–(2.6). Assume that

(3.22)
ρ1

K
=

ρ2

l + g0

=
ρ2

b
.

Then, for any ε1 > 0, we conclude

dJ (t)

dt
≤

[
ϕx

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)

)]x=1

x=0

− (K − 2ε)

∫ 1

0

(ϕx + ψ)2 dx

+

(
ρ2 +

µ2
1

4ε1

)∫ 1

0

ψ2
t dx+ ε1

∫ 1

0

ϕ2
tdx+

µ2
2

4ε1

∫ 1

0

z2 (x, 1, t) dx(3.23)

−g0C(ε1)

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx.
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Proof. Differentiating J (t), with respect to t, we obtain

dJ (t)

dt
= ρ2

∫ 1

0

ψtt (ϕx + ψ) dx+ ρ2

∫ 1

0

ψt (ϕx + ψ)t dx

+
ρ1l

K

∫ 1

0

ψxϕttdx+
ρ1

K

∫ 1

0

ϕt

∫ ∞
0

g(s)ηttx(x, s)dsdx

+
ρ1l

K

∫ 1

0

ψtxϕtdx+
ρ1

K

∫ 1

0

ϕtt

∫ ∞
0

g(s)ηtx(x, s)dsdx.

Then, by using equations in (2.5), we find

dJ (t)

dt
=

∫ 1

0

(ϕx + ψ) [lψxx (x, t)−K (ϕx + ψ) (x, t)− µ1ψt (x, t)− µ2z (x, 1, t)] dx

+

∫ 1

0

(ϕx + ψ)

∫ ∞
0

g(s)ηtxx(x, s)dsdx+ ρ2

∫ 1

0

ψ2
t dx+ l

∫ 1

0

(ϕx + ψ)x ψxdx

+

(
ρ1l

K
− ρ2

)∫ 1

0

ψtxϕtdx+
ρ1

K

∫ 1

0

ϕt

∫ ∞
0

g(s)(ψtx (t, x)− ηtsx(x, s))dsdx

+

∫ 1

0

(ϕx + ψ)x

∫ ∞
0

g(s)ηtx(x, s)dsdx.

Using (3.22), we obtain

dJ (t)

dt
= −K

∫ 1

0

(ϕx + ψ)2 − µ1

∫ 1

0

(ϕx + ψ)ψtdx+ ρ2

∫ 1

0

ψ2
t dx

−µ2

∫ 1

0

(ϕx + ψ) z (x, 1, t) dx+
ρ1

K

∫ 1

0

ϕt

∫ ∞
0

g′(s)ηtx(x, s)dsdx(3.24)

+ [lϕxψx]
x=1
x=0 +

[
ϕx (x, t)

∫ ∞
0

g(s)ηtx(x, s)ds

]x=1

x=0

.

For any ε1 > 0, Young’s inequality leads to

(3.25)

∣∣∣∣µ1

∫ 1

0

(ϕx + ψ)ψtdx

∣∣∣∣ ≤ ε1

∫ 1

0

(ϕx + ψ)2 dx+
µ2

1

4ε1

∫ 1

0

ψ2
t dx,

(3.26)

∣∣∣∣µ2

∫ 1

0

(ϕx + ψ) z (x, 1, t) dx

∣∣∣∣ ≤ ε1

∫ 1

0

(ϕx + ψ)2 dx+
µ2

2

4ε1

∫ 1

0

z2 (x, 1, t) dx,

and ∣∣∣∣ρ1

K

∫ 1

0

ϕt

∫ ∞
0

g′(s)ηtx(x, s)dsdx

∣∣∣∣
≤ ρ2

1

4K2ε1

∫ 1

0

(∫ ∞
0

g′(s)ηtx(x, s)ds

)2

dx+ ε1

∫ 1

0

ϕ2
tdx(3.27)

≤ −g (0)C (ε1)

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx+ ε1

∫ 1

0

ϕ2
tdx.

Plugging (3.25), (3.26) and (3.27) into (3.24), then inequality (3.23) holds.
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Next, in order to handle the boundary terms, appearing in (3.23), we use the

function

q (x) = 2− 4x, x ∈ (0, 1) .

So, we have the following result.

Lemma 3.8. Let (ϕ, ψ, z, ηt) be the solution of (2.5)–(2.6). Then for any ε2 > 0,

the following estimate holds[
ϕx

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)]x=1

x=0

(3.28)

≤ −ε2

K

d

dt

∫ 1

0

ρ1q (x)ϕtϕxdx+K2ε2

∫ 1

0

(ϕx + ψ)2 dx

− 1

4ε2

d

dt

∫ 1

0

ρ2q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx+ 3ε2

∫ 1

0

ϕ2
xdx

+

(
ε2 +

l2

4ε2

(
4 +

3

2ε2
2

))∫ 1

0

ψ2
xdx+

1

4ε2

(
2ρ2(l + g0) + 4µ2

1ε
2
2 + ρ2ε2

) ∫ 1

0

ψ2
t dx

−ρ2g(0)C(ε2)

4ε2

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx+

2ρ1ε2

K

∫ 1

0

ϕ2
tdx

+
g0

4ε2

(
4 +

3

2ε2
2

)∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx+ µ2

2ε2

∫ 1

0

z2 (x, 1, t) dx.

Proof. By using Young’s inequality, we easily see that, for any ε2 > 0,[
ϕx

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)

)]x=1

x=0

≤ ε2

[
ϕ2
x(1, t) + ϕ2

x(0, t)
]

+
1

4ε2

(
lψx (0, t) +

∫ ∞
0

g(s)ηtx(0, s)ds

)2

(3.29)

+
1

4ε2

(
lψx (1, t) +

∫ ∞
0

g(s)ηtx(1, s)ds

)2

.

On the other hand, it is clear that

d

dt

∫ 1

0

ρ2q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

=

∫ 1

0

ρ2q (x)ψtt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

+

∫ 1

0

ρ2q (x)ψt

(
lψxt +

∫ ∞
0

g(s)ηtxt(x, s)ds

)
dx.(3.30)

Now, using the second equation in (2.5), we find

d

dt

∫ 1

0

ρ2q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

=

∫ 1

0

q(x)
(
lψxx (x, t)−K (ϕx + ψ) (x, t)
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− µ1ψt (x, t)− µ2z (x, 1, t) +

∫ ∞
0

g(s)ηtxx(x, s)ds
)

×
(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

+

∫ 1

0

ρ2q (x)ψt

(
lψxt +

∫ ∞
0

g(s)ηtxt(x, s)ds

)
dx.(3.31)

By noticing that∫ 1

0

q (x)

(
lψxx (x, t) +

∫ ∞
0

g(s)ηtxx(x, s)ds

)(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

= −1

2

∫ 1

0

q′ (x)

(
lψx (x, t) +

∫ ∞
0

g(s)ηtx(x, s)ds

)2

dx

+

[
q (x)

2

(
lψx (x, t) +

∫ ∞
0

g(s)ηtx(x, s)ds

)2
]x=1

x=0

.(3.32)

The last term in (3.31) can be treated as follows:∫ 1

0

ρ2q (x)ψt

(
lψxt +

∫ ∞
0

g(s)ηtxt(x, s)ds

)
dx(3.33)

= ρ2l

∫ 1

0

q (x)ψtψxtdx+ ρ2

∫ 1

0

q (x)ψt

∫ ∞
0

g(s)ηtxt(x, s)dsdx

= −ρ2l

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2

∫ 1

0

q (x)ψt

∫ ∞
0

g(s)ηtxt(x, s)dsdx

= −ρ2l

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2

∫ 1

0

q (x)ψt

∫ ∞
0

g(s)(ψt − ηts)xdsdx

= −ρ2l

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2g0

∫ 1

0

q (x)ψtψtxdx− ρ2

∫ 1

0

q (x)ψt

∫ ∞
0

g(s)ηtsxdsdx

= −ρ2(l + g0)

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2

∫ 1

0

q (x)ψt

∫ ∞
0

g′(s)ηtxdsdx

Inserting (3.32) and (3.34) in (3.31), we arrive at(
lψx(0, t) +

∫ ∞
0

g(s)ηtx(0, s)ds

)2

+

(
lψx(1, t) +

∫ ∞
0

g(s)ηtx(1, s)ds

)2

= − d

dt

∫ 1

0

ρ2qψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx+ 2ρ2(l + g0)

∫ 1

0

ψ2
t dx

−K
∫ 1

0

q (ϕx + ψ)

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

+ρ2

∫ 1

0

qψt

∫ ∞
0

g′(s)ηtxdsdx− µ1

∫ 1

0

q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx(3.34)

+2

∫ 1

0

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)2

dx
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−µ2

∫ 1

0

q (x) z (x, 1, t)

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx.

Now, we estimate some terms in the right hand sides of (3.34) as follows:

First, using Minkowski and Young’s inequalities, we infer that

2

∫ 1

0

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)2

dx

≤ 4l2
∫ 1

0

ψ2
xdx+ 4g0

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.(3.35)

Second, by Young’s inequality and (3.35) we have, for any λ > 0∣∣∣∣K ∫ 1

0

q (x) (ϕx + ψ)

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

∣∣∣∣
≤ 2K

∣∣∣∣∫ 1

0

(ϕx + ψ)

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

∣∣∣∣
≤ 4K2λ

∫ 1

0

(ϕx + ψ)2 dx+
1

4λ

∫ 1

0

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)2

dx

≤ 4K2λ

∫ 1

0

(ϕx + ψ)2 dx+
l2

2λ

∫ 1

0

ψ2
xdx+

g0

2λ

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Similarly, we get∣∣∣∣µ1

∫ 1

0

q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

∣∣∣∣
≤ 4µ2

1λ

∫ 1

0

ψ2
t dx+

l2

2λ

∫ 1

0

ψ2
xdx+

g0

2λ

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx

and ∣∣∣∣µ2

∫ 1

0

q (x) z (x, 1, t)

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx

∣∣∣∣
≤ 4µ2

2λ

∫ 1

0

z2 (x, 1, t) dx+
l2

2λ

∫ 1

0

ψ2
xdx+

g0

2λ

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Also, it is clear that for any ε2 > 0, we have∣∣∣∣ρ2

∫ 1

0

qψt

∫ ∞
0

g′(s)ηtsdsdx

∣∣∣∣
≤ ρ2ε2

∫ 1

0

ψ2
t dx− ρ2g(0)C(ε2)

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Inserting all the above estimates into (3.34), we obtain(
lψx(0, t) +

∫ ∞
0

g(s)ηtx(0, s)ds

)2

+

(
lψx(1, t) +

∫ ∞
0

g(s)ηtx(1, s)ds

)2

≤ − d

dt

∫ 1

0

ρ2q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx
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+
(
2ρ2(l + g0) + 4µ2

1λ+ ρ2ε2

) ∫ 1

0

ψ2
t dx

+l2
(

4 +
3

2λ

)∫ 1

0

ψ2
xdx+ 4K2λ

∫ 1

0

(ϕx + ψ)2 dx(3.36)

−ρ2g(0)C(ε2)

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx

+g0

(
4 +

3

2λ

)∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx+ 4µ2

2λ

∫ 1

0

z2 (x, 1, t) dx.

On the other hand, we have

(
ϕ2
x(1, t) + ϕ2

x(0, t)
)
≤ − 1

K

d

dt

∫ 1

0

ρ1q (x)ϕtϕxdx+ 3

∫ 1

0

ϕ2
xdx

+

∫ 1

0

ψ2
xdx+

2ρ1

K

∫ 1

0

ϕ2
tdx.(3.37)

Consequently, by plugging the estimates (3.37) and (3.37) into (3.29), then our desired

estimate (3.29) holds true. This completes the proof of Lemma 3.8.

Now, let us introduce the following functional (see [23])

(3.38) I3 (t) :=

∫ 1

0

∫ 1

0

e−2τρz2(x, ρ, t)dρdx.

Then the following result holds.

Lemma 3.9. Let (ϕ, ψ, z, ηt) be the solution of (2.5)–(2.6). Then we have

(3.39)
d

dt
I3 (t) ≤ −I3 (t)− c

2τ

∫ 1

0

z2(x, 1, t)dx+
1

2τ

∫ 1

0

ψ2
t (x, t)dx,

where c is a positive constant.

Proof. Differentiating (3.38) with respect to t and using the third equation in (2.5),

we have

d

dt

(∫ 1

0

∫ 1

0

e−2τρz2(x, ρ, t)dρdx

)
= −1

τ

∫ 1

0

∫ 1

0

e−2τρzzρ(x, ρ, t)dρdx

= −
∫ 1

0

∫ 1

0

e−2τρz2(x, ρ, t)dρdx− 1

2τ

∫ 1

0

∫ 1

0

∂

∂ρ

(
e−2τρz2(x, ρ, t)

)
dρdx.

By recalling (2.6), the above equality implies that there exists a positive constant c

such that (3.39) holds.
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Proof of Theorem 3.2. To finalize the proof of Theorem 3.2, we define the Lyapunov

functional L (t) as follows

L (t) : = ME (t) +
1

4
I1 (t) +N2I2 (t) + J (t) +

ε2

K

∫ 1

0

ρ1qϕtϕxdx

+
1

4ε2

∫ 1

0

ρ2q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx+ I3 (t) ,(3.40)

where M, N1, N2 and ε2 are positive real numbers which will be chosen later. Con-

sequently, the estimates (3.3), (3.11), (3.17), (3.23), (3.29) and (3.39) together with

(1.4) and the following inequality

(3.41)

∫ 1

0

ϕ2
xdx ≤ 2

∫ 1

0

(ϕx + ψ)2 dx+ 2

∫ 1

0

ψ2
xdx

lead to

d

dt
L (t) ≤

[
−MC − ρ1

4
+N2

(
ρ2 +

ρ1

4λ̃2

)
+

(
ρ2 +

µ2
1

4ε1

)
+

1

4ε2

(
2ρ2(l + g0) + 4µ2

1ε
2
2 + ρ2ε2

)
+

1

2τ

] ∫ 1

0

ψ2
t dx

+

[
−MC +

µ2
2

16ε
+
N2µ2

4λ2

+
µ2

2

4ε1

+ µ2
2ε2 −

c

2τ

] ∫ 1

0

z2(x, 1, t)dx

+

[
−ρ1

4
+N2ρ1λ̃2 +

2ρ1ε2

K
+ ε1

] ∫ 1

0

ϕ2
tdx

+

[
−
(

3K

4
− 2ε

)
+K2ε2 + 6ε2

] ∫ 1

0

(ϕx + ψ)2 dx− I3 (t)

+

[
1

4
(l + εC∗ + δ1) +N2 (δ1 + µ2C

∗λ2 − l)(3.42)

+

(
7ε2 +

l2

4ε2

(4 +
3

2ε2
2

)]∫ 1

0

ψ2
xdx+

[
g0

4δ1

(
1

4
+N2

)
+

g0

4ε2

(
4 +

3

2ε2
2

)
−ζ
(
M

2
− g0C(ε1)− ρ2g(0)C(ε2)

4ε2

)]∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

At this point, we have to choose our constants very carefully. First, let us choose ε

small enough such that

ε <
3K

8
.

Then, take ε1 = ε2 and choose ε2 small enough such that

ε2 ≤ min

(
K/8

K2 + 6
,

ρ1/8

(2ρ1/K) + 1

)
After that, we select δ1 = λ2 and choose λ2 small enough such that

λ2 ≤
l/2

1 + µ2C∗
.



TIMOSHENKO SYSTEM WITH DELAY 347

Once all the above constants are fixed, we fix N2 large enough such that

N2
l

4
≥ 1

4
(l + εC∗ + δ1) + 7ε2 +

l2

4ε2

(
4 +

3

2ε2
2

)
.

After that, we pick λ̃2 so small that

λ̃2 ≤
1

32N2

.

Finally, we choose M large enough so that, there exists a positive constant η1, such

that (3.42) becomes

d

dt
L (t) ≤ −η1

∫ 1

0

(
ψ2
t + ψ2

x + ϕ2
t + (ϕx + ψ)2 + z2(x, 1, t)

)
dx

−η1

∫ 1

0

∫ 1

0

z2(x, ρ, t)dρdx− η1

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx,(3.43)

which implies by (3.2), that there exists also η2 > 0, such that

(3.44)
d

dt
L (t) ≤ −η2E (t) , ∀t ≥ 0.

We also have the following lemma.

Lemma 3.10. For M large enough, there exist two positive constants β1 and β2

depending on M,N2 and ε2, such that

(3.45) β1E (t) ≤ L (t) ≤ β2E (t) , ∀t ≥ 0.

Next, combining (3.44) and (3.45), we conclude that there exists Λ > 0 such that

(3.46)
d

dt
L (t) ≤ −ΛL (t) , ∀t ≥ 0.

A simple integration of (3.46) leads to

(3.47) L (t) ≤ L (0) e−Λt, ∀t ≥ 0.

Again, use of (3.45) and (3.47) yields the desired result (3.9). This completes the

proof of Theorem 3.2. �

3.2. Exponential stability for µ1 = µ2. In this subsection we assume that µ1 =

µ2 = µ. As we will see, we cannot directly perform the same proof as for the case

where µ2 < µ1. We point out here that in the absence of the viscoelastic damping,

that is for g = 0, Said-Houari and Laskri [23] have proved recently an exponential

stability result for µ1 > µ2. Here we push the result in [23] to the case where µ1 = µ2

and we show that the presence of the viscoelastic damping in the second equation in

(1.1) may extend the set of (µ1, µ2) for which the exponential stability of (1.1)–(1.3)

occurs. For the wave equation, Nicaise and Pignotti have proved recently in [17] that

for µ1 = µ2 some instabilities results hold.

Our main result in this section reads as follows.



348 B. SAID-HOUARI AND R. RAHALI

Theorem 3.11. Let U0 ∈ D (A ). Assume that µ2 = µ1 = µ and g satisfies (G1)

and (G2). Assume further that (3.8) holds. Then there exist two positive constants

Ĉ and γ̂ such that for any solution (ϕ, ψ, z, ηt) of problem (2.5)–(2.6), we have

(3.48) E (t) ≤ Ĉe−γ̂t, ∀t ≥ 0.

To prove Theorem 3.11, we need some additional Lemmas. First, if µ1 = µ2 = µ,

then we can choose ξ = τµ. In this case Lemma 3.1 takes the form

Lemma 3.12. Assume that µ2 = µ1 = µ, then the energy E(t) is non-increasing

and there exists a positive constant C such that for any regular solution (ϕ, ψ, z, ηt)

of problem (2.5)–(2.6) and for any t ≥ 0, we have

(3.49)
dE (t)

dt
≤ 1

2

∫ 1

0

∫ ∞
0

g′(s)|ηtx(x, s)|2dsdx ≤ 0.

The proof of Lemma 3.12 is an immediate consequence of Lemma 3.1, by choosing

ξ = τµ.

If µ2 = µ1, we need some additional negative terms of
∫ 1

0
ψt(x, t)dx, for this

purpose, let us introduce the functional:

(3.50) I4 = −ρ2

∫ 1

0

ψt(x, t)

∫ ∞
0

g(s)ηt(x, s)dsdx.

Then, we have the following estimate.

Lemma 3.13. Let (ϕ, ψ, z, ηt) be the solution of (2.5)–(2.6). Then we have

d

dt
I4 (t) ≤

(
µ2γ3 −

ρ2g0

2

)∫ 1

0

ψ2
t (x, t)dx+ l2γ1

∫ 1

0

ψ2
x(x, t)dx+K2γ2

∫ 1

0

(ϕx + ψ)2 dx

+

(
g0 +

g0

4γ1

+
g0C

∗

4γ2

+
g0C

∗

4

(
1

γ3

+
1

γ4

))∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx(3.51)

−C
∗ρ2g(0)

2

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx+ µ2γ4

∫ 1

0

z2 (x, 1, t) dx.

Proof. Differentiating (3.50) with respect to t, we get

dI4(t)

dt
=

∫ 1

0

(−lψxx (x, t) +K (ϕx + ψ) (x, t)

+µψt (x, t) + µz (x, 1, t)−
∫ ∞

0

g(s)ηtxx(x, s)ds

)
×
(∫ ∞

0

g(s)ηt(x, s)dsdx

)
−ρ2

∫ 1

0

ψt(x, t)

∫ ∞
0

g(s)ηtt(x, s)dsdx.(3.52)

The terms in the right hand side of (3.52) can be estimated as follows:

First, using integration by parts, the boundary conditions (2.6), Hölder’s inequal-

ity and Young’s inequality, we get for any γ1 > 0

−
∫ 1

0

lψxx (x, t)

∫ ∞
0

g(s)ηt(x, s)dsdx
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=

∫ 1

0

lψx (x, t)

∫ ∞
0

g(s)ηtx(x, s)dsdx

≤ l2γ1

∫ 1

0

ψ2
x (x, t) dx+

1

4γ1

∫ 1

0

(∫ ∞
0

g(s)ηtx(x, s)dsdx

)2

dx

≤ l2γ1

∫ 1

0

ψ2
x (x, t) dx+

g0

4γ1

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Second, Poincaré’s inequality and Young’s inequality give for any γ2 > 0∫ 1

0

K (ϕx + ψ) (x, t)

∫ ∞
0

g(s)ηt(x, s)dsdx

≤ K2γ2

∫ 1

0

|ϕx + ψ|2 (x, t) dx+
g0C

∗

4γ2

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Third, as above we have for all γ3, γ4 > 0∫ 1

0

(µψt (x, t) + µz (x, 1, t))

∫ ∞
0

g(s)ηt(x, s)dsdx

≤ µ2

∫ 1

0

(
γ3ψ

2
t (x, t) + γ4z

2 (x, 1, t)
)
dx+

g0C
∗

4

(
1

γ3

+
1

γ4

)∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Fourth, it is obvious that

−
∫ 1

0

∫ ∞
0

g(s)ηtxx(x, s)ds

∫ ∞
0

g(s)ηt(x, s)dsdx

=

∫ 1

0

(∫ ∞
0

g(s)ηtx(x, s)ds

)2

dx

≤ g0

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

Fifth, we have

−ρ2

∫ 1

0

ψt(x, t)

∫ ∞
0

g(s)ηtt(x, s)dsdx = −ρ2g0

∫ 1

0

ψ2
t (x, t)dx

− ρ2

∫ 1

0

ψt(x, t)

∫ ∞
0

g′(s)ηt(x, s)dsdx.

On the other hand, it is clear that∣∣∣∣ρ2

∫ 1

0

ψt(x, t)

∫ ∞
0

g′(s)ηt(x, s)dsdx

∣∣∣∣ ≤ ρ2g0

2

∫ 1

0

ψ2
t (x, t)dx

−C
∗g (0) ρ2

2

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx.

This last inequality implies

−ρ2

∫ 1

0

ψt(x, t)

∫ ∞
0

g(s)ηtt(x, s)dsdx ≤ −ρ2g0

2

∫ 1

0

ψ2
t (x, t)dx

−C
∗g (0) ρ2

2

∫ 1

0

∫ ∞
0

g′(s)
∣∣ηtx(x, s)∣∣2 dsdx.
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Inserting all the above estimates into (3.52), then our result (3.51) is obtained. This

completes the proof of Lemma 3.13.

To finalize the proof of Theorem 3.11, we define the Lyapunov functional F (t)

as follows

F (t) := NE (t) +
1

4
I1 (t) + N̂2I2 (t) + J (t) +

ε2

K

∫ 1

0

ρ1qϕtϕxdx

+
1

4ε2

∫ 1

0

ρ2q (x)ψt

(
lψx +

∫ ∞
0

g(s)ηtx(x, s)ds

)
dx+N3I3 (t) +N4I4 (t) ,(3.53)

where N, N̂1, N̂2, N3, N4 and ε2 are positive real numbers which will be chosen later.

Consequently, using the estimates (3.11), (3.17), (3.23), (3.29), (3.39), (3.49) and

(3.51) together with (1.4) and the algebraic inequality (3.41) we get

d

dt
F (t) ≤

[
−ρ2

4
+ N̂2

(
ρ2 +

ρ1

4λ̃2

)
+

1

4ε2

(
2ρ2(l + g0) + 4µ2

1ε
2
2 + ρ2ε2

)
+

(
ρ2 +

µ2
1

4ε1

)
+
N3

2τ
+N4

(
µ2γ3 −

ρ2g0

2

)]∫ 1

0

ψ2
t dx

+

[
µ2

2

16ε
+ N̂2

µ2

4λ2

+
µ2

2

4ε1

+ µ2
2ε2 −

N3c

2τ
+N4µ

2γ4

] ∫ 1

0

z2(x, 1, t)dx

+

[
−ρ1

4
+ ε1 +

2ρ1ε2

K
+ N̂2ρ1λ̃2

] ∫ 1

0

ϕ2
tdx−N3I3 (t)

+

[
− (K − 2ε) +

K

4
+K2ε2 +N4K

2γ2 + 6ε2

] ∫ 1

0

(ϕx + ψ)2 dx(3.54)

+

[
1

4
(l + εC∗ + δ1) + N̂2 (δ1 + µ2C

∗λ2 − l)

+
l2

4ε2

(
4 +

3

2ε2
2

)
+N4l

2γ1 + 7ε2

] ∫ 1

0

ψ2
xdx

+ C̃

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.

where

C̃ =
g0

16δ1

+ N̂2
g0

4δ1

+
g0

4ε2

(
4 +

3

2ε2
2

)
+N4

(
g0 +

g0

4γ1

+
g0C

∗

4γ2

+
g0C

∗

4

(
1

γ3

+
1

γ4

))
−ζ
(
N

2
− g0C(ε1)− ρ2g(0)C(ε2)

4ε2

− N4C
∗ρ2g(0)

2

)
.

Now, our goal is to choose our constant in (3.54) in order to get negative coefficients

on the the right-hand side of (3.54). To this end, let us first choose ε small enough

such that

ε ≤ K

4
.
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Then, take ε1 = ε2 and choose ε2 small enough such that

ε2 ≤ min

(
K/8

K2 + 6
,

ρ1/8

(2ρ1/K) + 1

)
.

Also, we pick γ3 sufficiently small such that

γ3 ≤
ρ2g0

4µ2
.

Next, we select δ1 = λ2 and choose λ2 small enough such that

λ2 ≤
l/2

1 + µ2C∗
.

Once all the above constants are fixed, we fix N̂2 large enough such that

N̂2
l

4
≥ 1

4
(l + εC∗ + δ1) + 7ε2 +

l2

4ε2

(
4 +

3

2ε2
2

)
After that, we pick λ̃2 so small that

λ̃2 ≤
1

32N2

.

Furthermore, choosing N3 large enough such that

N3c

4τ
≥ µ2

2

16ε
+ N̂2

µ2

4λ2

+
µ2

2

4ε1

+ µ2
2ε2.

Next, we fix N4 large enough such that

N4
ρ2g0

2
≥
(
ρ2 +

µ2
1

4ε1

)
+
N3

2τ
+ N̂2

(
ρ2 +

ρ1

4λ̃2

)
+

1

4ε2

(
2ρ2(l + g0) + 4µ2

1ε
2
2 + ρ2ε2

)
.

Once N4 and all the above constants are fixed, we may choose γ1, γ2 and γ4 small

enough such that

γ2 ≤
1

16KN4

, γ1 ≤
N̂2

8N4l
, γ4 ≤

N3c

8τN4µ2
.

Once all the above constants are fixed, we pick N large enough such that there exists

η̂1 such that

d

dt
F (t) ≤ −η̂1

∫ 1

0

(
ψ2
t + ψ2

x + ϕ2
t + (ϕx + ψ)2 + z2(x, 1, t)

)
dx

−η̂1

∫ 1

0

∫ 1

0

z2(x, ρ, t)dρdx− η̂1

∫ 1

0

∫ ∞
0

g(s)
∣∣ηtx(x, s)∣∣2 dsdx.(3.55)

On the other hand, for N large enough,we can find two positive constants β̂1 and β̂2

depending on N, N̂2, N3, N4 and ε2 such that

(3.56) β̂1E (t) ≤ F (t) ≤ β̂2E (t) , ∀t ≥ 0.

Using (3.55) and (3.56), the remaining part of the proof can be finished exactly as

the one of Theorem 3.2, we omit the details. �
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Remark 3.14. In the above section, we proved the stability result of problem (1.1)–

(1.3) under the condition µ2 ≤ µ1. It is an interesting open problem to study the

case µ2 > µ1. Based on the result in [17] we conjecture that our solution is instable.
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