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ABSTRACT. In this paper we study a very general quadratic integral equation of fractional order.
We show that the quadratic integral equations of fractional orders has at least one monotonic solution
in the Banach space of all real functions defined and continuous on a bounded and closed interval.
The concept of a measure of noncompactness related to monotonicity, introduced by J. Bana$ and
L. Olszowy, and a fixed point theorem due to Darbo are the main tools in carrying out our proof. In
fact we generalize, improve the results of the paper [M.A. Darwish, On quadratic integral equation
of fractional orders, J. Math. Anal. Appl. 311 (2005), 112-119]. Also, we extend and generalize the
results of the paper [J. Bana$ and B. Rzepka, Monotonic solutions of a quadratic integral equation
of fractional order, J. Math. Anal. Appl. 332 (2007), 1370-1378].
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1. INTRODUCTION

In this paper we study the fractional quadratic integral equation of Urysohn-

Volterra type

flty() [fo(t,s, (Hy)(s))
(L) o) = stt.v(e) + 155 /0 S as re =) 0<p <.

Here, f : JXR =R, g: J xR —=Randv:J xJ xR — R are given functions
and H : C(J) — C(J) is an operator which satisfy special assumptions, see Section
3. Let us recall that the functions f = f(t,y) and g = ¢(¢,y) involve in Eq. (1.1)

generate the superposition operators F' and G, respectively, defined by

(1.2) (Fy)(t) = f(t,y(1)), and (Gy)(t) = g(t, y(t)),
where y = y(t) is an arbitrary function defined on J, see [1].
We remark that:
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o If g(t,y) = p(t) and Hy = y in Eq. (1.1) then we have an equation studied by
Banas and O’Regan in [10].

o If g(t,y) =al(t), f(t,y) =y, v(t,s,2) = u(s,z) and Hy = y in Eq. (1.1) then we
have an equation studied by Darwish in [22].

o If g(t,y) = a(t), v(t,s,2z) = u(s,z) and Hy = y in Eq. (1.1) then we have an
equation studied by Bana$ and Rzepka in [9].

o Ifg(t,y) =a(t), v(t,s,z) =0b(t,s)zin Eq. (1.1) then we have an equation studied
by Banas and Rzepka in [11].

Consider the case § = 1. Let g(t,y) = h(t), f(t,y) = —y, Hy = y and v(t, s,u) =
k(t,s)u, Eq. (1.1) takes the form

(1.3) y(t) +y(t) /Ot k(t,s) y(s) ds = h(t), t € J.

The nonlinear integral equation (1.3) is a generalization of a Volterra counterpart of
a famous equation in the transport theory, the so-called Chandrasekhar H —equation
in which ¢ ranges from 0 to 1, h(t) = 1, y must be identified with the H—function,

and
t
h(t, 5) = —20)
t+s
for a nonnegative characteristic function ¢, see [15, 20, 36, 38, 46]. Also, Eq. (1.1)

includes several integral equations of Volterra and Uryshon-Volterra types studied

earlier as special cases, we refer to [14, 21, 40, 42, 47, 48] and references therein.

Quadratic integral equations have many useful applications in describing numer-
ous events and problems of the real world. For example, quadratic integral equations
are often applicable in the theory of radiative transfer, kinetic theory of gases, in the
theory of neutron transport, and in the traffic theory. For more details, we refer to
[12, 13, 15, 20, 31, 34, 36] and the references therein.

In the last 35 year or so, many authors have studied the existence of solutions
for several classes of nonlinear quadratic integral equations with nonsingular kernels.
For example, Argyros [2], Banas et al. [4, 6, 8], Banas and Martinon [7], Caballero et
al. [16, 17, 18, 19], Darwish [23], Darwish and Ntouyas [29], Hu and Yan [35], Leggett
[38], Liu and Kang [39], Stuart [45] and Spiga et al. [46].

More recently, following the appearance of the paper [22], there has been signifi-
cant interest in the study of the existence of solutions for singular quadratic integral
equations or fractional quadratic integral equations, see [9, 10, 11, 24, 25, 26, 27, 28,
30].

The aim of this paper is to establish simple criteria for the existence of monotone
solutions of Eq. (1.1). The concept of measure of noncompactness related to mono-
tonicity, introduced by J. Banas and L. Olszowy [5], and a fixed point theorem due

to Darbo are the main tools in carrying out our proof.
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2. AUXILIARY FACTS AND RESULTS

This section collects some definitions and results which will be needed further on.

First, we recall the definition of the Riemann-Liouville fractional integral, see
(33, 37, 41, 43, 44].

Definition 2.1. Let f € L(a,b), 0 < a < b < o0, and let 8 > 0 be a real number.
The Riemann-Liouville fractional integral of order 3 of the function f(¢) is defined
by

L")
I°f(t) = ds, a <t <b.
10 =5 G e o
Now, let us assume that (£, ||.||) is a real infinite dimensional Banach space with
zero element 6. Let B(y,r) denote the closed ball centered at y and with radius 7.
The symbol B, stands for the ball B(6,r).

If Y is a subset of E, then Y and ConvY denote the closure and convex closure of
Y, respectively. Moreover, we denote by M g the family of all nonempty and bounded

subsets of E and N its subfamily consisting of all relatively compact subsets.

Next we give the concept of a measure of noncompactness [3]:

Definition 2.2. A mapping u: Mg — [0, +00) is said to be a measure of noncom-

pactness in F if it satisfies the following conditions:

1) The family kerpy = {Y € Mg : pu(Y') = 0} is nonempty and kery C Ng.

2) Y C X = uY) < p(X).

3) n(Y) = p(ConvY’) = u(Y).

) pAX + 1 =N)Y) < Apu(X)+ (1 =N puY)for 0 <A< 1.

5 ) IfY, € Mg, Y, =Y, Yoy CY, forn=1,2 3, ...and lim p(Y,) = 0 then

n—~o0

n:lYn % ¢

We will work in the Banach space C'(J) consisting of all real functions defined

and continuous on J = [0, 1]. The space C(J) is equipped with the standard norm
lyll = max{[y(¢)| : t € J}.

Now, we consider the construction of the measure of noncompactness which will

be used in the next section, see [3, 7].

Let us fix a nonempty and bounded subset Y of C(J). For y € Y and ¢ > 0
denoted by w(y, €), the modulus of continuity of the function y, i.e.,

w(y,a) = Sup{‘y(t> - y(S)‘ : t? s € Jv |t - S| < 6}'
Further, let us put
w(Y,e) =sup{w(y,e) 1y € Y}
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and
wo(Y) = li_)r%w(Y, £).
Define
d(y) = sup{ly(s) —y(t)| = [y(s) —y(®)] : £, s € J, t < s}
and

d(Y) = sup{d(y) : y € Y}.
All functions belonging to Y are nondecreasing on J if and only if d(Y) = 0.
Now, let us define the function p on the family M¢ (s by the formula

p(Y) = wo(Y) +d(Y).
The function y is a measure of noncompactness in the space C(J).

We will make use of the following fixed point theorem due to Darbo [32]. To

quote this theorem, we need the following definition.

Definition 2.3. Let M be a nonempty subset of a Banach space F'andlet P : M — E
be a continuous operator which transforms bounded sets onto bounded ones. We say
that P satisfies the Darbo condition (with a constant k£ > 0) with respect to a measure

of noncompactness p if for any bounded subset Y of M we have
w(PY) <k u(Y).

If P satisfies the Darbo condition with & < 1 then it is called a contraction

operator with respect to .

Theorem 2.4. Let Q be a nonempty, bounded, closed and convex subset of the space
E and let

P:Q—Q
be a contraction with respect to the measure of noncompactness p.

Then P has a fixed point in the set ().

Remark 2.5. Under the assumptions of the above theorem it can be shown that the

set FixP of fixed points of P belonging to ) is an element of kerp.

3. MAIN THEOREM

In this section, we will study Eq. (1.1) assuming that the following assumptions

are satisfied:
a;) g:J xR — R is continuous and there exists nonnegative constant a such that
l9(t,y) — g(t. 2)| < aly — |

forall t € J and z, y € R. Moreover g : J x R, — R,.
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ay) The superposition operator G satisfies for any nonnegative function y the con-
dition
d(Gy) < ad(y),

where a is the same constant as in ay).

az) f:J xR — Ris continuous and there exists nonnegative constant ¢ such that

|f(ty) — f(t,2)| < cly — 2

forall t € J and z, y € R. Moreover f:J xR, — R,.
a4) The superposition operator F satisfies for any nonnegative function y the con-
dition
d(Fy) < cd(y),

where ¢ is the same constant as in as).
as) The operator H maps continuously the space C(J) into itself and there exists a

nondecreasing function ¢ : R, — R, such that
[Hy[l < ¢(llyl]) for any y € C(J).

Moreover, for every function y € C'(J) which is nonnegative on J, the function
Hy is nonnegative and nondecreasing on J.

ag) v:J xJ xR — Ris a continuous function such that v : J x J x R, — R, and
v(t, s, u) is nondecreasing with respect to each variable ¢, s and u, separately.

Moreover, there exists a nondecreasing function ¥ : R, — R, such that
v(t, s, u)] < W(|ul)

for all £, s € J and for all u € R.
a;) The inequality

(3.1) (ar + g )T(B+1) + (er + f)U(P(r)) <r T(B+1)
has a positive solution ry such that al'(G + 1) + ¢U((¢)(rg)) < I'(5 + 1), where
f* = max f(t,0) and ¢" = max ¢(t,0).

Now, we are in a position to state and prove our main result in the paper.

Theorem 3.1. Let assumptions ai)-az) be satisfied. Then FEq. (1.1) has at least one

solution y € C(J) which is nondecreasing on the interval J.

Proof. Denote by F the operator associated with the right-hand side of Eq. (1.1), i.e.,
equation (1.1) takes the form

where

(3.3) (Fy)(t) = g(t, y(t) + f (&, y(1)(Vy)(t), t € J,
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(3.4) Vy)(t) = P(lﬁ) /0 “@(’;’jg?gzgs» ds, 1) 0<f<1.

Solving Eq. (1.1) is equivalent to finding a fixed point of the operator F defined on
the space C'(J).
For better readability, we break the proof into a sequence of steps.

Step 1: F transforms the space C(J) into itself.

To do this it suffices to show that if y € C(J) then Vy is continuous on J,
thanks a1) and a3). For, fix € > 0 and take arbitrary numbers ¢;, to € J such that

|to — t1] < e. Without loss of generality we can assume that to > ¢;. Then we get

|(Vy)(t2) = (Vy)(t)]

| S e [ St
= ‘r(lm / e b / Mo ) dS‘
ot [ - i [ et
ot [ e e [ St

L L / jo(ts. s, (HY)]

LB Jo  (ta—s)
L " oty s, (Hy)(s)) = v(ty, s, (Hy)(s))
_'_F(ﬁ) /0 (tz — s)l_g ds

tlv s, (Hy)(s . —5)P Yds
Therefore, if

wb(v7€) = Sup{|v(t2,s,x) - U(t1,8,$>| 1S tla t2 € ']7

t1 28, ta > 8, ‘tz —t1| <g, and x € [—b,b]}

then we obtain

Ve - el < s [ g [P g,
1 h a—1 _Sa—l S
| ) [ =7 = (2= 9
(@ (lyll)) wWy(lylh (v; €)
= T T g
O s e

LG+1)
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Thus

(3.5) w(Vy,e) < 0 2”@ (Ilyl) + wqny (v, )]

1
I'(B+
In view of the uniform continuity of the function v on J x J x [=¢(|lyl), ¥ (||y||)] we
have that wyy)(v,€) — 0 as e — 0. From inequality (3.5) we infer that the function
Vy is continuous on the interval J and consequently, the function Fy is continuous

on J.
Step 2: F transforms the ball B, into itself.

For each t € J we have

Eol < Joteye+ L2 [0 E0E) o
< g, y(t) — g(t,0)] + [g(¢,0)]
F(t2(0) ~ FLO) + 1F(0)] [ [olt. . (By)(s)
" NG / t—slﬁ *
< ol + o+ L) [ %
eyl + I
T ()

= allyll+g"+

Hence

cllyll + f*
HB+1)

Thus, if ||y|| < o we obtain from assumption ag) the estimate

cro+ f*
m‘l’(w(ro))-

Consequently, the operator F transforms the ball B,, into itself.

(3.6) 1Fyll < allyll + g + Y((llyl))-

IFyll < aro+9" +

Step 3: F transforms continuously the ball B} into itself.
Consider the operator F on the subset B} of the ball B,, defined by

B ={y e B,, :y(t) >0, fort € J}.

Obviously, the set B is nonempty, bounded, closed and convex. In view of these
facts and assumptions a;), a3) and as), we deduce that F transforms the set B, into
itself.

Step 4: The operator F is continuous on B .

Let us fix € > 0 and arbitrary =, y € B} such that ||y — || <e. Then, fort € J,

we have
(Fy)(t) - (Fa)(0)
< lgt, y(t)) — g(t. 2(8)) + \

Flty(t) [ olt, s, (Hy)(s))
() / (RO
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Sl ['ulo )

0B S e
< aly(t) — a(t)] + | (?(?’ﬂ()t)) /0 ”“(’j’_(gijigs” ds
Jal) [ olts ()
ror S o
F(tr(0) [ ol (Hy)(s)
e A =l
f(L(t) [ vlt.s, (Hr)(s)
G / S -
ga|y<t>—x<t>|+'f( HL O [l BN EL
O 1t = (o)
/ t—s)1 3 ds
<a|y()—x()|+c|y(1z(_x| t_s“)?f'l“yd
(¢ 2(0)) + £(.0)] +1/(2.0)
+ T(5) / t—31 ﬁds
Thus
a1 IFy- el < (o T ol + 220,

where we denoted
%(g) = sup{\v(t,s,xg) - U(t7 S7I1)| : t? s € ']7 Ty, T2 € [Ouw(TO)L Hx2 - 213'1” S 8}’

By, the uniform continuity of the function v on the set J x J x [0,%(r)], it is easy
to see that v,(¢) — 0 as ¢ — 0. Thus, from inequality (3.7), we conclude that F is

continuous on the set B;g

Step 5: An estimate of F with respect to the term related to continuity.
Let us take a nonempty set Y C B/} . Fix an arbitrarily number € > 0 and choose
y € Y and t;, ty € J such that |ty — t;| < e. Without loss of generality we may

assume that t9 > t;. Then, in view of our assumptions, we obtain

(Fy)(t2) — (Fy)(t1)]
= ot e + Lot [ ol ),

L) (ts — 5)1—7
ottt - L o

<|g(ta,y(t2)) — g(ts, y(t1))|

[l () (% olta,s (Hy)(s)) , Jltay(t) [ olts (Hy)(s)
RO / t—s7 T () / R
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Fltay(ta)) [ ot s, (HY)(s) | Fltary(tz)) [* vlts,s, (Hy)(s))
) / (R I (7] / (ta—s)i?

Fltay(t)) [" o(tr,s,(HO)(S) | fltay(t)) [* vlts,s, (Hy)(s))
I(5) / (P A (7] / (67
Fltay(t)) (" ol s, (HY)(S) ,  Fltny(t)) [* vlts, s, (Hy)(s))

110 / (T R 1) / (67 0

< g(ta, y(t2)) — g(tr, y(t2))| + [g(ts, y(t2)) — g(t1, y(t1))]

\fmm = folts, 5, (Hy)(s)) = (i, (Hy) ()]

+

_|_

YT (tz — )0
t2 y t2 |/t2 v ( tlt;—s v) 6 ds

+M / [o(tr, s, (Hy)(s)| [(t2 = )77 = (1 = 5)°7'] ds

L ytz tl y(ta) |/t1 ‘“tls_f?ﬁ ds

G t2 t1 y(h) |/“ [0t ttls_fg 2 s
< dy(e) +aw(y,e)+ HyFH(ﬂ) wy(lyl (v, €) /Otz #

L o) { [t ase [Tl - 97 - -9
LDy [
< y(e) +aw(y,e) + ;Zoﬂifl) Wy(ro)(v,€) th

1?("061]; ) (o)) [t 1] + 20— 1)°] + di (? &iwf)y’ (1)) 17

cro+ f*
Lpg+1)

dr(e) + cw(y,e)

< S,(e) +awly,e)+ r(B+1)

[wotro) (v, €) + 267V (¥(r0))] +

\Il<w(710>)7
where we denoted
on(e) = sup {|h(ta, x) — h(t1,x)| : t1, ta € J, x € [0,7¢], |ta — 1] < €}.

Hence, from the last inequality, we obtain

U((ro)) 5 U ((r0))
rpg+1) HB+1)

L o (v,6) + 227 (o)),

w(Fy,e) < d4(e) + £le) + (a+ ) w(y, )

Consequently;,

w(FY,e) < §4(e) +
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oo (19 + 20 (w0
The last inequality implies
(3.8) wo(FY) < (a + Cf(fgfol)))) wo(Y).

Step 6: An estimate of F with respect to the term related to monotonicity.
Fix an arbitrary y € Y and t;, to € J with ¢, > t;. Then, taking into account
our assumptions, we have
(3.9) [(Fy)(t2) — (Fy) ()| = [(Fy)(t2) — (Fy)(ta)]
< lg(t2, y(t2)) = g(tr, y(tr))| = l9(t2, y(t2)) — g(tr, y(t1))]
+1f(t2, y(t2)) Vy)(t2) — f(t1, y(t))(Vy) (1)
= [f(t2,y(t2)) Vy)(t2) — f(tr, y(t) (V) (8]
< [g(t2,y(t2)) — g(tr, y(11))] = [9(t2, y(t2)) — g(ts, y(t1))]
+1f(t2, y(t2)) (Vy) (t2) — f(t1, y(t1)) (Vy)(t2)]
+1f (b, y(8)) V) (t2) — 1, y(t)) (Vy) (4))]
= [f(t2,y(t2)) Vy)(t2) — f(tr, y(t) (Vy)(t2)]
— [ (b1, y(80))Vy)(t2) — [t y(t) (V) (4)]
< lg(t2, y(t2)) — g(tr, y(02))| = [g(t2, y(t2)) — g(tr, y(ta))
(

y ]
+{[f(t2, y(t2)) — f(tr,y(ta))] — [f (t2, y(t2)) — f(t1,y(t1))]}
L [ u(ty s, (Hy)(s))

/0 ?1;6 ds

1) )
1) )

)(Vy) Vy)(
)(Vy) Vy)(

tl)
tl)

“T(3) (ts— )
Fltay(t) [| [ vlteys, (Hy)() " ot s, (Hy)(s) -
) {A (t )0 A UEDE d'

_ [/OtQ v@(z}f,jff)?ﬂ?)) ds — /0“ U(t(lt’ls’_(gijzés)) ds]}

Now, we will prove that

/Otg v(ts, s, (Hy)gs)) s — /Otl U(t(l, s, (Hy)(s)) ds > 0.

(tg — 8)1_ tl — 8)1_6

In fact, we have
/ t2>> / t1>>
0 t2—815 tl—slﬁ
:/ otz s, (HY)()) / o(tays, (H /qu
0 (tz—s)lﬁ t 2—816 0 1—515

> [ ol (D= = = s [
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Since the term

(tg — S)B_l — (tl - S)ﬁ_l

is negative for 0 < s < t;, thus taking into account assumption ag) from the above

inequality we get

[ U U o, [l GO

(ty — 5)17 (t—5)1P

> / et ()t =) = (0= 9" T ds+ [ ?’(’ff“(él’_(g?j}g“” s
= v(ts,t1, (Hy) (1)) ( / Ut =) = (= 5)° ] ds + / 2 (t_dﬁ)

ty —t]
= v(ta, t1, (Hy)(t1)) E

> 0.

This together with (3.9) yields

((Fy)(t2) = (Fy) ()| = [(Fy)(t2) = (Fy)(tr)]

< [g(t2,y(t2)) — g(tr, y(11))] = l9(t2, y(t2)) — g(ts, y(t1))]

Fltay(t2)) — Fltny(t)] — Ut y(t2)) — Fltny(t))] [ o(ta, s, (Hy)(s))
* I(%) / CED

The above estimate implies

A(Fy) < dGy) + )

Therefore

and consequently

(3.10) d(FY) < (a + %) d(y).

Step 7: F is contraction with respect to the measure of noncompactness .

From (3.4) and (3.10) and the definition of the measure of noncompactness p, we

) < (a ) ),

obtain

I'(B+1)
Now, the above obtained inequality together with the fact that al’(84+1)+c¥ (¢ (rg)) <
['(8 4+ 1) enable us to apply Theorem 2.4, then Eq. (1.1) has at least one solution
x € C(J). This completes the proof. O
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4. EXAMPLE

Consider the perturbed fractional quadratic integral equation

t [5Ty?(r) dr
(4.1) QIO / arctan (1352%) ds
' TR T ) (t — 5)3 '

and this function satisfies assumption a;) and

. t
In this example we have g(t,y) = =%
1

for all z, y € R and ¢t € J. Moreover, the function g satisfies assumption as). Indeed,

taking an arbitrary nonnegative function y € C(J) and t1, to € J such that ¢t > ¢,

we obtain
[(Gy)(t2) — (Gy)(t1)| — [(Gy)(t2) — (Gy)(t1)]

= |g(t2,y(t2)) — g(tr, y(t1))| — [g(t2, y(t2)) — g(t1, y(t1))]
. t2 ¢ tl ¢ t2 " tl "
= my( 2) — my( )| — {my( 2) — m?/( 1)}

tg t2 tl
< o () — (e + | s — s 00

to 12 t
Tar g ) Tyl [<4+ta> - <4+t%>] (@)

< g (Ivie) — vl - lta) ~ (t)

123
< m d(y)
< % d(y).

The function f(t,y) = £ satisfies assumptions az) and as) with ¢ = .

Also, v(t, s,y) = arctan 1?{92 and this function satisfies assumption as). Indeed,
we have
v, s,y)] < Jyl.

Therefore, W(r) = r. Moreover,

(Hy)(t) = / s 42 (s) ds

and this operator satisfies assumption ay) with ¥ (r) = r*.

Therefore, the inequality (3.1) takes the form

r_ 6 1 6
P2y 23 < (2
sL5) + g5 =5
or
T’F(l) +7? < 57{‘(1)
5 =Ty
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and this admits ro = 0.2 as a positive solution. Moreover,

al“(g)+c\1’(¢(7’0)) = %F(g)jL%
< F(g).

Theorem 3.1 guarantees that equation (4.1) has a nondecreasing solution.

Remark 4.1. In [9] Banas and Rzepka announced that the proof in [22] is not correct.
In this paper we generalized, improved and corrected the results in [22]. Also the
condition in [9] that f is nondecreasing with respect to each of the variables separately
has been relaxed. It is worthwhile mentioning that we use the same measure of

noncompactness used in [22].
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