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1. INTRODUCTION AND PRELIMINARIES

This work, motivated by the monograph of Anastassiou [2], presents improve-

ments of a composition rule for the Canavati fractional derivatives which relax re-

strictions on the orders of fractional derivatives in the composition rule. See Section

2. Also, we will give versions of Opial-type inequalities known for Riemann-Liouville

fractional derivatives, and we will present improvements of some Opial-type inequal-

ities for the Canavati fractional derivatives which have the general form

∫ b

a

w1(t)|(Dµ1f)(t)||(Dµ2f)(t)| dt ≤ K

(
∫ b

a

w2(t)|(Dνf)(t)|p dt

)

2
p

,

where w1 and w2 are weight functions, and Dγf denotes the Canavati fractional

derivative of f of order γ.

First, following [5], we survey some facts about fractional derivatives. Let g ∈
C([0, 1]). Let ν > 0, n = [ν], [·] the integral part, and ν = ν − n, 0 ≤ ν < 1. Define

the Riemann-Liouville fractional integral of g of order ν by

(Jνg)(x) =
1

Γ(ν)

∫ x

0

(x − t)ν−1 g(t) dt, x ∈ [0, 1] ,
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where Γ is the gamma function Γ(ν) =
∫∞
0

e−t tν−1 dt. Define the subspace Cν([0, 1])

of Cn([0, 1]) as

Cν([0, 1]) = {g ∈ Cn([0, 1]) : J1−ν g(n) ∈ C1([0, 1])} .

For g ∈ Cν([0, 1]) the Canavati ν-fractional derivative of g is defined by

Dνg = DJ1−νg
(n) ,

where D = d/dx. Since we will compare our results with ones from [2] we will now give

a more general definition of the Riemann-Liouville fractional integral. Let [a, b] ⊆ R

and x0, x ∈ [a, b] such that x ≥ x0 where x0 is fixed. For f ∈ C([a, b]) the generalized

Riemann-Liouville fractional integral of f of order ν is given by

(Jx0
ν f)(x) =

1

Γ(ν)

∫ x

x0

(x − t)ν−1 f(t) dt, x ∈ [x0, b] .

Analogously, define the subspace Cν
x0

([a, b]) of Cn([a, b]) as

Cν
x0

([a, b]) = {f ∈ Cn([a, b]) : Jx0
1−ν f (n) ∈ C1([x0, b])}.

For f ∈ Cν
x0

([a, b]) the generalized Canvati ν-fractional derivative of f over [x0, b] is

given by

Dν
x0

f = DJx0
1−νf

(n) .

Notice that

(Jx0
1−νf

(n))(x) =
1

Γ(1 − ν)

∫ x

x0

(x − t)−νf (n)(t) dt

exists for f ∈ Cν
x0

([a, b]).

Lemma 1.1 ([5], [2]). (i) Dn
x0

f = f (n) for n ∈ N.

(ii) Let f ∈ Cν
x0

([a, b]), ν > 0 and f (i)(x0) = 0, i = 0, 1, . . . , n − 1, n = [ν]. Then

f(x) = (Jx0
ν Dν

x0
f)(x).

That is,

(1.1) f(x) =
1

Γ(ν)

∫ x

x0

(x − t)ν−1(Dν
x0

f)(t) dt,

for all x ∈ [a, b] with x ≥ x0.

Lemma 1.2 ([5], [9]). Let f ∈ C([a, b]), µ, ν > 0. Then Jx0
µ (Jx0

ν f) = Jx0
µ+ν(f).

The proof of the composition rule contained in the following lemma can be found

in [2].

Lemma 1.3. Let γ ≥ 0, ν ≥ 1 be such that ν − γ ≥ 1. Let f ∈ Cν
x0

([a, b]) be such

that f (i)(x0) = 0, i = 0, 1, . . . , n − 1. Then

(1.2) (Dγ
x0

f)(x) =
1

Γ(ν − γ)

∫ x

x0

(x − t)ν−γ−1(Dν
x0

f)(t) dt,

hence (Dγ
x0

f)(x) = (Jx0
ν−γD

ν
x0

f)(x) and is continuous in x on [x0, b].
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Our first goal is to improve this composition rule for the Canavati fractional

derivatives. Using the Laplace transform we prove that one doesn’t need all van-

ishing derivatives of the function f at point x0 and that condition ν − γ ≥ 1 can

be relaxed. This will be used in all presented Opial-type inequalities involving the

Canavati fractional derivatives.

Next, we give two estimations in an Opial-type inequality motivated by Pang

and Agarwal’s extension [8, Theorem 1.1] of an inequality due to Fink [6] given for

classical derivatives (here Theorem 3.1 and Theorem 3.2). Comparison of the obtained

constants is also given.

Also, applying differently Hölder’s inequality we obtain an improvement of the

next weighted Opial-type inequality for the Canavati fractional derivatives (see [2]).

Theorem 1.4 ([2, Theorem 3.5]). Let µ1, µ2 ≥ 0, ν ≥ 1 be such that ν−µ1, ν−µ2 ≥ 1

and f ∈ Cν
x0

([a, b]) with f (i)(x0) = 0, i = 0, 1, . . . , n − 1, n := [ν]. Here x0, x ∈ [a, b],

with x ≥ x0. Let w be a nonnegative continuous function on [a, b]. Denote

Q :=

(
∫ x

x0

w(τ)2 dτ

)
1
2

.

Then
∫ x

x0

w(τ)|(Dµ1
x0

f)(τ)||(Dµ2
x0

f)(τ)| dτ ≤ K1

(
∫ x

x0

((Dν
x0

f)(t))2 dt

)

,

where K1 is given by

K1 =
Q (x − x0)

2ν−µ1−µ2− 1
2

3
√

6Γ(ν − µ1) Γ(ν − µ2) (ν − µ1 − 5
6
)

1
6 (ν − µ2 − 5

6
)

1
6 (4ν − 2µ1 − 2µ2 − 7

3
)

1
2

.

Finally, let us emphasize in the next remark that generalized Riemann-Liouville

fractional integral and generalized Canavati fractional derivative can, by simple sub-

stitutions, be reduced to the non-generalized case.

Remark 1.5. Note that generalized Riemann-Liouville fractional integral and gen-

eralized Canavati fractional derivative depend only on interval [x0, b]. It is easy to

see that using transformation L : [0, 1] → [x0, b], L(t) = (b − x0)t + x0 (or inverse

transformation), the generalized Rieman-Liouville fractional integral and the general-

ized Canavati fractional derivative can be expressed using non-generalized cases. For

example

(Jx0
ν f) (x) = (b − x0)

ν
(

Jν f̃
)

(

x − x0

b − x0

)

,

where f̃(t) = (b − x0)t + x0. Therefore, all our results stated for non-generalized

fractional derivative have an interpretation for the generalized fractional derivative

and vice versa.
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2. MAIN RESULT

We relax some conditions in composition rule for the Canavati fractional deriva-

tive given in Lemma 1.3.

Theorem 2.1. Let ν > γ > 0, n = [ν] , m = [γ]. Let f ∈ Cν([0, 1]) be such that

f (i)(0) = 0 for i = m, m + 1, . . . , n − 1. Then

(i)

(2.1) f ∈ Cγ([0, 1])

(ii)

(2.2) (Dγf)(x) =
1

Γ(ν − γ)

∫ x

0

(x − t)ν−γ−1 (Dνf)(t) dt

for every x ∈ [0, 1].

Proof. Set ν = ν − n, γ = γ − m. To prove (i), suppose first m = n (which gives

ν > γ). We have

(2.3) J1−γf
(n) = Jν−γJ1−νf

(n) = Jν−γ+1

(

DJ1−νf
(n)
)

,

where the last equality in (2.3) follows using integration by parts and J1−νf
(n)(0) = 0.

Since DJ1−νf
(n) ∈ C0([0, 1]) and ν − γ + 1 > 1 it follows J1−γf

(n) ∈ C1([0, 1]) by [5,

Proposition 1]. If m < n, then using f (m)(0) = · · · = f (n−1)(0) = 0 and integration

by parts it easily follows that f (m) = Jn−mf (n). We have

J1−γf
(m) = J1−γJn−mf (n) = J1−γ+n−mf (n).

The result again follows from [5, Proposition 1] since 1 − γ + n − m > 1 and f (n) ∈
C0([0, 1]).

We will prove (2.2) using the Laplace transform. Set g = f (m). Now (2.2) can be

written as

(2.4) (DJ1−γg) (x) =
(

Jν−γDJ1−νg
(n−m)

)

(x) = g(n−m−1)(0) = 0.

where x ∈ [0, 1] and g(0) = g′(0) = · · · = g(n−m−1)(0) = 0. Define auxiliary function

h : [0,∞) → R with

(2.5) h(x) =

{

g(x) , x ∈ [0, 1]
∑n−m

k=0
g(k)(1)

k!
(x − 1)k , x ≥ 1

.

Obviously h ∈ Cn−m([0,∞)), h(0) = h′(0) = · · · = h(n−m−1)(0) = 0. Also h has

polynomial growth at ∞, so the Laplace transform of h exists. The identity (2.4) will

follow if we prove that

1

Γ(1 − γ)

d

dx

∫ x

0

(x − t)−γh(t) dt
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=
1

Γ(ν − γ)Γ(1 − ν)

∫ x

0

(x − t)ν−γ−1 d

dt

∫ t

0

(t − y)−νh(n−m)(y) dy dt(2.6)

holds for every x ≥ 0. Using standard properties of the Laplace transform we have

L
(

1

Γ(1 − γ)

d

dx

∫ x

0

(x − t)−γh(t) dt

)

(s)

=
1

Γ(1 − γ)
sL
(
∫ x

0

(x − t)−γh(t) dt

)

(s)

=
s

Γ(1 − γ)
L
(

x−γ
)

(s)L(h)(s) = sγ L(h)(s).(2.7)

On the other hand we have

L
(

1

Γ(1 − ν)Γ(ν − γ)

∫ x

0

(x − t)ν−γ−1 d

dt

∫ t

0

(t − y)−νh(n−m)(y) dy dt

)

(s)

=
1

Γ(1 − ν)Γ(ν − γ)
L
(

xν−γ−1
)

(s)L
(

d

dt

∫ t

0

(t − y)−νh(n−m)(y) dy dt

)

(s)

=
sγ−ν

Γ(1 − ν)
sL
(

x−ν
)

(s)L
(

h(n−m)
)

(s)

= sγ−ν s

s1−ν
sn−m L(h)(s) = sγL(h)(s).(2.8)

Using (2.7) and (2.8) it follows that both sides of (2.6) have the same Laplace trans-

form and since both sides are continuous function, we conclude that equality holds in

(2.6) for every x ≥ 0. This completes the proof of the theorem.

3. OPIAL-TYPE INEQUALITIES

The first theorem is an Opial-type inequality due to Fink who proved it for

ordinary derivatives [6]. Although our proof is similar to the one given in [8, Theorem

1.1], we sketch a proof for the reader’s convenience. In [2, Section 5] the result is

given for Riemann–Liouville’s fractional derivatives without a discussion of the best

possible cases. Using different technique we prove another estimation of the same

type of inequality and compare obtained estimations.

Theorem 3.1. Let 1/p + 1/q = 1 with p, q > 1. Let ν > µ2 ≥ µ1 + 1 ≥ 1, n = [ν]

and m = [µ1]. Let f ∈ Cν([0, 1]) be such that f (i)(0) = 0 for i = m, m + 1, . . . , n − 1

and let x ∈ [0, 1]. Then

(3.1)

∫ x

0

|(Dµ1f)(τ)||(Dµ2f)(τ)| dτ ≤ A1 x2ν−µ1−µ2−1+ 2
q

(
∫ x

0

|(Dνf)(τ)|p dτ

)
2
p

,

where A1 is given by

A1 =
1

2
1
p Γ(ν − µ1) Γ(ν − µ2 + 1) [q(ν − µ2) + 1]

1
q [q(2ν − µ1 − µ2 − 1) + 2]

1
q

.
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Inequality (3.1) is sharp in the case µ2 = µ1 + 1 and the equality is attained for

(3.2) f(s) =
1

Γ(ν)

∫ s

0

(s − t)ν−1(x − t)
q

p
(ν−µ2)dt.

Proof. Set αj = ν − µj − 1, j = 1, 2. Notice that α1 −α2 − 1 ≥ 0. Let 0 ≤ t ≤ s ≤ x.

Then (see [6])

(3.3)

∫ x

0

[

(τ − t)α1
+ (τ − s)α2

+ + (τ − s)α1
+ (τ − t)α2

+

]

dτ ≤ (x − t)α1(x − s)α2+1

α2 + 1
.

In the following calculation we abbreviate

c1 := [Γ(ν − µ2)Γ(ν − µ1)]
−1 , c2 := [Γ(ν − µ2 + 1)Γ(ν − µ1)]

−1 ,

c3 := q(ν − µ2) + 1 , ǫ := 2ν − µ1 − µ2 − 1 +
1

q
.

For τ ∈ [0, x], by (2.2), we have

(Dµjf)(τ) =
1

Γ(ν − µj)

∫ x

0

(τ − t)αi

+ (Dνf)(t) dt .

Using this representation, the auxiliary inequality (3.3), and Hölder’s inequality, we

obtain

∫ x

0

|(Dµ1f)(τ)||(Dµ2f)(τ)| dτ

(3.4)

≤ c1

∫ x

0

(
∫ x

0

|(Dνf)(t)|(τ − t)α1
+ dt

)(
∫ x

0

|(Dνf)(s)|(τ − s)α2
+ ds

)

dτ

= c1

∫ x

0

|(Dνf)(t)|
{

∫ x

t

|(Dνf)(s)|

·
(
∫ x

0

[(τ − t)α1
+ (τ − s)α2

+ + (τ − s)α1
+ (τ − t)α2

+ ] dτ

)

ds

}

dt

≤ c2

∫ x

0

|(Dνf)(t)|
(
∫ x

t

|(Dνf)(s)|(x− t)α1(x − s)α2+1 ds

)

dt

(3.5)

≤ c2

∫ x

0

|(Dνf)(t)|(x − t)α1

(
∫ x

t

|(Dνf)(s)|p ds

)
1
p
(
∫ x

t

(x − s)q(α2+1) ds

)
1
q

dt

= c2 c
−1/q
3

∫ x

0

|(Dνf)(t)|(x − t)ǫ

(
∫ x

t

|(Dνf)(s)|p ds

)
1
p

dt

(3.6)

≤ c2 c
−1/q
3

(
∫ x

0

|(Dνf)(t)|p
(
∫ x

t

|(Dνf)(s)|p ds

)

dt

)
1
p
(
∫ x

0

(x − t)ǫq dt

)
1
q

= c2 c
−1/q
3 (ǫq + 1)−1/q x(ǫq+1)/q

{

1

2

(
∫ x

0

|(Dνf)(t)|p dt

)2
}

1
p

.
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It is obvious that in the case α2 = α1 + 1 we have equality in (3.3). Using equality

condition for Hölder’s inequality we have also equality in (3.5) for the function f

given in (3.2) since obviously (Dνf(s))p = (x− s)q(α2+1). Straightforward calculation

shows that for this function equality holds also in (3.6). Equality in (3.4) in this case

is obvious.

Using a different technique we obtain yet another constant for the previous in-

equality:

Theorem 3.2. Let 1/p + 1/q = 1 with p, q > 1. Let µj > 0, ν > µj + 1 − 1
q
,

n = [ν] and m = min{[µ1], [µ2]}. Let f ∈ Cν([0, 1]) be such that f (i)(0) = 0 for

i = m, m + 1, . . . , n − 1 and let x ∈ [0, 1]. Then

∫ x

0

|(Dµ1f)(τ)||(Dµ2f)(τ)| dτ ≤ A2 x2ν−µ1−µ2−1+ 2
q

(
∫ x

0

|(Dνf)(τ)|p dτ

)
2
p

,

where A2 is given by

A2 =
q

[q(2ν − µ1 − µ2 − 1) + 2]
∏2

j=1 Γ(ν − µj) [q(ν − µj − 1) + 1]
1
q

.

Proof. Set αj = ν − µj − 1, j = 1, 2. For τ ∈ [0, x], by (2.2), we have

(Dµjf)(τ) =
1

Γ(αj + 1)

∫ τ

0

(τ − t)αj (Dνf)(t) dt.

By Hölder’s inequality we have

∫ x

0

2
∏

j=1

|(Dµjf)(τ)| dτ

≤ 1
∏2

j=1 Γ(αj + 1)

∫ x

0

2
∏

j=1

(
∫ τ

0

(τ − t)qαj dt

)
1
q
(
∫ τ

0

|(Dνf)(t)|p dt

)
1
p

dτ

≤ 1
∏2

j=1 Γ(αj + 1) (qαj + 1)
1
q

(
∫ x

0

|(Dνf)(t)|p dt

)
2
p
∫ x

0

τα1+α2+ 2
q dτ

= A2 x2ν−µ1−µ2−1+ 2
q

(
∫ x

0

|(Dνf)(t)|p dt

)
2
p

.

Remark 3.3. The constants A1 and A2 from the two previous theorems are in general

not comparable, but there are cases when we can do that. Notice

A1

A2
=

(ν − µ1 − 1 + 1
q
)

1
q (ν − µ2 − 1 + 1

q
)

1
q (2ν − µ1 − µ2 − 1 + 2

q
)

1
p

2
1
p (ν − µ2) (ν − µ2 + 1

q
)

1
q

.
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We want to find cases when A2 < A1. Set ν − µ2 = d2, µ2 − µ1 = d1 ≥ 1. Then

A2 < A1 is equivalent to

(3.7)
1

(d1 + d2 − 1 + 1
q
)

1
q (d1 + 2d2 − 1 + 2

q
)1− 1

q

<
(d2 − 1 + 1

q
)

1
q

21− 1
q d2 (d2 + 1

q
)

1
q

.

If d1 is big enough, then the left side of (3.7) tends to zero, while the right side is

independent of d1. Therefore, in this case A2 < A1.

Let d1 = 1, that is µ2 = µ1 + 1 (see the discussion of sharpness in Theorem 3.1).

Then the reverse inequality in (3.7) is equivalent to

qd2 + 1

qd2 − q + 1
>

(

1 +
1

qd2

)q

,

which is equivalent to inequality

(

qd2 + 1 − q

qd2 + 1

)1/q

<
qd2

1 + qd2
,

and this is a simple consequence of the Bernoulli inequality. This is in accordance

with Theorem 3.1.

An illustrative case is p = q = 2. In this case (3.7) is equivalent to

12(d1 − 1) d2
2 + 2(2 d2

1 − 4 d1 + 1) d2 − 2 d2
1 + d1 > 0.

That is, A2 < A1 is equivalent to

d2 > d̃2 =
−2d2

1 + 4d1 − 1 +
√

4d4
1 + 8d3

1 − 16d2
1 + 4d1 + 1

12(d1 − 1)
.

Notice that limd1→1 d̃2 = ∞ and limd1→∞ d̃2 = 1
2
. Roughly speaking, for d1 ≈ 1

or d2 ≈ 0.5 estimation in Theorem 3.1 is better than estimation in Theorem 3.2,

otherwise the opposite conclusion holds. For example, for d1 = 2 and d2 > −1+
√

73
12

≈
0.62867 or for d2 = 1 and d1 > −5+

√
105

4
≈ 1.31174 estimation in Theorem 3.2 is better

than estimation in Theorem 3.1.

We also consider a weighted Opial-type inequality for the generalized fractional

derivative given in [2] (here Theorem 1.4). Set

C =
Q (x − x0)

2ν−µ1−µ2− 1
2

Γ(ν − µ1) Γ(ν − µ2)

and recall that the constant in inequality from Theorem 1.4 is

(3.8) K1 =
C

3
√

6 (ν − µ1 − 5
6
)

1
6 (ν − µ2 − 5

6
)

1
6 (4ν − 2µ1 − 2µ2 − 7

3
)

1
2

.

Several applications of Hölder’s inequality on different factors with different indices

will improve this constant.
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Theorem 3.4. Let µj > 0, ν > µj + 5
6
, n = [ν] and m = min{[µ1], [µ2]}. Let f ∈

Cν
x0

([a, b]) be such that f (i)(x0) = 0 for i = m, m+1, . . . , n−1. Here x0, x ∈ [a, b] ⊆ R,

x ≥ x0 where x0 is fixed. If w ∈ C([a, b]) is a nonnegative function on [a, b], then
∫ x

x0

w(τ)|(Dµ1
x0

f)(τ)||(Dµ2
x0

f)(τ)| dτ ≤ K2

∫ x

x0

|(Dν
x0

f)(t)|2 dt,

where K2 is given by

(3.9) K2 =
C

3
√

6 (ν − µ1 − 5
6
)

1
6 (ν − µ2 − 5

6
)

1
6 (4ν − 2µ1 − 2µ2 − 1)

1
2

.

Proof. Set αj = ν − µj − 1, j = 1, 2. For τ ∈ [x0, x], by Remark 1.5 and (2.2), we

have

(Dµj
x0

f)(τ) =
1

Γ(αj + 1)

∫ τ

x0

(τ − t)αj (Dν
x0

f)(t) dt.

By Hölder’s inequality we have

∫ x

x0

w(τ)

2
∏

j=1

|(Dµj

x0
f)(τ)| dτ

≤
(
∫ x

x0

w(τ)2 dτ

)
1
2

(

∫ x

x0

2
∏

j=1

|(Dµj
x0

f)(τ)|2 dτ

)
1
2

≤ Q
∏2

j=1 Γ(αj + 1)

{

∫ x

x0

2
∏

j=1

(
∫ τ

x0

(τ − t)αj |(Dν
x0

f)(t)| dt

)2

dτ

}
1
2

.

Again, for p = 3 and q = 3
2

∫ τ

x0

(τ − t)αj |(Dν
x0

f)(t)| dt ≤
(
∫ τ

x0

dt

)
1
3
(
∫ τ

x0

(τ − t)
3
2
αj |(Dν

x0
f)(t)| 32 dt

)
2
3

,

and for p = 4 and q = 4
3

we have

∫ τ

x0

(τ − t)
3
2
αj |(Dν

x0
f)(t)| 32 dt ≤

(
∫ τ

x0

(τ − t)6αj dt

)
1
4
(
∫ τ

x0

|(Dν
x0

f)(t)|2 dt

)
3
4

.

Therefore
∫ x

x0

w(τ)

2
∏

j=1

|(Dµj
x0

f)(τ)| dτ

≤ Q
∏2

j=1 Γ(αj + 1)

{

∫ x

x0

(τ − x0)
4
3

(
∫ τ

x0

|(Dν
x0

f)(t)|2 dt

)2

·
2
∏

j=1

(

(τ − x0)
6αj+1

6αj + 1

)
1
3

dτ

}
1
2

≤ Q
∏2

j=1 Γ(αj + 1) (6αj + 1)
1
6

∫ x

x0

|(Dν
x0

f)(t)|2 dt

(
∫ x

x0

(τ − x0)
2α1+2α2+2 dτ

)
1
2
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= K2

∫ x

x0

|(Dν
x0

f)(t)|2 dt.

Theorem 3.5. Let µj > 0, ν > µj + 1
2
, n = [ν] and m = min{[µ1], [µ2]}. Let f ∈

Cν
x0

([a, b]) be such that f (i)(x0) = 0 for i = m, m+1, . . . , n−1. Here x0, x ∈ [a, b] ⊆ R,

x ≥ x0 where x0 is fixed. If w ∈ C([a, b]) is a nonnegative function on [a, b], then

∫ x

x0

w(τ)|(Dµ1
x0

f)(τ)||(Dµ2
x0

f)(τ)| dτ ≤ K3

∫ x

x0

|(Dν
x0

f)(t)|2 dt,

where K3 is given by

(3.10) K3 =
C

2 (ν − µ1 − 1
2
)

1
2 (ν − µ2 − 1

2
)

1
2 (4ν − 2µ1 − 2µ2 − 1)

1
2

.

Proof. Write αj = ν − µj − 1, j = 1, 2. For τ ∈ [x0, x], by Remark 1.5 and (2.2), we

have

(Dµj

x0
f)(τ) =

1

Γ(αj + 1)

∫ τ

x0

(τ − t)αj (Dν
x0

f)(t) dt.

By Hölder’s inequalities we have

∫ x

x0

w(τ)
2
∏

j=1

|(Dµj

x0
f)(τ)| dτ

≤
∫ x

x0

w(τ)
2
∏

j=1

(

1

Γ(αj + 1)

∫ τ

x0

(τ − t)αj |(Dν
x0

f)(t)| dt

)

dτ

≤ 1
∏2

j=1 Γ(αj + 1)

∫ x

x0

w(τ)

(
∫ τ

x0

|(Dν
x0

f)(t)|2 dt

) 2
∏

j=1

(
∫ τ

x0

(τ − t)2αj dt

)
1
2

dτ

≤ 1
∏2

j=1 Γ(αj + 1) (2αj + 1)
1
2

(
∫ x

x0

|(Dν
x0

f)(t)|2 dt

)
∫ x

x0

w(τ)(τ − x0)
α1+α2+1 dτ

≤ 1
∏2

j=1 Γ(αj + 1) (2αj + 1)
1
2

(
∫ x

x0

|(Dν
x0

f)(t)|2 dt

)

·
(
∫ x

x0

w(τ)2 dτ

)
1
2
(
∫ x

x0

(τ − x0)
2α1+2α2+2 dτ

)
1
2

= K3

∫ x

x0

|(Dν
x0

f)(t)|2 dt.

Remark 3.6. Comparing three constants Ki, that is (3.8), (3.9) and (3.10), we

conclude

(3.11) K3 < K2 < K1.
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The second inequality is obvious. The first inequality is equivalent to

3
√

6ν − 6µ1 − 5

2ν − 2µ1 − 1

3
√

6ν − 6µ2 − 5

2ν − 2µ2 − 1
< 1,

for ν − µj > 5/6, j = 1, 2, which holds since
3√3x−5
x−1

< 1/2 for x > 5/3.

Finally, we give a very general Opial-type inequality involving the Canavati frac-

tional derivatives which is analogous to [8, Theorem 1.3] for ordinary derivatives. The

proof is omitted (see [4]).

Theorem 3.7. Let l ∈ N, µj > 0, ν > µj, n = [ν] and m = min{[µj] : j = 1, . . . , l}.
Let f ∈ Cν([0, 1]) be such that f (i)(0) = 0 for i = m, m + 1, . . . , n − 1. Let w1,

w2 be continuous positive weight functions on [0, x] where x ∈ [0, 1]. Let rj > 0,

r =
∑l

j=1 rj, sk > 1 and 1
sk

+ 1
s′
k

= 1 for k = 1, 2. Let p ∈ R be such that p > s2 and

let σ = 1/s2 − 1/p. Suppose also ν > µj + 1 − σ, j = 1, . . . , l. Denote

Q =

(
∫ x

0

w1(τ)s′1 dτ

)
1
s′1

, P =

(
∫ x

0

w2(τ)−
s′2
p dτ

)
r

s′2
.

Then

∫ x

0

w1(τ)

l
∏

j=1

|(Dµjf)(τ)|rj dτ

≤ P A

(
∫ x

0

w1(τ)τρ dτ

) (
∫ x

0

w2(t) |(Dνf)(t)|p dt

)
r
p

≤ P Q A
x

ρ+ 1
s1

(ρs1 + 1)
1

s1

(
∫ x

0

w2(t) |(Dνf)(t)|p dt

)
r
p

,

where αj = ν − µj − 1, ρ = Σl
j=1αjrj + σr and A is given by

A =
σrσ

∏l
j=1 Γ(αj + 1)rj (αj + σ)rjσ

.

REFERENCES

[1] R. P. Agarwal, P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference

Equations, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.

[2] G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, 2009.
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