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ABSTRACT. We study the structure of approximate solutions for a class of continuous-time

optimal control problems. These optimal control problems arise in economic dynamics and describe

a model proposed by Robinson, Solow and Srinivasan. We are interested in turnpike properties of

the approximate solutions which are independent of the length of the interval, for all sufficiently

large intervals.
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1. INTRODUCTION

The study of variational and optimal control problems defined on infinite (large)

intervals has recently been a rapidly growing area of research. See, for example, [4–10,

13, 14, 18, 21, 26–30, 32, 39] and the references mentioned therein. These problems

arise in engineering [1, 19, 41], in models of economic growth [2, 12, 15–17, 22, 33,

36, 38–40], in infinite discrete models of solid-state physics related to dislocations in

one-dimensional crystals [3, 37] and in the theory of thermodynamical equilibrium for

materials [11, 20, 23–25]. In this paper we study an optimal control problem arising

in economic dynamics. This problem corresponds to the model of economic growth

introduced in [31, 34, 35]. Discrete-time versions of this model were recently studied

in [15–17, 38].

We are interested in a turnpike property of the approximate solutions of these

problems which is independent of the length of the interval [T1, T2] for all sufficiently

large intervals. To have this property means, roughly speaking, that the approximate

solutions of the optimal control problems are determined mainly by the cost function,

and are essentially independent of T2, T1 and endpoint values. Turnpike properties

are well known in mathematical economics. The term was first coined by Samuelson

in 1948 [33] where he showed that an efficient expanding economy would spend most

of the time in the vicinity of a balanced equilibrium path (also called a von Neumann

path). This property was further investigated for optimal trajectories of models of

Received January 6, 2011 1056-2176 $15.00 c©Dynamic Publishers, Inc.



396 A. J. ZASLAVSKI

economic dynamics [22, 39]. It has recently been shown that the turnpike property is

a general phenomenon which holds for large classes of variational and optimal control

problems [39].

We begin with some preliminary notation. Let R (R+) be the set of real (non-

negative) numbers and let Rn be a finite-dimensional Euclidean space with non-

negative orthant Rn
+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}. For any x, y ∈ Rn, let the

inner product xy =
∑n

i=1 xiyi.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn . We say that x ≥ y if xi ≥ yi for all

i = 1, . . . , n. We say that x > y if x ≥ y and x 6= y, and say that x ≫ y if xi > yi for

all i = 1, . . . , n.

Let e(i), i = 1, . . . , n, be the ith unit vector in Rn, and e be an element of Rn
+ all

of whose coordinates are unity. For any x ∈ Rn, let ‖x‖ denote the Euclidean norm

of x.

Denote by mes(E) the Lebesgue measure of a Lebesgue measurable set E ⊂ R.

Let a = (a1, . . . , an) ≫ 0, b = (b1, . . . , bn) ≫ 0, b1 ≥ b2 · · · ≥ bn, d ∈ (0, 1),

ci = bi/(1 + dai), i = 1, . . . , n.

The optimal control problem studied in the paper corresponds to the model of

an economy capable of producing a finite number n of alternative types of machines.

For every i = 1, . . . , n, one unit of machine of type i requires ai > 0 units of labor

to construct it, and together with one unit of labor, each unit of it can produce

bi > 0 units of a single consumption good. Thus, the production possibilities of the

economy are represented by an (labor) input-coefficients vector, a = (a1, . . . , an) ≫ 0

and an output-coefficients vector, b = (b1, . . . , bn) ≫ 0. For each nonnegative number

t let x(t) = (x1(t), . . . , xn(t)) ≥ 0 denote the amounts of the n types of machines

that are available in time t, and let y(t) = (y1(t), . . . , yn(t)) be the amounts of the n

types of machines used for production of the consumption good, by(t), at time t. We

also assume that the total labor force of the economy is unity. We assume that all

machines depreciate at a rate d ∈ (0, 1). Thus the effective labor cost of producing a

unit of output on a machine of type i is given by (1 + dai)/bi: the direct labor cost

of producing unit output, and the indirect cost of replacing the depreciation of the

machine in this production. We work with the reciprocal of the effective labor cost,

the effective output that takes the depreciation into account, and denote it by ci for

the machine of type i. Following [15–17, 38] throughout this paper, we assume that

there is a unique machine type σ at which effective labor cost (1+dai)/bi is minimal,

or at which the effective output per man bi/(1 + dai) is maximal. Thus we assume:

There exists σ ∈ {1, . . . , n} such that for all

(1.1) i ∈ {1, . . . , n} \ {σ}, cσ > ci.
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(For more details and explanations see [15–17, 38].)

We now give a formal description of our technological structure.

Define

(1.2) Ω = {(x, z) ∈ Rn
+ × Rn : z + dx ≥ 0 and a(z + dx) ≤ 1}.

For each (x, z) ∈ Ω define

(1.3) Λ(x, z) = {y ∈ Rn
+ : y ≤ x and ey ≤ 1 − a(z + dx)}.

Let I be either [0,∞) or [T1, T2] with T2 > T1 ≥ 0. A pair of functions (x(·), y(·))

is called a program if x : I → Rn is an absolutely continuous (a.c.) function on any

bounded subinterval of I, y : I → Rn is a Lebesgue measurable function and if

(1.4) (x(t), x′(t)) ∈ Ω for almost every t ∈ I,

(1.5) y(t) ∈ Λ(x(t), x′(t)) for almost every t ∈ I.

In the sequel if I = [T1, T2], then the program (x(·), y(·)) is denoted by

(x(t), y(t))T2

t=T1

and if I = [0,∞), then the program (x(·), y(·)) is denoted by (x(t), y(t))∞t=0.

Let w : [0,∞) → R be a continuous strictly increasing concave and differentiable

function which represents the preferences of the planner.

For any (x, z) ∈ Ω define

u(x, z) = max{w(by) : y ∈ Λ(x, z)}.

A golden-rule stock is x̂ ∈ Rn
+ such that (x̂, 0) is a solution to the problem:

maximize u(x, z) subject to

(i) z ≥ 0; (ii) (x, z) ∈ Ω.

In [15] it was established the following result.

Theorem 1.1. There exists a unique golden-rule stock x̂ = (1/(1 + daσ))e(σ).

It is not difficult to see that x̂ is a solution to the problem

w(by) → max, y ∈ Λ(x̂, 0).

Set

ŷ = x̂.

For i = 1, . . . , n set

(1.6) q̂i = aibi(1 + dai)
−1, p̂i = w′(bx̂)q̂i.

Let

p̂ = (p̂1, . . . , p̂n),
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(1.7) ξσ = 1 − d − 1/aσ.

In Lemma 1 of [15] it was established the following important auxiliary result.

Lemma 1.2. w(bx̂) ≥ w(by) + p̂z for any (x, z) ∈ Ω and for any y ∈ Λ(x, z).

In this paper we use the following auxiliary result obtained in [40].

Lemma 1.3. Let m0 > 0. Then there exists m1 > 0 such that for each T > 0 and

each program (x(t), y(t))T
t=0 satisfying x(0) ≤ m0e the inequality x(t) ≤ m1e holds for

all t ∈ [0, T ].

We use the following notion of good programs (functions) introduced in [12] (see

also [18, 23–25, 39]).

A program (x(t), y(t))∞t=0 is called good if there exist M ∈ R such that
∫ T

0

(w(by(t)) − w(bŷ))dt ≥ M for all T ≥ 0.

A program is called bad if

lim
T→∞

∫ T

0

(w(by(t)) − w(bŷ))dt = −∞.

The following two results were established in [40].

Theorem 1.4. Any program (x(t), y(t))∞t=0 that is not good is bad.

Theorem 1.5. For any initial stock x0 ∈ Rn
+ there is a good program (x(t), y(t))∞t=0

satisfying x(0) = x0.

In the sequel we use a notion of an overtaking optimal program (function) intro-

duced in [2, 12, 36] (see also [18, 39]).

A program (x̃(t), ỹ(t))∞t=0 is overtaking optimal if for each program (x(t), y(t))∞t=0

satisfying x(0) = x̃(0) the following inequality holds:

lim sup
T→∞

[

∫ T

0

w(by(t))dt−

∫ T

0

w(bỹ(t))dt] ≤ 0.

The following two theorems are the main results of [40].

Theorem 1.6. Assume that a program (x(t), y(t))∞t=0 is good. Then

(i) lim
t→∞

x(t) = x̂.

(ii) Let ǫ ∈ (0, 1) and L > 1. Then there is T0 > 0 such that for each T ≥ T0

mes({t ∈ [T, T + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

Theorem 1.7. For any initial stock x0 ∈ Rn
+ there exists an overtaking optimal

program (x(t), y(t))∞t=0 satisfying x(0) = x0.
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Let z ∈ Rn
+ and T > 0. Set

(1.8)

U(z, T ) = sup
{∫ T

0

w(by(t))dt : (x(t), y(t))T
t=0 is a program such that x(0) = z

}
.

By Lemma 1.3, Theorem 1.5, (1.3), (1.5) and (1.8), U(z, T ) is a finite number.

Let x0, x1 ∈ Rn
+ and let 0 ≤ T1 < T2. Define

U(x0, x1, T1, T2) = sup
{∫ T2

T1

w(by(t))dt : (x(t), y(t))T2

t=T1

is a program such that x(T1) = x0, x(T2) ≥ x1

}
.(1.9)

Here we assume that supremum over empty set is −∞. By Lemma 1.3, (1.3), (1.5)

and (1.9), U(x0, x1, T1, T2) < ∞. It is also clear that for any z ∈ Rn
+ and any T > 0,

U(z, T ) = U(z, 0, 0, T ).

We will establish the following two results which describe the structure of approx-

imate optimal solutions of optimal control problems on sufficiently large intervals.

Theorem 1.8. Let M, ǫ be positive numbers and let Γ ∈ (0, 1). Then there exist

T∗ > 0 and a positive number γ such that for each T > 2T∗, each z0, z1 ∈ Rn
+

satisfying z0 ≤ Me and az1 ≤ Γd−1 and each program (x(t), y(t))T
t=0 which satisfies

x(0) = z0, x(T ) ≥ z1,

∫ T

0

w(by(t))dt ≥ U(z0, z1, 0, T ) − γ

there are numbers τ1, τ2 such that τ1 ∈ [0, T∗], τ2 ∈ [T − T∗, T ],

‖x(t) − x̂‖ ≤ ǫ for all t ∈ [τ1, τ2]

and that for each number S satisfying τ1 ≤ S ≤ τ2 − L,

mes({t ∈ [S, S + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

Moreover, if ‖x(0) − x̂‖ ≤ γ, then τ1 = 0 and if ‖x(T ) − x̂‖ ≤ γ, then τ2 = T . .

Theorem 1.9. Let M0, M1, ǫ be positive numbers, L > 1 and let Γ ∈ (0, 1). Then

there exist T∗ > L, a natural number Q and l > 0 such that for each T > T∗, each

z0, z1 ∈ Rn
+ satisfying z0 ≤ Me and az1 ≤ Γd−1 and each program (x(t), y(t))T

t=0

which satisfies

x(0) = z0, x(T ) ≥ z1,

∫ T

0

w(by(t))dt ≥ U(z0, z1, 0, T ) − M1

there exists a finite sequence of closed intervals [Si, S
′

i], i = 1, . . . , q such that q ≤ Q,

S ′

i − Si ≤ l, i = 1, . . . , q, S ′

i ≤ Si+1 for each integer i satisfying 1 ≤ i ≤ q − 1,

‖x(t) − x̂‖ ≤ ǫ, t ∈ [0, T ] \ ∪q
i=1[Si, S

′

i]
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and if S ∈ [0, T − L] satisfies

[S, S + L] ⊂ [S ′

i, Si+1] with 1 ≤ i < q,

then

mes({t ∈ [S, S + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

2. PRELIMINARIES

For any (x, z) ∈ Ω and any y ∈ Λ(x, z) set

(2.1) δ(x, y, z) = w(bŷ) − w(by) − p̂z.

By (2.1) and Lemma 1.2,

(2.2) δ(x, y, z) ≥ 0 for each (x, z) ∈ Ω and each y ∈ Λ(x, z).

It is not difficult to prove the following result.

Lemma 2.1 (40, Lemma 2.1). Let T > 0 and (x(t), y(t))T
t=0 be a program. Then

∫ T

0

(w(by(t)) − w(bŷ))dt = −

∫ T

0

δ(x(t), y(t), x′(t))dt − p̂(x(T ) − x(0)).

Lemmas 2.1 and 1.3 imply the following result.

Lemma 2.2 (40, Proposition 2.1). A program (x(t), y(t))∞t=0 is good if and only if

∫
∞

0

δ(x(t), y(t), x′(t))dt := lim
T→∞

∫ T

0

δ(x(t), y(t), x′(t))dt

is finite.

Lemma 2.3 (40, Proposition 3.1). Let T > 0, m0 > 0 and let

{(x(i)(t), y(i)(t))T
t=0}

∞

i=1

be a sequence of programs satisfying

x(i)(0) ≤ m0e for all integers i ≥ 0.

Then there exist a program (x(t), y(t))T
t=0 and a strictly increasing sequence of natural

numbers {ik}
∞

k=1 such that

x(ik)(t) → x(t) as k → ∞ uniformly on [0, T ],

(x(ik))′ → x′ as k → ∞ weakly in L2([0, T ]; Rn),

y(ik) → y as k → ∞ weakly in L2([0, T ]; Rn).
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Lemma 2.4 (40, Proposition 3.2). Let T > 0, m0 > 0,

{(x(i)(t), y(i)(t))T
t=0}

∞

i=1

be a sequence of programs satisfying

x(i)(0) ≤ m0e for all integers i ≥ 0

and let (x(t), y(t))T
t=0 be a program such that

x(i)(t) → x(t) as i → ∞ uniformly on [0, T ],

(x(i))′ → x′ as i → ∞ weakly in L2([0, T ]; Rn),

y(i) → y as i → ∞ weakly in L2([0, T ]; Rn).

Then ∫ T

0

w(by(t))dt ≥ lim sup
i→∞

∫ T

0

w(by(i)(t))dt.

Let x0 ∈ Rn
+. Define

∆(x0) = inf{

∫
∞

0

δ(x(t), y(t), x′(t))dt : (x(t), y(t))∞t=0

(2.3) is program and x(0) = x0}.

By Theorem 1.5 and Lemma 2.1, ∆(x0) is well-defined and finite.

Lemma 2.5 (40, Proposition 3.3). Let x0 ∈ Rn
+. Then there exists a program

(x(t), y(t))∞t=0 such that x(0) = x0 and
∫

∞

0

δ(x(t), y(t), x′(t))dt = ∆(x0).

Lemma 2.6 (15, Lemma 2). The von Neumann facet

{(x, z) ∈ Ω : there is y ∈ Λ(x, z) such that δ(x, y, z) = 0}

is a subset of

{(x, z) ∈ Ω : xi = zi = 0 for all i ∈ {1, . . . , n} \ {σ},

zσ = (1/aσ) + (ξσ − 1)xσ}

with the equality if the function w is linear. If the function w is strictly concave, then

the facet is the singleton {(x̂, 0)}.

Lemma 2.7 (40, Lemma 4.2). Let (x(t), y(t))∞t=0 be a good program and Ti > 2i for

all natural numbers i. Let

(x(i)(t), y(i)(t)) = (x(t + Ti), y(t + Ti)), t ∈ [−i, i]

for each natural number i.
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Then there exist a strictly increasing sequence of natural numbers {ik}
∞

k=1, a lo-

cally a. c. function x̄ : R → Rn and a measurable Lebesgue function ȳ : R → Rn

such that for each natural number j,

x(ik)(t) → x̄(t) as i → ∞ uniformly on [−j, j],

(x(ik))′ → x̄′ as k → ∞ weakly in L2([−j, j]; Rn).

Moreover,

0 ≤ ȳ(t) ≤ x̄(t) for a.e. t ∈ R,

x̄′(t) + dx̄(t) ≥ 0 for a.e. t ∈ R,

eȳ(t) + a(x̄′(t) + dx̄(t)) ≤ 1 for a.e. t ∈ R

and

δ(x̄(t), ȳ(t), x̄′(t)) = 0 for a.e. t ∈ R.

Lemma 2.8 (40, Lemma 4.3). Let x : R → Rn be a locally a.c. function and

y : R → Rn be a Lebesgue measurable function such that

(x(t), x′(t)) ∈ Ω for a. e. t ∈ R,

y(t) ∈ Λ(x(t), x′(t)) for a. e. t ∈ R,

sup{‖x(t)‖ : t ∈ R} < ∞,

δ(x(t), y(t), x′(t)) = 0 for a. e. t ∈ R.

Then x(t) = x̂ for all t ∈ R and y(t) = x̂ for almost every t ∈ R.

3. AUXILIARY RESULTS

Lemma 3.1. Let Γ ∈ (0, 1). Then there exists a number k(Γ) > 0 such that for each

z0 ∈ Rn
+ and each z1 ∈ Rn

+ satisfying az1 ≤ Γd−1 there is a program (x(t), y(t))∞t=0

such that x(0) = z0 and x(t) ≥ z1 for all t ≥ k(Γ).

Proof. There exists k(Γ) > 0 such that

(3.1) 1 − e−dk(Γ) > Γ.

Assume that z0 ∈ Rn
+ and z1 ∈ Rn

+ satisfies

(3.2) az1 ≤ Γd−1.

Put

(3.3) z2 = Γ−1z1,

(3.4) x(t) = e−dt(z0 − z2) + z2, y(t) = 0, t ∈ [0,∞),

By (3.4) for all t ≥ 0,

(3.5) x(t) ≥ 0,
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(3.6) x′(t) + dx(t) = −de−dt(z0 − z2) + de−dt(z0 − z2) + dz2 = dz2.

In view of (3.6), (3.2) and (3.3) for all t ≥ 0,

x′(t) + dx(t) ≥ 0,

a(x′(t) + dx(t)) = adz2 = ad(Γ−1z1) ≤ 1.

Together with (1.2), (1.3), (1.4), (1.5), (3.4) and (3.5) these inequalities imply that

(x(t), y(t))∞t=0 is a program. By (3.4),

(3.7) x(0) = z0.

It follows from (3.4), (3.1) and (3.2) that for all t ≥ k(Γ)

x(t) ≥ (1 − e−dt)z2 ≥ (1 − e−dk(Γ))z2 ≥ Γ−1(1 − e−dk(γ))z1 ≥ z1.

Lemma 3.1 is proved.

In the sequel with each Γ ∈ (0, 1) we associate a number k(Γ) > 0 for which the

assertion of Lemma 3.1 holds.

Lemma 3.2. There is m > 0 such that for each z ∈ Rn
+ and each number T > 0

(3.8) U(z, T ) ≥ Tw(bx̂) − m.

Proof. By Theorem 1.1

(3.9) ax̂ = aσx̂σ = aσ(1 + daσ)−1 < d−1.

By (3.9) there is Γ ∈ (0, 1) such that

(3.10) ax̂ ≤ Γd−1.

Choose

m > k(Γ)[|w(0)| + |w(k(Γ))| + |w(bx̂)|].

Let z ∈ Rn
+. By (3.10), the choice of k(Γ) and Lemma 3.1 there exists a program

(x(t), y(t))
k(Γ)
t=0 such that

(3.11) x(0) = z, x(k(Γ)) ≥ x̂.

Let T > 0. We show that (3.8) holds. There are cases

(3.12) T ≤ k(Γ)

and

(3.13) T > k(Γ).
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Assume that (3.12) holds. Then by (3.11), (3.12) and the choice of m

U(z, T ) ≥

∫ T

0

w(by(t))dt ≥ Tw(0) ≥ T (−|w(0)|) ≥ −k(Γ)|w(0)|

= Tw(bx̂) + [−k(Γ)|w(0)| − Tw(bx̂)] ≥ Tw(bx̂) − k(Γ)|w(0)| − k(Γ)|w(bx̂)|

≥ Tw(bx̂) − m

and (3.8) holds.

Assume that (3.13) holds. For all t > k(Γ) set

(3.14) x(t) = x̂ + e−d(t−k(Γ))(x(k(Γ)) − x̂), y(t) = x̂.

By (3.14), (3.11) for all t ∈ (k(Γ),∞),

(3.15) 0 ≤ y(t) ≤ x(t).

It follows from (3.14), Theorem 1.1 and (1.2) that for all t ∈ (k(Γ),∞)

(3.16) x′(t) + dx(t) = dx̂ = d(1 + daσ)
−1eσ,

(3.17) a(x′(t) + dx(t)) ≤ 1, (x(t), x′(t)) ∈ Ω.

By (3.16), (3.14) and Theorem 1.1 for all t ∈ (k(Γ),∞)

a(x′(t) + dx(t)) + ey(t) = adx̂ + (1 + daσ)−1

= aσd(1 + daσ)−1 + (1 + daσ)−1 = 1

and together with (1,3), (3.17) and (3.15) this implies that

y(t) ∈ Λ(x(t), x′(t)).

Thus we have shown that (x(t), y(t))∞t=0 is a program. By (3.11), (3.13), (3.14) and

the choice of m,

U(z, T ) ≥

∫ T

0

w(by(t))dt =

∫ k(Γ)

0

w(by(t))dt + (T − k(Γ))w(bx̂)

≥ Tw(bx̂) + k(Γ)(w(0) − w(bx̂)) ≥ Tw(bx̂) − m.

Thus (3.8) holds. Lemma 3.2 is proved.

Lemma 3.3. Let Γ ∈ (0, 1). Then there exists m > 0 such that for each z0 ∈ Rn
+,

each z1 ∈ Rn
+ satisfying az1 ≤ Γd−1 and each number T > k(Γ),

U(z0, z1, 0, T ) ≥ Tw(bx̂) − m.
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Proof. By Lemma 3.2 there is m0 > 0 such that

U(z, T ) ≥ Tw(bx̂) − m0 for each z ∈ Rn
+ and each number T > 0. (3.18)

Put

m = m0 + 1 + k(Γ)(w(bx̂) − w(0)). (3.19)

Assume that

z0, z1 ∈ Rn
+, az1 ≤ Γd−1, T > k(Γ). (3.20)

By the choice of m0 (see (3.18)) and (3.20) there is a program (x(t), y(t))
T−k(Γ)
t=0 such

that

x(0) = z0,

∫ T−k(Γ)

0

w(by(t))dt ≥ U(z0, T − k(Γ)) − 1 ≥ (T − k(Γ))w(bx̂) − m0 − 1.

(3.21)

By the choice of k(Γ), Lemma 3.1 and (3.2) there is a program (x(t), y(t))T
t=T−k(Γ)

such that

x(T ) ≥ z1. (3.22)

Clearly, (x(t), y(t))T
t=0 is a program. In view of (3.21), (3.22) and (3.19),

U(z0, z1, 0, T ) ≥

∫ T

0

w(by(t))dt =

∫ T−k(Γ)

0

w(by(t))dt +

∫ T

T−k(Γ)

w(by(t))dt

≥ (T − k(Γ))w(bx̂) − m0 − 1 + k(Γ)w(0)

= Tw(bx̂) − k(Γ)(w(bx̂) − w(0)) − m0 − 1 = Tw(bx̂) − m.

Lemma 3.3 is proved.

Lemma 3.4. Let m0 > 0. Then there exists m2 > 0 such that for each number T > 0

and each program (x(t), y(t))T
t=0) which satisfies x(0) ≤ m0e the following inequality

holds: ∫ T

0

[w(by(t)) − w(bx̂)]dt ≤ m2.

Proof. By Lemma 1.3 there exists m1 > 0 such that for each number T > 0 and each

program (x(t), y(t))T
t=0 which satisfies x(0) ≤ m0e we have

(3.23) x(t) ≤ m1e for all t ∈ [0, T ].

Choose a number

(3.24) m2 > 2‖p̂‖m1n.

Assume that T > 0 and that a program (x(t), y(t))T
t=0 satisfies x(0) ≤ m0e. Then

(3.23) holds. By (2.2), (3.23), (3.24) and Lemma 2.1
∫ T

0

(w(by(t)) − w(bx̂))dt ≤ −p̂(x(T ) − x(0)) ≤ 2‖p̂‖nm1 ≤ m2.

Lemma 3.4 is proved.
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It is not difficult to see that the following auxiliary result holds.

Lemma 3.5. Assume that nonnegative numbers T1, T2 satisfy T1 < T2,

(x(t), y(t))T2

t=T1

is a program and that u ∈ Rn
+. Then (x(t) + e−d(t−T1)u, y(t))T2

t=T1
) is also a program.

In order to prove Lemma 3.5 it is sufficient to note that for a. e. t ∈ [T1, T2],

(x(t) + e−d(t−T1)u)′ + d(x(t) + e−d(t−T1)u) = x′(t) + dx(t).

Lemma 3.5 implies the following result.

Lemma 3.6. Let 0 ≤ T1 < T2, M > 0, x0, x1 ∈ Rn
+ and let

(x(t), y(t))T2

t=T1

be a program such that

x(T1) = x0, x(T2) ≥ x1,

∫ T2

T1

w(by(t))dt ≥ U(x0, x1, T1, T2) − M.

Then for each pair of numbers S1, S2 satisfying

T1 ≤ S1 < S2 ≤ T2

the following inequality holds:
∫ S2

S1

w(by(t))dt ≥ U(x(S1), x(S2), S1, S2) − M.

Lemma 3.7. Let ǫ > 0. Then there exists δ > 0 such that for each z, z′ ∈ Rn
+

satisfying

(3.25) ‖z − x̂‖, ‖z′ − x̂‖ ≤ δ

and each T ∈ [2−1, 2] there is a program (x(t), y(t))T
t=0 such that

x(0) = z, x(T ) ≥ z′, ‖x(t) − x̂‖, ‖y(t) − x̂‖ ≤ ǫ, t ∈ [0, T ], ‖x′(t)‖ ≤ ǫ, t ∈ [0, T ].

Proof. We may assume without loss of generality that

(3.26) ǫ < (1 + daσ)
−1.

Choose a positive number δ such that

(3.27) δ
n∑

i=1

ai < (ǫ/16), 16δn < ǫ.

Assume that T ∈ [2−1, 2] and that z, z′ ∈ Rn
+ satisfy (3.25). For all t ∈ [0, T ] put

(3.28) y(t) = ((1 + daσ)−1 − ǫ)e(σ).
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Clearly,

(3.29) ‖y(t) − x̂‖ ≤ ǫ, t ∈ [0, T ].

Put

ξ = 4δe

and define

(3.30) x(t) = z + tξ, t ∈ [0, T ].

By (3.28). (3.26), (3.25), (3.27), (3.29), (3.30) and the choice of ξ,

(3.31) 0 ≤ y(t) ≤ z ≤ x(t) for all t ∈ [0, T ].

Equation (3.30) and the choice of ξ imply that for all t ∈ [0, T ]

(3.32) x′(t) + dx(t) = ξ + d(z + tξ) ≥ 0.

In view of (3.32) and (3.25) for all t ∈ [0, T ],

a(x′(t) + dx(t)) = adz + (1 + dt)aξ ≤ adx̂ + δd

n∑

i=1

ai + (1 + 2d)aξ.

Together with (3.28), Theorem 1.1, (3.29) and (3.27) this implies that for all t ∈ [0, T ]

ey(t) + a(x′(t) + dx(t)) ≤ (1 + daσ)−1 − ǫ + ad(1 + daσ)−1 + δ

n∑

i=1

ai + 3aξ

= 1 − ǫ + δ

n∑

i=1

ai + 3aξ ≤ 1.

By the relation above, (3.31), (3.32), (3.30) and (3.28), (x(t), y(t))T
t=0 is a program.

It follows from (3.30), (3.29), (3.25) and the choice of ξ that

x(0) = z, x(T ) = z + Tξ ≥ x̂ − δe + 2−1ξ = x̂ − δe + 2−1ξ ≥ x̂ + δe ≥ z.

By (3.30), (3.25) and (3.27) for all t ∈ [0, T ]

‖x(t) − x̂‖ ≤ ‖z − x̂‖ + T‖ξ‖ ≤ δ + 2‖ξ‖ ≤ δ + 8δn ≤ 16δn < ǫ.

This completes the proof of Lemma 3.7.

Lemma 3.8. Let m0, m1, ǫ > 0. Then there is a natural number τ such that for each

program (x(t), y(t))τ
t=0 satisfying

x(0) ≤ m0e,

∫ τ

0

w(by(t))dt ≥ τw(bx̂) − m1

there is t ∈ [0, τ ] such that

‖x(t) − x̂‖ ≤ ǫ.
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Proof. Let us assume the contrary. Then for each natural number k there exists a

program (x(k)(t), y(k)(t))k
t=0 such that

x(k)(0) ≤ m0e,

∫ k

0

w(by(k)(t))dt ≥ kw(bx̂) − m1,

(3.33) ‖x(k)(t) − x̂‖ > ǫ for all t ∈ [0, k].

In view of (3.33) and Lemma 1.3 there is m2 > m0 such that for each natural number

k

(3.34) x(k)(t) ≤ m2e, t ∈ [0, k].

By Lemma 3.4 there exits m3 > 0 such that for each T > 0 and each program

(x(t), y(t))T
t=0 satisfying

x(0) ≤ m2e

the following inequality holds:

(3.35)

∫ T

0

(w(by(t)) − w(bx̂))dt ≤ m3.

Let k be a natural number and let a number s satisfy 0 < s < k. It follows from

(3.34) and the choice of m3 (see (3.35)) that
∫ k

s

[w(by(k)(t)) − w(bx̂)]dt ≤ m3.

Combined with (3.33) this implies that
∫ s

0

[w(by(k)(t)) − w(bx̂)]dt =

∫ k

0

[w(by(k)(t)) − w(bx̂)]dt

−

∫ k

s

[w(by(k)(t)) − w(bx̂)]dt ≥ −m1 − m3.

Thus for each natural number k and each s ∈ (0, k)

(3.36)

∫ s

0

[w(by(k)(t)) − w(bx̂)]dt ≥ −m1 − m3.

By extracting a subsequence and using (3.34), Lemma 2.3 and diagonalization process

we obtain that there exist a strictly increasing sequence of natural numbers {kj}
∞

j=1

and a program (x∗(t), y∗(t))∞t=0 such that for any natural number q,

(3.37) x(kj)(t) → x∗(t) as j → ∞ uniformly on [0, q],

(3.38) (x(kj))′(t) → (x∗)′(t) as j → ∞ weakly in L2([0, q]; Rn),

(3.39) y(kj) → y∗ as j → ∞ weakly in L2([0, q]; Rn).

In view of (3.34) and (3.37),

(3.40) x∗(t) ≤ m2e for all t ≥ 0.
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By (3.34), (3.37), (3.38), (3.39) and Lemma 2.4 for all natural numbers q,
∫ q

0

w(by∗(t))dt ≥ lim sup
j→∞

∫ q

0

w(bykj(t))dt ≥ qw(bx̂)) − m3 − m1.

Together with Theorem 1.4 this implies that (x∗(t), y∗(t))∞t=0 is a good program. By

Theorem 1.6,

(3.41) lim
t→∞

x∗(t) = x̂.

On the other hand it follows from (3.37) and (3.33) that

‖x∗(t) − x̂‖ ≥ ǫ, t ∈ [0,∞).

This contradicts (3.41). The contradiction we have reached proves Lemma 3.8.

Lemma 3.9. Let ǫ > 0. Then there exists γ > 0 such that for each number T > 2

and each program (x(t), y(t))T
t=0 which satisfies

(3.42) ‖x(0) − x̂‖ ≤ γ, ‖x(T ) − x̂‖ ≤ γ,

(3.43)

∫ T

0

w(by(t))dt ≥ U(x(0), x(T ), 0, T ) − γ

the following inequality holds:

(3.44)

∫ T

0

δ(x(t), y(t), x′(t))dt ≤ ǫ.

Proof. Choose a positive number ǫ0 such that

(3.45) ǫ0 < (ǫ/18)(‖p̂‖ + 1)−1,

(3.46) if y ∈ Rn
+ and ‖y − x̂‖ ≤ ǫ0, then |w(bx̂) − w(by)| < ǫ/16.

By Lemma 3.7 there exists γ ∈ (0, ǫ0) such that the following property holds:

(P1) for each T ∈ [2−1, 2] and each z, z′ ∈ Rn
+ satisfying ‖z − x̂‖, ‖z′ − x̂‖ ≤ γ

there exists a program (u(t), v(t))T
t=0 such that

u(0) = z, u(T ) ≥ z′, ‖u(t) − x̂‖, ‖v(t) − x̂‖ ≤ ǫ0, t ∈ [0, T ],

‖u′(t)‖ ≤ ǫ0, t ∈ [0, T ].

Assume that T > 2 and that a program (x(t), y(t))T
t=0 satisfies (3.42) and (3.43).

By (3.42) and property (P1) there exist programs

(u(1)(t), v(1)(t))1
t=0 and (u(2)(t), v(2)(t))T

t=T−1

such that

(3.47) u(1)(0) = x(0), u(1)(1) ≥ x̂, ‖u(1)(t) − x̂‖, ‖v(1)(t) − x̂‖ ≤ ǫ0, t ∈ [0, 1],

‖(u(1))′(t)‖ ≤ ǫ0, t ∈ [0, 1],

u(2)(T − 1) = x̂, u(2)(T ) ≥ x(T ), ‖u(2)(t) − x̂‖, ‖v(2)(t) − x̂‖ ≤ ǫ0,
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(3.48) ‖(u(2))′(t)‖ ≤ ǫ0, t ∈ [T − 1, T ].

Define a program (x̄(t), ȳ(t))T
t=0 as follows. Put

(3.49) x̄(t) = u(1)(t), ȳ(t) = v(1)(t), t ∈ [0, 1],

x̄(t) = x̂ + e−d(t−1)(u(1)(1) − x̂), ȳ(t) = x̂, t ∈ (1, T − 1].

By Lemma 3.5, (3.49) and (3.47), (x̄(t), ȳ(t))T−1
t=0 is a program. In view of (3.49) and

(3.47),

(3.50) x̄(T − 1) ≥ x̂ = u(2)(T − 1).

For t ∈ (T − 1, T ] put

(3.51) x̄(t) = u(2)(t) + e−d(t−(T−1))(x̄(T − 1) − u(2)(T − 1)), ȳ(t) = v(2)(t).

Lemma 3.5, (3.50) and (3.51) imply that (x̄(t), ȳ(t))T
t=0 is a program. It follows from

(3.49), (3.47), (3.50), (3.51) and (3.48) that

(3.52) x̄(0) = x(0), x̄(T ) ≥ u(2)(T ) ≥ x(T ).

Equations (3.43) and (3.52) imply that

(3.53) −γ ≤

∫ T

0

w(by(t))dt−

∫ T

0

w(bȳ(t))dt.

It follows from (3.51), (3.48), (3.49) and (3.47) that

‖x̄(T ) − x̂‖ ≤ ‖x̄(T ) − u(2)(T )‖ + ‖u(2)(T ) − x̂‖

≤ ‖x̄(T − 1) − u(2)(T − 1)‖ + ǫ0 = ‖x̄(T − 1) − x̂‖ + ǫ0 ≤ ‖u(1)(1) − x̂‖ + ǫ0 ≤ 2ǫ0.

Lemma 2.1 and (3.53) imply that

−γ ≤ −

∫ T

0

(w(bȳ(t)) − w(bŷ))dt −

∫ T

0

δ(x(t), y(t), x′(t))dt − p̂(x(T ) − x(0)).

Together with (3.49), (3.51), (3.47), (3.48), (3.45) and (3.46) this implies that

∫ T

0

δ(x(t), y(t), x′(t))dt ≤ γ −

∫ T

0

(w(bȳ(t)) − w(bx̂))dt + ‖p̂‖‖x(T ) − x(0)‖

≤ γ −

∫ 1

0

(w(bȳ(t)) − w(bx̂))dt

−

∫ T

T−1

(w(bȳ(t)) − w(bx̂))dt + ‖p̂‖2ǫ0

≤ γ + ǫ/16 + ǫ/16 + ǫ/8 < ǫ.

Lemma 3.9 is proved.
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Lemma 3.10. Let ǫ > 0 and τ0 > 0. Then there exist γ > 0 and T0 > τ0 such that

for each T ≥ T0 and each program (x(t), y(t))T
t=0 which satisfies

‖x(0) − x̂‖, ‖x(T ) − x̂‖ ≤ γ,

∫ T

0

δ(x(t), y(t), x′(t))dt ≤ γ

the following properties hold:

‖x(t) − x̂‖ ≤ ǫ for all t ∈ [0, T ];

for each S ∈ [0, T − τ0],

mes({t ∈ [S, S + τ0] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

Proof. We may assume that ǫ < 1. Choose

(3.54) ǫ0 ∈ (0, 16−1ǫ).

By Lemma 3.7 and the continuity of the function δ(·, ·, ·) there exists a sequence of

positive numbers {γq}
∞

q=1 such that

(3.55) γq ≤ 4−1γq−1 for all integers q ≥ 2,

(3.56) γq ≤ 4−qǫ0 for all integers q ≥ 1.

and that for any integer q ≥ 1 the following property holds:

(P2) for each z, z′ ∈ Rn
+ satisfying ‖z − x̂‖, ‖z′ − x̂‖ ≤ γq there exists a program

(x(t), y(t))1
t=0 such that

x(0) = z, x(1) ≥ z′, ‖x(t) − x̂‖, ‖y(t) − x̂‖ ≤ 4−qǫ0, t ∈ [0, 1],

‖x′(t)‖ ≤ 4−qǫ0, t ∈ [0, 1],
∫ 1

0

δ(x(t), y(t), x′(t))dt ≤ 4−qǫ0.

Assume that the lemma does not hold. Then for each natural number q there

exist

(3.57) Tq ≥ τ0 + q

and a program (x(q)(t), y(q)(t))
Tq

t=0 such that

(3.58) ‖x(q)(0) − x̂‖, ‖x(q)(Tq) − x̂‖ ≤ γq,
∫ Tq

0

δ(x(q)(t), y(q)(t), (x(q))′(t)dt ≤ γq

and that at least one of the following properties hold:

(3.59) sup{‖x(q)(t) − x̂‖ : t ∈ [0, Tq]} > ǫ;

(P3) there is S ∈ [0, Tq − τ0] such that

(3.60) mes({t ∈ [S, S + τ0] : ‖y(q)(t) − x̂‖ > ǫ}) > ǫ.
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Extracting a subsequence and re-indexing we may assume without loss of generality

that one of the following cases hold:

(3.59) holds for all natural numbers q; (P3) holds for all natural numbers q.

It follows from (3.58), (3.55) and (P2) that for any natural number q there exists

a program (u(q(t), v(q)(t))1
t=0 such that

(3.61) u(q)(0) = x(q)(Tq), u(q)(1) ≥ x(q+1)(0),

(3.62) ‖u(q)(t) − x̂‖, ‖v(q)(t) − x̂‖ ≤ 4−qǫ0, t ∈ [0, 1],

‖(u(q))′(t)‖ ≤ 4−qǫ0, t ∈ [0, 1],

(3.63)

∫ 1

0

δ(u(q)(t), v(q)(t), (u(q))′(t))dt ≤ 4−qǫ0.

We construct a program (x̄(t), ȳ(t)∞t=0 by induction. Set

(3.64) x̄(t) = x(1)(t), ȳ(t) = y(1)(t), t ∈ [0, T1].

Assume that q is a natural number and that we have already defined a program

(x̄(t), ȳ(t))
Pq

i=1
Ti+q−1

t=0

such that

(3.65) x̄

(
q∑

i=1

Ti + q − 1

)

≥ x(q)(Tq).

(Clearly, for q = 1 our assumption holds.) For t ∈ (
∑q

i=1 Ti + q − 1,
∑q

i=1 Ti + q] set

x̄(t) = u(q)

(
t −

(
q∑

i=1

Ti + q − 1

))

+ e−d(t−(
Pq

i=1
Ti+q−1))

[

x̄

(
q∑

i=1

Ti + q − 1

)

− x(q)(Tq)

]

,(3.66)

ȳ(t) = v(q)

(
t −

(
q∑

i=1

Ti + q − 1

))
.

By (3.65), (3.66), Lemma 3.5 and (3.61) (x̄(t), ȳ(t))
Pq

i=1
Ti+q

t=0 is a program,

x̄

(
q∑

i=1

Ti + q

)
= u(q)(1) + e−d

[
x̄

(
q∑

i=1

Ti + q − 1

)
− x(q)(Tq)

]

≥ u(q)(1) ≥ x(q+1)(0).(3.67)

For t ∈ (
∑q

i=1 Ti + q,
∑q+1

i=1 Ti + q] set

x̄(t) = x(q+1)(t − (

q∑

i=1

Ti + q)) + e−d(t−(
Pq

i=1
Ti+q))[x̄(

q∑

i=1

Ti + q) − x(q+1)(0)],
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(3.68) ȳ(t) = y(q+1)

(

t −

(
q∑

i=1

Ti + q

))

.

By (3.68), (3.67) and Lemma 3.5, (x̄(t), ȳ(t))
Pq+1

i=1
Ti+q

0 is a program and

(3.69) x̄

(
q+1∑

i=0

Ti + q

)
≥ x(q+1)(Tq+1).

Thus the program (x̄(t), ȳ(t))∞t=0 has been constructed by induction.

By (3.68) and (3.62) (with q = 1) for t ∈ [T1, T1 + 1],

‖x̄(t) − x̂‖ ≤ ‖x̄(t) − u(1)(t − T1)‖ + ‖u(1)(t − T1) − x̂‖

≤ ‖x̄(T1) − x(1)(T1)‖ + 4−1ǫ0 = 4−1ǫ0.(3.70)

We show by induction that for any natural number q

(3.71) ‖x̄

(
t +

q∑

i=1

Ti + q − 1 − Tq

)
− x(q)(t)‖ ≤ 2

(
q∑

i=1

4−iǫ0

)
, t ∈ [0, Tq],

(3.72) ‖x̄(t) − x̂‖ ≤

q∑

i=1

2 · 4−iǫ0, t ∈

[
q∑

i=1

Ti + q − 1,

q∑

i=1

Ti + q

]
.

By (3.70) and (3.64) equations (3.71) and (3.72) hold for q = 1.

Assume that q is a natural number and that (3.71) and (3.72) hold. For t ∈

[0, Tq+1] it follows from (3.68), (3.58), (3.55), (3.56) and (3.72) that

‖x̄

(
t +

q∑

i=1

Ti + q

)
− x(q+1)(t)‖ ≤ ‖x̄

(
q∑

i=1

Ti + q

)
− x(q+1)(0)‖

≤ ‖x̄(

q∑

i=1

Ti + q) − x̂‖ + ‖x̂ − x(q+1)(0)‖

≤ ‖x̄(

q∑

i=1

Ti + q) − x̂‖ + 4−q−1ǫ0 ≤

q∑

i=1

2 · 4−iǫ0 + 4−q−1ǫ0.(3.73)

By (3.66), (3.62) (which holds for any natural number q), (3.73) and (3.72) for t ∈

[
∑q+1

i=1 Ti + q,
∑q+1

i=1 Ti + q + 1],

‖x̄(t) − x̂‖ ≤ ‖x̄(t) − u(q+1)

(
t −

(
q+1∑

i=1

Ti + q

))
‖ + ‖u(q+1)

(
t −

(
q+1∑

i=1

Ti + q

))
− x̂‖

≤ ‖x̄

(
q+1∑

i=1

Ti + q

)
− x(q+1)(Tq+1)‖ + 4−q−1ǫ0

≤ ‖x̄

(
q∑

i=1

Ti + q

)
− x̂‖ + 2 · 4−q−1ǫ0 ≤

q+1∑

i=1

2 · 4−iǫ0.
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Thus we have shown by induction that (3.71) and (3.72) hold for any natural number

q.

We show that (x̄(t), ȳ(t))∞t=0 is a good program. By Theorem 1.4 in order to meet

this goal it is sufficient to show that
∫ T

0
(w(bȳ(t)) −w(bŷ))dt does not tend to −∞ as

T → ∞.

By Lemma 2.1, (3.58) and (3.56) for any natural number q,
∫ Tq

0

(w(by(q)(t)) − w(bŷ))dt ≥ −

∫ Tq

0

δ(x(q)(t), y(q)(t), (x(q))′(t))dt

− ‖p̂‖(‖x(q)(0) − x(q)(Tq)‖)

≥ −γq − 2‖p̂‖γq = −γq(1 + 2‖p̂‖) ≥ −4−q(1 + 2‖p̂‖)ǫ0(3.74)

and in view of Lemma 2.1, (3.6) and (3.62),
∫ 1

0

(w(bv(q)(t)) − w(bŷ))dt ≥ −

∫ 1

0

δ(u(q)(t), v(q)(t), (u(q))′(t))dt

− ‖p̂‖(‖u(q)(0) − u(q)(1)‖)

≥ −4−qǫ0 − 2 · 4−q(ǫ0)‖p̂‖ ≥ −4−qǫ0(1 + 2‖p̂‖).(3.75)

It follows from (3.74), (3.75) and the construction of the program (x̄(t), ȳ(t))∞t=0 (see

(3.64)-(3.68)) that for all integers q ≥ 1

∫ Pq
i=1

Ti+q−1

0

(w(bȳ(t)) − w(bx̂))dt ≥

q∑

i=1

−4−iǫ0(2 + 4|p̂‖) ≥ −(2 + 4‖p̂‖)2ǫ0.

Therefore (x̄(t), ȳ(t))∞t=0 is a good program. In view of Theorem 1.6

lim
t→∞

x̄(t) = x̂

and there is S0 > 0 such that

(3.76) ‖x̄(t) − x̂‖ ≤ ǫ0 for all t ≥ S0.

By (3.76), (3.54) and (3.71) which holds for all integers q ≥ 1,

(3.77) ‖x(q)(t) − x̂‖ ≤ ǫ, t ∈ [0, Tq] for all sufficiently large natural numbers q.

By Theorem 1.6 there is S1 > 0 such that for all T ≥ S1

(3.78) mes([T, T + τ0] : ‖ȳ(t) − x̂‖ > ǫ}) ≤ ǫ.

By (3.78), (3.68) (which holds for all natural numbers q) and (3.57), for all sufficiently

large natural numbers q and for all S ∈ [0, Tq − τ0],

mes({t ∈ [S, S + τ0] : ‖y(q)(t) − x̂‖ > ǫ} ≤ ǫ.

This contradicts (P3) while (3.77) contradicts (3.59). The contradiction we have

reached proves Lemma 3.10.
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4. PROOF of THEOREM 1.8

By Lemma 1.3 there is M1 > 0 such that for each positive number T and each

program (x(t), y(t))T
t=0 satisfying x(0) ≤ Me the following inequality holds:

(4.1) x(t) ≤ M1e for all t ∈ [0, T ].

By Lemma 3.3 there exists M2 > 0 such that for each z0 ∈ Rn
+, each z1 ∈ Rn

+ satisfying

az1 ≤ Γd−1 and each number T > k(Γ),

(4.2) U(z0, z1, 0, T ) ≥ Tw(bx̂) − M2.

By Lemma 3.4 there exists M3 > 0 such that for each number T > 0 and each

program (x(t), y(t))T
t=0 satisfying x(0) ≤ M1e the following inequality holds:

(4.3)

∫ T

0

[w(by(t)) − w(bŷ)]dt ≤ M3.

By Lemma 3.10 there exist ǫ1 > 0, L2 > L such that for each number T ≥ L1 and

each program (x(t), y(t))T
t=0 which satisfies

‖x(0) − x̂‖ ≤ ǫ1, ‖x(T ) − x̂‖ ≤ ǫ1,

∫ T

0

δ(x(t), y(t), x′(t)) ≤ ǫ1

we have:

(4.4) ‖x(t) − x̂‖ ≤ ǫ for all t ∈ [0, T ];

for each S ∈ [0, T − L],

(4.5) mes({t ∈ [S, S + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

By Lemma 3.9 there exists

(4.6) γ ∈ (0, min{1, ǫ, ǫ1})

such that for each number T > 2 and each program (x(t), y(t))T
t=0 which satisfies

‖x(0) − x̂‖ ≤ γ, ‖x(T ) − x̂‖ ≤ γ,

(4.7)

∫ T

0

w(by(t))dt ≥ U(x(0), x(T ), 0, T ) − γ

the following inequality holds:

(4.8)

∫ T

0

δ(x(t), y(t), x′(t))dt ≤ ǫ1.

By Lemma 3.8 there exists a natural number L2 such that for each program

(x(t), y(t))L2

t=0
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satisfying

(4.9) x(0) ≤ M1e,

∫ L2

0

w(by(t))dt ≥ L2w(bx̂) − M2 − M3 − 1

there is t ∈ [0, L2] such that

(4.10) ‖x(t) − x̂‖ ≤ γ.

Set

(4.11) l = 2L2 + 2L1 + L, Q > 4ǫ−1
1 (M3 + M2 + 2‖p̂‖nM2).

Put

(4.12) T∗ = L2 + L1 + k(Γ) + 2 + Ql.

Assume that

(4.13) T > 2T∗, z0, z1 ∈ Rn
+, z0 ≤ Me, az1 ≤ Γd−1

and that a program (x(t), y(t))T
t=0 satisfies

(4.14) x(0) = z0, x(T ) ≥ z1,

∫ T

0

w(by(t))dt ≥ U(z0, z1, 0, T ) − γ.

In view of (4.13) and (4.14), the relation (4.1) holds. By (4.14), (4.13), the choice of

M2 (see (4.2)), (4.12) and (4.6)

(4.15)

∫ T

0

w(by(t))dt ≥ U(z0, z1, 0, T ) − γ ≥ Tw(bx̂) − M2 − 1.

It follows from the choice of M3 (see (4.3)) and (4.1) that

(4.16)

∫ T

L2

[w(by(t)) − w(bx̂)]dt ≤ M3,

∫ T−L2

0

[w(by(t)) − w(bx̂)]dt ≤ M3.

By (4.16) and (4.15),

(4.17)

∫ L2

0

[w(by(t)) − w(bx̂)]dt ≥ −M2 − 1 − M3,

(4.17)

∫ T

T−L2

[w(by(t)) − w(bx̂)]dt ≥ −M2 − 1 − M3.

It follows from (4.1), (4.17) and the choice of L2 (see (4.9), (4.10)) that there exist

(4.18) τ1 ∈ [0, L2], τ2 ∈ [T − L2, T ]

such that

(4.19) ‖x(τi) − x̂‖ ≤ γ, i = 1, 2.

If ‖x(0) − x̂‖ ≤ γ, then we put τ1 = 0 and if ‖x(T ) − x̂‖ ≤ γ, then we put τ2 = T .

By (4.14) and Lemma 3.6,

(4.20)

∫ τ2

τ1

w(by(t))dt ≥ U(x(τ1), x(τ2), τ1, τ2) − γ.
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In view of (4.19), (4.20) and the choice of γ (see (4.6)-(4.8)),

(4.21)

∫ τ2

τ1

δ(x(t), y(t), x′(t))dt ≤ ǫ1.

It follows from (4.21), (4.19), the choice of ǫ1, L2 (see (4.4)-(4.6)), (4.18), (4.13) and

(4.22) that

‖x(t) − x̂‖ ≤ ǫ, t ∈ [τ1, τ2]

and if a number S satisfies τ1 ≤ S ≤ τ2 − L, then

mes({t ∈ [S, S + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

Theorem 1.8 is proved.

5. PROOF of THEOREM 1.9

We may assume that ǫ < 1/4. By Lemma 1.3 there is M2 > 0 such that for

each positive number T and each program (x(t), y(t))T
t=0 satisfying x(0) ≤ M0e the

following inequality holds:

(5.1) x(t) ≤ M2e for all t ∈ [0, T ].

By Lemma 3.3 there exists M3 > 0 such that for each z0 ∈ Rn
+, each z1 ∈ Rn

+ satisfying

az1 ≤ Γd−1 and each number T > k(Γ),

(5.2) U(z0, z1, 0, T ) ≥ Tw(bx̂) − M3.

By Lemma 3.10 there exist ǫ1 ∈ (0, ǫ), L1 > L such that for each number T ≥ L1 and

each program (x(t), y(t))T
t=0 which satisfies

(5.3) ‖x(0) − x̂‖ ≤ ǫ1, ‖x(T ) − x̂‖ ≤ ǫ1,
∫ T

0

δ(x(t), y(t), x′(t))dt ≤ 2ǫ1,

the inequality

(5.4) ‖x(t) − x̂‖ ≤ ǫ, t ∈ [0, T ]

holds and for each S ∈ [0, T − L],

(5.5) mes({t ∈ [S, S + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

By Lemma 3.8 there exists a natural number L2 such that for each program

(x(t), y(t))L2

t=0

satisfying

(5.6) x(0) ≤ M2e,

∫ L2

0

w(by(t))dt ≥ L2w(bx̂) − M1 − M3 − 2 − 4‖p̂‖nM2

there is t ∈ [0, L2] such that

(5.7) ‖x(t) − x̂‖ ≤ ǫ1.
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Fix

(5.8) l = 2L2 + 2L1 + 8, a natural number Q > 4ǫ−1
1 (M3 + M1 + M2 + 2‖p̂‖nM2),

T∗ > 8L + 8L1 + 8L2 + k(Γ).

Assume that

(5.9) T > T∗, z0, z1 ∈ Rn
+, z0 ≤ Me, az1 ≤ Γd−1

and that a program (x(t), y(t))T
t=0 satisfies

(5.10) x(0) = z0, x(T ) ≥ z1,

∫ T

0

w(by(t))dt ≥ U(z0, z1, 0, T ) − M1.

In view of (5.10), (5.9) and the choice of M2, the relation (5.1) holds. By (5.10), (5.9),

(5.8), the choice of M3 (see (5.2)),

(5.11)

∫ T

0

w(by(t))dt ≥ Tw(bx̂) − M3 − M1.

By Lemma 2.1, (5.11) and (5.1),
∫ T

0

δ(x(t), y(t), x′(t))dt =

∫ T

0

(w(bx̂) − w(by(t))dt + p̂(x(0) − x(T ))

≤ M3 + M1 + 2‖p̂‖nM2.(5.12)

It is not difficult to se that there is a finite sequence of numbers {Ti}
q
i=0 such that

T0 = 0, Ti < Ti+1 for each integer i satisfying 0 ≤ i < q, Tq = T , for each integer i

satisfying 0 ≤ i < q

(5.13)

∫ Ti+1

Ti

δ(x(t), y(t), x′(t))dt = ǫ1,

(5.14)

∫ Tq

Tq−1

δ(x(t), y(t), x′(t))dt ≤ ǫ1.

By (5.13), (5.14) and (5.12),

qǫ1 ≤ M3 + M1 + 2‖p̂‖nM2

and

(5.15) q ≤ ǫ−1
1 (M3 + M1 + 2‖p̂‖nM2).

By Lemma 2.1, (5.13), (5.14) and (5.1) for each i ∈ {0, . . . , q − 1} and each S1, S2 ∈

[Ti, Ti+1] such that S1 < S2

∫ S2

S1

(w(by(t)) − w(bx̂)dt = −

∫ S2

S1

δ(x(t), y(t), x′(t))dt + p̂(x(S1) − x(S2))

≥ −1 − 2‖p̂‖nM2.(5.16)

Set

(5.17) J = {i ∈ {0, . . . , q − 1} : Ti+1 − Ti ≥ 2L2 + 2L1}.
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Let i ∈ J . By (5.17), the choice of L2 (see (5.6) and (5.7)), (5.1) and (5.16) there are

numbers ti1, ti2 such that

(5.18) ti1 ∈ [Ti, L2 + Ti], ti2 ∈ [Ti+1 − L2, Ti+1], ‖x(tij) − x̂‖ ≤ ǫ1, j = 1, 2.

By (5.18), (5.17), (5.13), (5.14) and the choice of ǫ1, L1 (see (5.3)-(5.5))

(5.19) ‖x(t) − x̂‖ ≤ ǫ, t ∈ [ti1, ti2]

and if S ∈ [ti1, ti2 − L], then

(5.20) mes({t ∈ [S, S + L] : ‖y(t) − x̂‖ > ǫ}) ≤ ǫ.

Put

(5.21) A = {[Ti, Ti+1] : i ∈ {0, . . . , q − 1} \ J} ∪ {[Ti, ti1], [ti2, Ti+1] : i ∈ J}.

Clearly, the length of all the intervals belonging to A does not exceed 2L2 + 2L1 < l.

By (5.15), (5.21) and (5.8) the number of elements of A does not exceed

4q ≤ 4ǫ−1
1 (M3 + M1 + 2‖p̂‖nM2) ≤ Q.

The inequalities above and (5.19) imply the validity of Theorem 1.9.
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