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ABSTRACT. In this paper, some existence theorems for the extremal solutions are proved for

an initial value problem of nonlinear hybrid differential equations via constructive methods. The

monotone iterative techniques for initial value problems of first order hybrid differential equations

are developed and it is shown that the sequences of successive iterations defined in a certain way

converge to the minimal and maximal solutions of the hybrid differential equations.
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1. INTRODUCTION

It is well known that the Banach contraction mapping principle is the only fixed

point theorem in the nonlinear analysis which provides a useful method for approx-

imating a unique solution for the initial and boundary value problems of ordinary

differential equations via successive iterations. However, to the best of our knowl-

edge, there is no such fixed point theorem or method developed so far for the hybrid

differential equations without further assumptions on the nonlinearities involved in

the equations. In this paper, using the ideas from Lakshmikantham and Leela [6] and

Ladde et al. [5], we establish some theoretical approximation results for extremal

solutions of the hybrid differential equations between the given lower and upper so-

lutions.

Let R be a real line and let J = [t0, t0 + a] be a closed and bounded interval in

R for some t0, a ∈ R, a > 0. Let C(J, R) denote a class of continuous real-valued

functions defined on J . A function f : J × R → R is said to belong to the class

C(J × R, R) of Carathéodory real-valued functions defined on J × R, if

(i) t 7→ f(t, x) is measurable for each x ∈ R, and

(ii) x 7→ f(t, x) is continuous for each t ∈ J .
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Now, consider an initial value problem of first order ordinary hybrid differential

equations (in short HDE),

(1.1)











d

dt

[

x(t)

f(t, x(t))

]

= g(t, x(t)) a.e. t ∈ J,

x(t0) = x0 ∈ R,

where, f : J × R → R+ \ {0} is continuous and g : J × R → R is Carathéodory.

By a solution of the HDE (1.1) we mean a function x ∈ C(J, R) such that

(i) the function t 7→ x
f(t,x)

is absolutely continuous for each x ∈ R, and

(ii) x satisfies the equations in (1.1).

The HDE (1.1) is a quadratic perturbation of second type of an initial value

problem of first order nonlinear differential equations and has been discussed in Dhage

and Lakshmikantham [4] for existence theory for different aspects of the solutions.

The details of different types of nonlinear perturbations of a differential equation

appears in Dhage [3]. The specialty of the results of the present paper lies in our

constructive approach for the solutions to the HDE (1.1) on J .

The following hypotheses concerning the function f is sometime crucial in the

study of HDE (1.1).

(A0) The function x 7→ x
f(t0,x)

is injective in R, and

(B0) The function g is bounded real-valued function on J × R.

Note that hypothesis (A0) holds in particular if the function x 7→ x
f(t0,x)

is increas-

ing in R. Again, hypothesis (B0) is much common and widely used in the literature

in the study of nonlinear differential equations.

We shall also make use of the following result in what follows.

Lemma 1.1. Assume that hypothesis (A0)-(B0) hold. Then a function x is a solution

of the HDE (1.1) if and only if it is a solution of the hybrid integral equation (HIE),

(1.2) x(t) =
[

f(t, x(t))
]

(

x0

f(t0, x0)
+

∫ t

t0

g(s, x(s)) ds

)

, t ∈ J.

Proof. Assume first that x is a solution of the HDE (1.1) defined on J . Then, by defi-

nition, t 7→ x(t)
f(t,x(t))

is absolutely continuous, and so, almost everywhere differentiable,

whence d
dt

[

x(t)
f(t,x(t))

]

is Lebesgue integrable on J . Applying integration to (1.1) from

t0 to t, we obtain the HIE (1.2) on J .

Conversely, assume that the function x satisfies the HIE (1.2) on J . Since g(t, x)

is bounded, it can be proved that the function t 7→ x(t)
f(t,x(t))

is absolutely continuous

for each x ∈ C(J, R+) and hence almost everywhere differential on J . By direct
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differentiation of the HIE (1.2), we obtain the HDE (1.1). Again, substituting t = t0

in the HIE (1.1) yields
x(t0)

f(t0, x(t0))
=

x0

f(t0, x0)
.

Since the mapping x 7→ x
f(t,x)

is injective in R, we obtain x(t0) = x0. Hence the proof

of the lemma is complete.

In the following section, we prove an existence result for the HDE (1.1) in a

closed set formed by the lower and upper solutions under some suitable conditions

via a hybrid fixed point theorem due to Dhage [1, 2].

2. METHOD OF LOWER AND UPPER SOLUTIONS

In this section we prove an existence result for the HDE (1.1) in a closed and

bounded subset given by lower and upper solutions. A construction result is also

obtained at the end of the section.

Definition 2.1. A function u ∈ C(J, R) is said to be a lower solution for the HDE

(1.1) defined on J if

(i) t 7→ u(t)
f(t,u(t))

is absolutely continuous, and

(ii) d
dt

[

u(t)
f(t,u(t))

]

≤ g(t, u(t)) a.e. t ∈ J, u(t0) ≤ x0.

Similarly, a function v ∈ C(J, R) is said to be a lower solution for the HDE (1.1)

defined on J if

(i) t 7→ v(t)
f(t,v(t))

is absolutely continuous , and

(ii) d
dt

[

v(t)
f(t,v(t))

]

≥ g(t, v(t)) a.e. t ∈ J, v(t0) ≥ x0.

A solution of the HDE (1.1) is a lower as well an upper solution and vice versa.

If we know the existence of lower and upper solutions of the HDE (1.1) such that

u(t) ≤ v(t), t ∈ J , then we can prove the existence of a solution of the HDE (1.1) in

the closed set

Ω = {x ∈ E : u(t) ≤ x ≤ v(t), t ∈ J}.

We place the problem under study in the space C(J, R) of continuous real-valued

functions defined on J . Clearly, C(J, R) is a Banach algebra with respect to the norm

‖ · ‖ and the multiplication “ · ” defined by

‖x‖ = sup
t∈J

|x(t)|

and

(x · y)(t) = (xy)(t) = x(t)y(t), t ∈ J.

We consider the following hypotheses in what follows.
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(A1) The function x 7→ x
f(t,x)

is increasing in R for all t ∈ J .

(A2) There exists a constant L > 0 such that

|f(t, x) − f(t, y)| ≤ L|x − y|

for all t ∈ J and x, y ∈ R.

(B1) There exists a constant K > 0 such that

|g(t, x)| ≤ K

for all t ∈ J and for all x ∈ R.

The following existence result is proved in Dhage and Lakshmikatham [4] via a

fixed point technique formulated in Dhage [2].

Theorem 2.1. Assume that hypotheses (A1)-(A2) and (B1) hold. Further, if

(2.1) L

(

∣

∣

∣

x0

f(t0, x0)

∣

∣

∣
+ Ka

)

< 1,

then the HDE (1.1) has a solution on J .

Theorem 2.2. Let u, v ∈ C(J, R) be lower and upper solutions of HDE (1.1) satis-

fying u(t) ≤ v(t), t ∈ J and let the hypotheses (A1)-(A2) and (B1) hold. Suppose also

that the condition (2.1) is satisfied. Then, there exists a solution x(t) of (1.1) in the

closed set Ω, that is, u(t) ≤ x(t) ≤ v(t), t ∈ J .

Proof. Define a function p : J × R → R by

(2.2) p(t, x) = max
{

u(t), min{x(t), v(t)}
}

.

Then g̃(t, x) = g(t, p(t, x)) defines a continuous extension of g on J ×R satisfying

|g̃(t, x)| = |g(t, p(t, x))| ≤ K a.e. t ∈ J

for all x ∈ R. Hence by Theorem 2.1, the HDE

(2.3)















d

dt

[

x(t)

f(t, x(t))

]

= g̃(t, x(t)) a.e. t ∈ J

x(t0) = x0 ∈ R

has a solution x defined on J .

For any ǫ > 0, define

(2.4)
uǫ(t)

f(t, uǫ(t))
=

u(t)

f(t, u(t))
− ǫ(1 + t)

and

(2.5)
vǫ(t)

f(t, vǫ(t))
=

v(t)

f(t, v(t))
+ ǫ(1 + t)
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for t ∈ J . Then in view of hypotheses (A1), we obtain

(2.6) uǫ(t) < u(t) and v(t) < vǫ(t)

for t ∈ J .

Since

u(t0) ≤ x0 ≤ v(t0),

one has

(2.7) uǫ(t0) < x0 < vǫ(t0).

Next, we shall show that

(2.8) uǫ(t) < x(t) < vǫ(t), t ∈ J.

Define X(t) = x(t)
f(t,x(t))

, t ∈ J . Similarly, define

Uǫ(t) =
uǫ(t)

f(t, uǫ(t))
, U(t) =

u(t)

f(t, u(t))
,

and

Vǫ(t) =
vǫ(t)

f(t, vǫ(t))
, V (t) =

v(t)

f(t, v(t))

for all t ∈ J .

If (2.8) is not true, then there exists a t1 ∈ (t0, t0 + a] such that

x(t1) = vǫ(t1)

and

uǫ(t) < x(t) < vǫ(t), t0 ≤ t < t1.

If x(t1) > v(t1), then p(t1, x(t1)) = v(t1). Moreover,

u(t1) ≤ p(t1, x(t1)) ≤ v(t1).

Now,

V ′(t1) ≥ g(t1, v(t1)) = g̃(t1, x(t1)) = X ′(t)

for all t ∈ J . Since

Vǫ(t) > V ′(t)

for all t ∈ J , we have that

(2.9) V ′

ǫ (t1) > X ′(t1).

However,

X(t1) = Vǫ(t1)

and

X(t) = Vǫ(t), t0 ≤ t < t1
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together imply that

X(t1 + h) − X(t1)

h
>

Vǫ(t1 + h) − Vǫ(t1)

h

if h < 0 small. Taking the limit as h → 0 in the above inequality yields

X ′(t1) ≥ V ′

ǫ (t1)

which is a contradiction to (2.9). Hence,

x(t) < vǫ(t)

for all t ∈ J . Consequently,

uǫ(t) < x(t) < vǫ(t), t ∈ J.

Letting ǫ → 0 in the above inequality, we obtain

u(t) ≤ x(t) ≤ v(t), t ∈ J.

This completes the proof.

The existence of lower and upper solutions is an essential ingredient in many

problems of nonlinear differential equations and which do exist for every differential

equation obviously. The following simple result gives the sufficient conditions that

guarantee the existence of lower and upper solutions for the HDE (1.1) defined on J .

We consider the following hypothesis:

(B2) The function x 7→ g(t, x) is nonincreasing in R for all t ∈ J .

Theorem 2.3. Suppose that hypotheses (A1)-(A2) and (B1)-(B2) hold. Further, if

the condition (2.1) is satisfied, then there exists a lower u0 and an upper solutions v0

for the HDE (1.1) such that u0(t) ≤ v0(t) on J .

Proof. Let y(t) be the unique solution of the HDE

(2.10)















d

dt

[

y(t)

f(t, y(t))

]

= g̃(t, 0) a.e. t ∈ J,

y(t0) = x0,∈ R

which does exist in view of condition (2.1). Define

(2.11)
u0(t)

f(t, u0(t))
=

y(t)

f(t, y(t))
− R0, t ∈ J

and

(2.12)
v0(t)

f(t, v0(t))
=

y(t)

f(t, y(t))
+ R0, t ∈ J

for some real number R0 > 0. Choose R0 so large that

(2.13)
u0(t)

f(t, u0(t))
≤ 0 ≤

v0(t)

f(t, v0(t))
.
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Since g(t, x) is nonincreasing in x, one has

u0(t)

f(t, u0(t))
≤

y(t)

f(t, y(t))
≤ g(t, u0(t)), t ∈ J

and
v0(t)

f(t, v0(t))
≥

y(t)

f(t, y(t))
≥ g(t, u0(t)), t ∈ J.

Also from (2.11) and (2.12), it follows that

u0(t0) ≤ x0 ≤ v0(t0).

Thus, the functions u0(t) and v0(t) are respectively the desired lower and upper

solutions for the HDE (1.1) on J . Finally, from the hypothesis (A1) and the inequality

(2.13) it follows that u0(t) ≤ v0(t) and the proof of the theorem is complete.

Remark 2.1. Assume that all the hypotheses of Theorem 2.2 hold with Ω is replaced

with

Ω = {x ∈ R | u0(t) ≤ x ≤ v0(t), t ∈ J}.

Then, by Theorem 2.1, there exists a solution for the HDE (1.1) in the vector segment

[u0, v0] in the Banach algebra C(J, R). The uniqueness of x(t) is a consequence of

nonincreasing nature of g(t, x) in x for each t ∈ J .

3. MONOTONE ITERATIVE TECHNIQUE

In this section, we describe a constructive method that yields monotone sequences

which converge to the extremal solutions of the HDE (1.1) on J . This method is

known as monotone iterative technique in the theory of nonlinear analysis and has

been employed by several authors for a number of nonlinear differential equations in

the literature. This method generates the sequences of successive iterations where

the first iteration is a solution of a certain linear differential equation which can be

computed explicitly. The advantage of monotone iterative technique lies in the fact

that it gives some qualitative information about the solutions of nonlinear differential

equation in question and the disadvantage is that unlike Picard’s iterations, it does

not give any information about the degree of approximation of the solutions, that is,

how far away the successive iterations are from the actual solution of the prolem in

question. The details of monotone iterative technique and applications appears in a

monograph by Ladde et al. [5]. Below we apply the monotone iterative technique

to HDE (1.1) under some suitable conditions for proving the existence of extremal

solutions.

We need the following hypotheses in what follows.
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(B3) There exists a real number M > 0 such that

g(t, x) − g(t, y) ≥ −M

[

x

f(t, x)
−

y

f(t, y)

]

for each t ∈ J and x, y ∈ R with x ≥ y.

(B4) There exists a constant K > 0 such that

∣

∣g̃(t, x)
∣

∣ =

∣

∣

∣

∣

g(t, x) + M
x

f(t, x)

∣

∣

∣

∣

≤ K

for all t ∈ J and x ∈ R.

Theorem 3.1. Let u0 and v0 be respectively the lower and upper solutions for the

HDE (1.1) satisfying u0(t) ≤ v0(t) on J and let hypotheses (A1)-(A2) and (B3)-(B4)

hold. Further if the condition (2.1) is satisfied, then there exist monotone sequences

{un} and {vn} such that un → u and vn → v uniformly on J , where u and v are

respectively the minimal and maximal solutions of the HDE (1.1) on J and

(3.1) u0 ≤ u1 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.

Proof. For any η ∈ C(J, R) with u0(t) ≤ η(t) ≤ v0(t) on J , consider a hybrid differ-

ential equation,

(3.2)







d
dt

[

x(t)
f(t,x(t))

]

= g(t, η(t)) − M
[

x(t)
f(t,x(t))

− η(t)
f(t,η(t))

]

a.e. t ∈ J

x(t0) = x0, u0(t) ≤ x0 ≤ v0(t).

Now the HDE (3.2) is equivalent to the problem

d

dt

[

x(t)

f(t, x(t))

]

+ M

[

x(t)

f(t, x(t))

]

= g̃(t, η(t)) a.e. t ∈ J

x(t0) = x0.

Using the integration factor, the above equation can be put in the form

d

dt

[

eMtx(t)

f(t, x(t))

]

= eMtg̃(t, η(t)) a.e. t ∈ J

x(t0) = x0.

By Lemma 1.1, the above hybrid differential equation is equivalent to he HIE

x(t) =
[

f(t, x(t))
]

(

x0 e−M(t−t0)

f(t0, x0)
+

∫ t

t0

e−M(t−s) g̃(s, η(s)) ds

)

, t ∈ J.

Since hypothesis (B4) and condition (2.1) holds, it is clear that for every η, there

exists a unique solution x ∈ C(J, R) of the HDE (1.1) defined on J in view of Banach

contraction mapping principle.

Define a mapping A on [u0, v0] by Aη = x. This mapping will be used to define

sequences {un} and {vn}. Let us now prove that

(a) u0 ≤ Au0 and v0 ≥ Av0.
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(b) A is monotone operator on the sector

[u0, v0] = {x ∈ C(J, R) | u0(t) ≤ x(t) ≤ v0(t), t ∈ J}.

To prove (a), set Au0 = u1, where u1 is the unique solution of the HDE (3.2) on

J with η = u0. Denote

(3.3)
p(t)

f(t, p(t))
=

u1(t)

f(t, u1(t))
−

u0(t)

f(t, u0(t))

for p ∈ C(J, R). Then p(t0)
f(t0,p(t0))

≥ 0, and

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

u1(t)

f(t, u1(t))

]

−
d

dt

[

u0(t)

f(t, u0(t))

]

≥ g(t, u0(t)) − M

[

u1(t)

f(t, u1(t))
−

u0(t)

f(t, u0(t))

]

− g(t, u0(t))

= −M

[

p(t)

f(t, p(t))

]

.(3.4)

This shows that p(t)
f(t,p(t))

≥ p(t0)
f(t0,p(t0))

e−Mt ≥ 0 for all t ∈ J and hence from (3.4),

we obtain
u1(t)

f(t, u1(t))
≥

u0(t)

f(t, u0(t))

for all t ∈ J . Since hypothesis (A1) holds, u0(t) ≤ u1(t) for all t ∈ J , or, equivalently,

u0 ≤ Au0. In a similar way, we can prove that v0 ≥ Av0.

To prove (b), let η1, η2 ∈ [u0, v0] be such that η1 ≤ η2 on J . Then one has

(3.5) g(t, η1(t)) − g(t, η2(t)) ≥ −M

[

η1(t)

f(t, η1(t))
−

η2(t)

f(t, η2(t))

]

for all t ∈ J .

Suppose that x1 = Aη1 and x2 = Aη2 and set

p(t)

f(t, p(t))
=

x2(t)

f(t, x2(t))
−

x1(t)

f(t, x1(t))

for some p ∈ C(J, R). Then, p(t0)
f(t0,p(t0))

≥ 0, and

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

x2(t)

f(t, x2(t))

]

−
d

dt

[

x1(t)

f(t, x1(t))

]

= g(t, η2(t)) − M

[

x2(t)

f(t, x2(t))
−

η2(t)

f(t, η2(t))

]

− g(t, η1(t)) + M

[

x1(t)

f(t, x1(t))
−

η1(t)

f(t, η1(t))

]

≥ −M

[

η2(t)

f(t, η2(t))
−

η1(t)

f(t, η1(t))

]

− M

[

η2(t)

f(t, η2(t))
−

η1(t)

f(t, η1(t))

]
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+ M

[

x1(t)

f(t, x1(t))
−

η1(t)

f(t, η1(t))

]

= −M

[

p(t)

f(t, p(t))

]

.(3.6)

As before, the foregoing inequality implies that x2 ≥ x1 on J which in turn

implies that Aη2 ≥ Aη1, proving (b).

Now, we define two sequences {un} and {vn} by

un = Aun−1 and vn = Avn−1

for n = 1, 2, . . . .

From the monotonicity of the operator A it follows that

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.

It is easy to show that the sequences {un} and {vn} are uniformly bounded and

equi-continuous on J . The sequences being monotone, they converge by Arzela-Ascoli

theorem, uniformly and monotonically on J to u and v respectively. Obviously, u and

v are the solutions of

(3.7)







d
dt

[

un(t)
f(t,un(t))

]

= g(t, un−1(t)) − M
[

un(t)
f(t,un(t))

− un−1(t)
f(t,un−1(t))

]

un(t0) = x0,

and

(3.8)







d
dt

[

vn(t)
f(t,vn(t))

]

= g(t, vn−1(t)) − M
[

vn(t)
f(t,vn(t))

− vn−1(t)
f(t,vn−1(t))

]

vn(t0) = x0.

To prove that u and v are extremal solutions of the HDE (1.1) on J , we have

to show that if x is any other solution of the HDE (1.1) such that u0(t0) ≤ x0 ≤

v0(t0), t ∈ J , then

u0(t) ≤ u(t) ≤ x(t) ≤ v(t) ≤ v0(t), t ∈ J.

Suppose that for some n ∈ N, un ≤ x ≤ vn on J and set

p(t)

f(t, p(t))
=

x(t)

f(t, x(t))
−

un+1(t)

f(t, un+1(t))

for some p ∈ C(J, R). Then, p(t0)
f(t0,p(t0))

= 0, and

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

x(t)

f(t, x(t))

]

−
d

dt

[

un+1(t)

f(t, un+1(t))

]

= g(t, x(t)) − g(t, un(t)) − M

[

un+1(t)

f(t, un+1(t))
−

un(t)

f(t, un(t))

]

≥ −M

[

x(t)

f(t, x(t))
−

un(t)

f(t, un(t))

]
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+ M

[

un+1(t)

f(t, un+1(t))
−

un(t)

f(t, un(t))

]

= −M

[

p(t)

f(t, p(t))

]

.(3.9)

This implies as before that un+1(t) ≤ x(t) for all t ∈ J . Similarly, it is proved that

x(t) ≤ vn+1(t) for all t ∈ J . Since u0 ≤ x ≤ v0 on J , we have, by induction principle

that un ≤ x ≤ vn on J for each n, n = 0, 1, 2, . . . . Taking the limit as n → ∞, we

conclude that u ≤ x ≤ v on J . Hence u and v are respectively the minimal and

maximal solutions for the HDE (1.1) on J . This completes the proof.

To state a special case of Theorem 3.1, we need the following hypothesis in what

follows.

(B5) The function x 7→ g(t, x) is nondecreasing in R for each t ∈ J .

Corollary 3.1. Let u0 and v0 be respectively the lower and upper solutions for the

HDE (1.1) on J satisfying u0(t) ≤ v0(t) on J and let all the conditions of Theorem 3.1

are satisfied with hypothesis (B4) replaced with (B5). Then the HDE (1.1) has extremal

solutions on J .

The proof of Corollary 3.1 follows from Theorem 3.1 by replacing the constant M

in hypothesis (B3) with M = 0. Next, we discuss the case when g(t, x) is nonincreasing

in x almost everywhere for t ∈ J . Let u0 and v0 be respectively the lower and upper

solutions for the HDE (1.1) on J . Then, consider the two sequences un and vn of

iterations defined as follows:

(3.10)
d

dt

[

un+1(t)

f(t, un+1(t))

]

= g(t, un(t)) a.e. t ∈ J, un+1(t0) = u0;

and

(3.11)
d

dt

[

vn+1(t)

f(t, vn+1(t))

]

= g(t, vn(t)) a.e. t ∈ J, vn+1(t0) = u0;

for n = 0, 1, 2, . . . .

Below in the following we show that each one of the sequences un and vn has two

alternating sequences which converge uniformly and monotonically to the extremal

solutions of the HDE (1.1) on J .

Theorem 3.2. Let hypotheses (A1)-(A2) and (B5) hold. If the inequality (2.1) is

satisfied, then either,

(i) the iterates {un} given by (3.10) and a unique solution x of the HDE (1.1)

defined on J satisfy

(3.12) u0 ≤ u2 ≤ · · · ≤ u2n ≤ x(t) ≤ u2n+1 ≤ · · · ≤ u3 ≤ u1
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for all t ∈ J , provided u0(t) ≤ u2(t), t ∈ J . Furthermore, the sequences {u2n}

and {u2n+1} converge uniformly and monotonically to u∗ and u∗ respectively

satisfying u∗(t) ≤ x(t) ≤ u∗(t) for all t ∈ J ; or

(ii) the iterates {vn} given by (3.11) and a unique solution x of the HDE (1.1)

defined on J satisfy

(3.13) v1 ≤ v3 ≤ · · · ≤ u2n+1 ≤ x(t) ≤ v2n ≤ · · · ≤ v2 ≤ v0

for all t ∈ J , provided v2(t) ≤ v0(t), t ∈ J . Furthermore, the sequences {v2n} and

{v2n+1} converge uniformly and monotonically to v∗ and v∗ respectively satisfying

v∗(t) ≤ x(t) ≤ v∗(t) for all t ∈ J .

In fact, since the extremal solutions are unique, u∗ = v∗ = u and u∗ = v∗ = v on J

satisfying u(t) ≤ x(t) ≤ v(t), t ∈ J .

Proof. By Theorem 2.2, there exist a lower solution u0, an upper solution v0 and a

solution x for the HDE (1.1) such that

u0(t) ≤ x(t) ≤ v0, t ∈ J.

We shall only prove the case (i), since the proof of case (ii) follows with similar

arguments.

Assume u0 ≤ u2 on J . We shall first show that

(3.14) u0(t) ≤ u2(t) ≤ x(t) ≤ u3(t) ≤ u1t, t ∈ J.

Set

(3.15)
p(t)

f(t, p(t))
=

u1(t)

f(t, u1(t))
−

u0(t)

f(t, u0(t))

for t ∈ J . Then,

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

u1(t)

f(t, u1(t))

]

−
d

dt

[

u0(t)

f(t, u0(t))

]

≥ g(t0, u0(t)) − g(t0, u0(t))

= 0

and p(t0) = 0. Hence,

u1(t)

f(t, u1(t))
≥

u0(t)

f(t, u0(t))

for all t ∈ J . This further in view of hypothesis (A1) implies that u1(t) ≥ u0(t) on J .

Next, let

(3.16)
p(t)

f(t, p(t))
=

x(t)

f(t, x(t))
−

u1(t)

f(t, u1(t))
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for t ∈ J . Then,

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

u1(t)

f(t, u1(t))

]

−
d

dt

[

u0(t)

f(t, u0(t))

]

= g(t, x(t)) − g(t, u0(t))

≤ 0

and p(t0) = 0. This implies

x(t)

f(t, x(t))
≤

u1(t)

f(t, u1(t))

for all t ∈ J . Since hypothesis (A1) holds, one has x(t) ≤ u1(t) on J . By using similar

arguments, we can show successively that

u2(t) ≤ x(t), u3(t) ≤ u1(t), and x(t) ≤ u3(t), t ∈ J.

Consequently, we have proved that (3.14) holds for t ∈ J .

To prove (3.12), we use the induction principle, i.e. assume that (3.12) is true

for some n and show that it holds for (n + 1). Consider,

p(t)

f(t, p(t))
=

u2n+2(t)

f(t, u2n+2(t))
−

u2n+1(t)

f(t, u2n+1(t))
.

Then, by using the monotone character of g, we have

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

u2n+2(t)

f(t, u2n+2(t))

]

−
d

dt

[

u2n+1(t)

f(t, u2n+1(t))

]

= g(t, u2n+2(t)) − g(t, u2n+1(t))

≤ 0

and p(0) = 0. This shows p(t) ≤ 0 and hence u2n+2(t) ≤ u2n+1(t). By repeating

similar arguments we can get

u0 ≤ u2 ≤ · · · ≤ u2n ≤ u2n+2 ≤ x ≤ u2n+3 ≤ u2n+1 ≤ · · · ≤ u3 ≤ u1

on J . Since (3.12) is true for n = 1, it follows by induction principle that (3.12) is

true for all n. It is easy to conclude that the sequences {u2n}, {u2n+1} are uniformly

bounded and equicontinuous and hence by Arzela-Ascoli theorem, converge uniformly

and monotonically to u∗(t), u
∗(t) respectively and that u∗(t) ≤ x(t) ≤ u∗(t) on J . This

proves the assertion (i) and the proof of Theorem 3.2 is complete.

Corollary 3.2. In addition to the assumptions of Theorem 3.2, suppose that

(3.17) g(t, u1(t)) − g(t, u2(t)) ≥ −M

[

u1(t)

f(t, u1(t))
−

u2(t)

f(t, u2(t))

]

for all t ∈ J , wherever u1(t) ≥ u2(t) on J . Then u(t) = v(t) = x(t) on J .
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We note that in the proof of Theorem 3.2, u and v are indeed quasi solutions for

the HDE (1.1) since we have that

(3.18)
d

dt

[

u(t)

f(t, u(t))

]

= g(t, v(t)) a.e. t ∈ J, u(t0) = x0,

and

(3.19)
d

dt

[

v(t)

f(t, v(t))

]

= g(t, u(t)) a.e. t ∈ J, v(t0) = x0, .

4. MIXED MONOTONE ITERATIVE TECHNIQUE

From the discussion of the previous section, it is clear that if the nonlinearity

g(t, x) in the HDE (1.1) is either nondecreasing or nonincreasing in the state variable

x, then we can construct the monotone sequences of successive iterations that con-

verge to the extremal solutions between the given lower and upper solutions of the

related hybrid differential equation on J . Now we treat the case when g is neither

nondecreasing nor nonincreasing in the state variable x. If it is possible to split the

function g into two components as

g(t, x) = g1(t, x) + g2(t, x)

where, one component g1(t, x) is nondecreasing while another component g2(t, x) is

nonincreasing in the state variable x, then in this situation we can also construct the

sequences of iterations that converge to the extremal solutions of the HDE (1.1) on

J .

Now, consider an initial value problem of HDE,

(4.1)















d

dt

[

x(t)

f(t, x(t))

]

= g1(t, x(t)) + g2(t, x(t)) a.e. t ∈ J

x(t0) = x0 ∈ R

where, f ∈ C(J × R, R \ {0}) and g1, g2 ∈ C(J × R, R).

In the following we develop a mixed monotone iterative technique and prove an

approximation result for the HDE (4.1) in closed sets formed by the lower and upper

solutions. Below we give different notions of lower and upper solutions for the HDE

(4.1) on J .

Definition 4.1. Let the functions α, β ∈ C(J, R) satisfy the condition that the maps

t 7→ α(t)
f(t,α(t))

and t 7→ β(t)
f(t,β(t))

are absolutely continuous on J . Then the functions

(α, β) are said to be

(a) mixed lower and upper solutions of type I for the HDE (4.1) on J , if

(4.2)











d

dt

[

α(t)

f(t, α(t))

]

≤ g1(t, α(t)) + g2(t, β(t)) a.e. t ∈ J,

α(t0) ≤ x0,
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and

(4.3)











d

dt

[

β(t)

f(t, β(t))

]

≥ g1(t, β(t)) + g2(t, α(t)) a.e. t ∈ J,

β(t0) ≥ x0;

and

(b) mixed lower and upper solutions of type II for the HDE (4.1) on J if

(4.4)











d

dt

[

α(t)

f(t, α(t))

]

≤ g1(t, β(t)) + g2(t, α(t)) a.e. t ∈ J,

α(t0) ≤ x0,

and

(4.5)











d

dt

[

β(t)

f(t, β(t))

]

≥ g1(t, α(t)) + g2(t, β(t)) a.e. t ∈ J,

β(t0) ≥ x0.

If the equality sign holds in the relations of (4.2) and (4.3), then the pair of

functions (α, β) together is called a mixed solution of type I for the HDE (4.1)

on J . Similarly, if the equality sign holds in the relations of (4.4) and (4.5), then the

pair of functions (α, β) together is called a mixed solution of type II for the HDE

(4.1) on J .

We need the following hypothesis in what follows.

(B6) The function g1(t, x) is nondecreasing in x and the function g2(t, x) is nonin-

creasing in x for each t ∈ J .

(B7) The functions (α0, β0) are mixed lower and upper solutions of type I for the HDE

(4.1) on J with α0 ≤ β0.

(B8) The pair (α0, β0) are mixed lower and upper solutions of type II for the HDE

(4.1) on J with α0 ≤ β0.

Theorem 4.1. Assume that the hypotheses (A1)-(A2) and (B6)-(B7) hold. Further

suppose that the condition (2.1) is satisfied. Then there exist monotone sequences

{αn} and {βn} such that αn → α and βn → β uniformly on J , where (α, β) are mixed

extremal solutions of the type I for the HDE (4.1) on J .

Proof. Consider the following quadratic HDE,

(4.6)















d

dt

[

αn+1(t)

f(t, αn+1(t))

]

= g1(t, αn(t)) + g2(t, βn(t)) a.e. t ∈ J,

αn+1(t0) = x0,
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and

(4.7)















d

dt

[

βn+1(t)

f(t, βn+1(t))

]

= g1(t, βn(t)) + g2(t, αn(t)) a.e. t ∈ J,

βn+1(t0) = x0

for n ∈ N.

Clearly, the HDEs (4.6) and (4.7) have unique solutions αn+1 and βn+1 on J

respectively in view of Banach contraction mapping principle. Now we wish to prove

that

(4.8) α0 ≤ α1 ≤ · · · ≤ αn ≤ βn · · · ≤ β1 ≤ β0

on J for n = 0, 1, 2, . . .. Let n = 0 and set

p(t)

f(t, p(t))
=

α0(t)

f(t, α0(t))
−

α1(t)

f(t, α1(t))

for t ∈ J . Then by monotonicity of g1 and g2, we obtain

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

α0(t)

f(t, α0(t))

]

−
d

dt

[

α1(t)

f(t, α1(t))

]

≤ g1(t0, α0(t)) + g2(t, β0(t))

− g1(t0, β0(t)) + g2(t, α0(t))

= 0

for all t ∈ J and p(t0) = 0. This implies that

α0(t)

f(t, α0(t))
≤

α1(t)

f(t, α1(t))

for all t ∈ J . As hypothesis (A1) holds, one has α0(t) ≤ α1(t) for all t ∈ J . Similarly,

it is proved that β1 ≤ β0 on J . Again, setting

p(t)

f(t, p(t))
=

α1(t)

f(t, α1(t))
−

β1(t)

f(t, β1(t))

for t ∈ J . Then, by monotonicity of g1 and g2, we obtain

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

α1(t)

f(t, α1(t))

]

−
d

dt

[

β1(t)

f(t, β1(t))

]

≤ g1(t0, α0(t)) + g2(t, β0(t))

− g1(t0, β0(t)) − g2(t, α0(t))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

α1(t)

f(t, α1(t))
≤

β1(t)

f(t, β1(t))

for all t ∈ J . As hypothesis (A1) holds, one has α1(t) ≤ β1(t) for all t ∈ J .
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Now we assume that for some integer k ∈ N,

αk−1 ≤ αk ≤ βk ≤ βk−1

on J . We shall show that

αk ≤ αk+1 ≤ βk+1 ≤ βk.

Set
p(t)

f(t, p(t))
=

αk(t)

f(t, αk(t))
−

αk+1(t)

f(t, αk+1(t))

for t ∈ J . Then by monotonicity of g1 and g2, we obtain

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

αk(t)

f(t, αk(t))

]

−
d

dt

[

αk+1(t)

f(t, αk+1(t))

]

≤ g1(t, αk−1(t)) + g2(t, βk−1(t))

− g1(t, αk(t)) − g2(t, βk(t))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

αk(t)

f(t, αk(t))
≤

αk+1(t)

f(t, αk+1(t))

for all t ∈ J . As hypothesis (A1) holds, one has αk(t) ≤ αk+1(t) for all t ∈ J .

Similarly, it can be proved that βk+1(t) ≤ βk(t)i, t ∈ J .

Similarly, assume that the inequality

αk−1 ≤ αk ≤ βk ≤ βk−1

holds on J . We shall show that

αk ≤ αk+1 ≤ βk+1 ≤ βk

on J . Set
p(t)

f(t, p(t))
=

αk+1(t)

f(t, αk+1(t))
−

βk+1(t)

f(t, βk+1(t))

for t ∈ J . Then by monotonicity of g1 and g2, we obtain

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

αk+1(t)

f(t, αk+1(t))

]

−
d

dt

[

βk+1(t)

f(t, βk+1(t))

]

≤ g1(t, αk(t)) + g2(t, βk(t))

− g1(t, βk(t)) − g2(t, αk(t))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

αk+1(t)

f(t, αk+1(t))
≤

βk+1(t)

f(t, βk+1(t))

for all t ∈ J . As hypothesis (A1) holds, one has αk+1(t) ≤ βk+1(t) for all t ∈ J .
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Now it is easy to prove that the sequences {αn} and {βn} are uniformly bounded

and equicontinuous and so, have uniformly convergent subsequences on J . Since they

are monotone sequences, {αn} and {βn} converge uniformly and monotonically to α

and β on J respectively. Obviously the pair (α, β) is a mixed solution of the HDE

(4.1) on J . Finally, we show that (α, β) is a mixed minimal and maximal solution of

type I for the HDE (4.1) on J . Let x be any solution of the HDE (4.1) on J such that

α0 ≤ x(t) ≤ β(t) on J . Suppose that for some k ∈ N, αk(t) ≤ x(t) ≤ βk(t), t ∈ J .

We shall show that αk+1(t) ≤ x(t) ≤ βk+1(t), t ∈ J . Setting

p(t)

f(t, p(t))
=

αk+1(t)

f(t, αk+1(t))
−

x(t)

f(t, x(t))

for t ∈ J . Then, by monotonicity of g1 and g2, we obtain

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

αk+1(t)

f(t, αk+1(t))

]

−
d

dt

[

x(t)

f(t, x(t))

]

≤ g1(t, αk(t)) + g2(t, βk(t))

− g1(t, x(t)) − g2(t, x(t))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

αk+1(t)

f(t, αk+1(t))
≤

x(t)

f(t, x(t))

for all t ∈ J . As hypothesis (A1) holds, one has αk+1(t) ≤ x(t) for all t ∈ J .

Similarly, it is shown that x(t) ≤ βk+1(t) for all t ∈ J . By principle of induction

method, αn ≤ x ≤ βn on J for all n ∈ N. Taking the limit as n → ∞, we obtain

α ≤ x ≤ β on J . Thus (α, β) are the mixed extremal solutions of type I for the HDE

(4.1) on J , that is,

d

dt

[

α(t)

f(t, α(t))

]

= g1(t, α(t)) + g1(t, β(t)) a.e t ∈ J, α(t0) = x0

and
d

dt

[

β(t)

f(t, β(t))

]

= g1(t, β(t)) + g1(t, α(t)) a.e t ∈ J, β(t0) = x0.

This completes the proof.

Corollary 4.1. If in addition to the assumptions of Theorem 4.1, we suppose that

for u1 ≥ u2, u1, u2 ∈ Ω, we have

g1(t, u1(t)) − g1(t, u2(t)) ≤ N1

[

u1(t)

f(t, u1(t))
−

u2(t)

f(t, u2(t))

]

, N1 > 0,

and

g2(t, u1(t)) − g2(t, u2(t)) ≤ N2

[

u1(t)

f(t, u1(t))
−

u2(t)

f(t, u2(t))

]

, N2 > 0,

then α(t) = x(t) = β(t) on J .
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Proof. Since α ≤ β on J , it is enough to show that β ≤ α on J . Define a function

p ∈ C(J, R) by

p(t)

f(t, p(t))
=

β(t)

f(t, β(t))
−

α(t)

f(t, α(t))
.

Then, p(t0) = 0 and

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

β(t)

f(t, β(t))

]

−
d

dt

[

α(t)

f(t, α(t))

]

= g1(t, β(t)) − g1(t, α(t)) + g2(t, α(t)) − g2(t, β(t))

≤ N1

(

β(t)

f(t, β(t))
−

α(t)

f(t, α(t))

)

+ N2

(

α(t)

f(t, α(t))
−

β(t)

f(t, β(t))

)

= (N1 + N2)
p(t)

f(t, p(t))
.

This shows that p(t)
f(t,p(t))

≤ 0 on J , proving thereby that β ≤ α on J . Hence

α = x = β on J , completing the proof.

Remark 4.1. As a consequence of Theorem 4.1, we have several important observa-

tions. It is noted that many interesting special cases can be derived from Theorem 4.1,

some of which are already studied in the earlier results. Below we list our remarks

concerning these observations.

(1) In Theorem 4.1, suppose that g2(t, x) = 0. Then α0, β0 are natural lower and

upper solutions of (4.1) and with g(t, x) nondecreasing, we get the monotone

sequences {αn}, {βn} converging to minimal and maximal solutions of (4.1) re-

spectively, lying in the sector [α0, β0].

(2) However, if g1(t, x) is not nondecreasing and g2(t, x) = 0, we can assume that

g1(t, x) + M x
f(t,x)

is nondecreasing in x for some M > 0 and still come to the

same conclusion as above, since the HDE

d

dt

[

x(t)

f(t, x(t))

]

= g̃1(t, x)(t) a.e t ∈ J, x(t0) = x0

satisfies the conditions of Theorem 3.1.

When g1(t, x) is not nondecreasing in x, we consider the HDE

(4.9)
d

dt

[

x(t)

f(t, x(t))

]

= g̃1(t, x(t)) − M
x(t)

f(t, x(t))
a.e t ∈ J, x(t0) = x0,

where g̃1(t, x) = g1(t, x)+M x
f(t,x)

, M > 0 is nondecreasing in x. Note that HDE

(4.9) is same as (4.1) with g2(t, x) = 0. We see that it can also be seen as (4.1)

with g1(t, x) replaced by g̃1(t, x) and g2(t, x) replaced by −M x
f(t,x)

. Hence we

get the same conclusions as of Theorem 4.1, since g̃1(t, x) is nondecreasing in x

and −M x
f(t,x)

is nonincreasing in x.
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(3) If g1(t, x) = 0 in Theorem 4.1, we obtain the result for nonincreasing g2(t, x) in

x and the functions α0, β0 are mixed lower and upper solutions of the HDE

d

dt

[

x(t)

f(t, x(t))

]

= g2(t, x(t)) a.e. t ∈ J, α(t0) = x0

with nonincreasing g2(t, x) in x. In this case, the monotone iterates {αn}, {βn}

converge to α, β respectively which satisfy

d

dt

[

α(t)

f(t, α(t))

]

= g1(t, β(t)) a.e. t ∈ J, α(t0) = x0

and
d

dt

[

β(t)

f(t, β(t))

]

= g2(t, α(t)) a.e. t ∈ J, β(t0) = x0.

(4) If in (3) above, we suppose that g2(t, x) is not nonincreasing in x and there exists

a N > 0 such that g̃2(t, x) = g2(t, x) − N x
f(t,x)

is nonincreasing in x. Then, we

can consider the HDE

d

dt

[

x(t)

f(t, x(t))

]

= g2(t, x(t)) = g̃2(t, x(t)) + N
x(t)

f(t, x(t))
, x(t0) = x0

which is the same as HDE (4.1) with g1(t, x) replaced by N x
f(t,x)

which is nonde-

creasing in x and g2(t, x) replaced by g̃2(t, x) which is nonincreasing in x. Hence,

the present case, then reduces to Theorem 4.1 and the conclusion of Theorem

4.1 remains valid.

(5) Suppose g1(t, x) is nondecreasing but g2(t, x) is not nonincreasing in x. Then,

consider the HDE

(4.10)
d

dt

[

x(t)

f(t, x(t))

]

= g̃1(t, x(t)) + g̃2(t, x(t)), a.e. t ∈ J, x(t0) = x0,

where g̃1(t, x) = g1(t, x) + N x
f(t,x)

, N > 0 is nondecreasing in x and g̃2(t, x) =

g2(t, x)−N x
f(t,x)

, N > 0, is nonincreasing in x. This results is same as Theorem

4.1 with g1(t, x), g2(t, x) replaced by g̃1(t, x), g̃2(t, x) respectively and the con-

clusion of Theorem 4.1 holds. Note that g̃1(t, x(t)) + g̃2(t, x(t)) = g1(t, x)(t) +

g2(t, x)(t) and hence, HDE (4.10) is the same as the HDE (4.1).

(6) If g1(t, x) is not nondecreasing in x but g2(t, x) is nonincreasing in x, then con-

sider the HDE

(4.11)
d

dt

[

x(t)

f(t, x(t))

]

= g̃1(t, x(t)) + g̃2(t, x(t)), a.e. t ∈ J, x(t0) = x0,

where g̃1(t, x) = g1(t, x) + N x
f(t,x)

, N > 0 is nondecreasing and g̃2(t, x) =

g2(t, x) − N x
f(t,x)

, M > 0 is nonincreasing in x. This results is contained in

Theorem 4.1 and so, the conclusion of Theorem 4.1 is valid. Again note that

HDE (4.11) is the same as (4.1) since g̃1(t, x) + g̃2(t, x) = g1(t, x) + g2(t, x).
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(7) If g1(t, x) is not nondecreasing and g2(t, x) is not nonincreasing, then for M >

0, N > 0, such that g̃1(t, x) = g1(t, x) + M x
f(t,x)

is nondecreasing and g̃2(t, x) =

g2(t, x) − N x
f(t,x)

is nonincreasing, we get the context of Theorem 4.1 with

g1(t, x), g2(t, x) replaced by g̃1(t, x), g̃2(t, x) respectively and hence the conclu-

sion of Theorem 4.1 remains valid.

Next, we consider the case of the mixed lower and upper solutions of type II

for the HDE (4.1) and prove the existence of sequences that converge to the mixed

extremal solution. Here, we need not assume the existence of mixed lower and upper

solutions, since it can be established with the given assumptions.

Theorem 4.2. Assume that the hypotheses (A1)-(A2) and (B6)-(B8) hold. Further

suppose that the condition (2.1) is satisfied. Then, for any solution x(t) of (4.1) with

α0 ≤ x ≤ β0 on J , we have the iterates αn, βn satisfying for t ∈ J ,

(4.12)







α0 ≤ α2 ≤ · · · ≤ α2n ≤ x ≤ α2n+1 ≤ · · · ≤ α3 ≤ α1,

β1 ≤ β3 ≤ · · · ≤ β2n+1 ≤ x ≤ β2n ≤ · · · ≤ β2 ≤ β0,

provided α0 ≤ α2 and β2 ≤ β0 on J , where the iterates are given by

(4.13)















d

dt

[

αn+1(t)

f(t, αn+1(t))

]

= g1(t, βn(t)) + g2(t, αn(t)) a.e. t ∈ J,

αn+1(t0) = x0,

and

(4.14)















d

dt

[

βn+1(t)

f(t, βn+1(t))

]

= g1(t, αn(t)) + g2(t, βn(t)) a.e. t ∈ J,

βn+1(t0) = x0

for n ∈ N. Moreover, the monotone sequences {α2n}, {α2n+1}, {β2n}, {β2n+1} converge

uniformly to α, β, α∗, β∗ respectively and they satisfy

d

dt

[

α(t)

f(t, α(t))

]

= g1(t, β(t)) + g2(t, α(t)),

d

dt

[

β(t)

f(t, β(t))

]

= g1(t, α(t)) + g2(t, β(t))

d

dt

[

α∗(t)

f(t, α∗(t))

]

= g1(t, β
∗(t)) + g2(t, α

∗(t)),

d

dt

[

β∗(t)

f(t, β∗(t))

]

= g1(t, α
∗(t)) + g2(t, β

∗(t))

for t ∈ J and α ≤ x ≤ β, α∗ ≤ x ≤ β∗, t ∈ J , α(0) = β(0) = α∗(0) = β∗(0) = x0.
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Proof. In view of hypothesis (ii), it is easy to construct the mixed lower and upper

solutions for the HDE (4.1) following the method of Theorem 2.2. Hence, we proceed

by assuming that such mixed lower and upper solutions α0, β0 of type II exist. Assume

further that α0 ≤ α2 and β2 ≤ β0, on J . We show that

(4.15)







α0 ≤ α2 ≤ x ≤ α3 ≤ α1,

β1 ≤ β3 ≤ x ≤ β2 ≤ β0

on J . Set
p(t)

f(t, p(t))
=

x(t)

f(t, x(t))
−

α1(t)

f(t, α1(t))
.

Using the fact that α0 ≤ x ≤ β0 on J , x being any solution of (4.1) and the

monotonic nature of the functions g1 and g2, we obtain

d

dt

[

p(t)

f(t, p(t))

]

=
d

dt

[

x(t)

f(t, x(t))

]

−
d

dt

[

α1(t)

f(t, α1(t))

]

= g1(t, x(t)) + g2(t, x(t)) − g1(t, β0(t)) − g2(t, α0(t))

≤ 0

for all t ∈ J and p(t0) = 0. Hence, we conclude

x(t)

f(t, x(t))
≤

α1(t)

f(t, α1(t))
or x(t) ≤ α1(t)

for all t ∈ J .

Similarly, it can be shown that α3 ≤ α1, β1 ≤ x and α2 ≤ x, by considering the

differences
p(t)

f(t, p(t))
=

α3(t)

f(t, α3(t))
−

α1(t)

f(t, α1(t))
,

p(t)

f(t, p(t))
=

β1(t)

f(t, β1(t))
−

x(t)

f(t, x(t))

and
p(t)

f(t, p(t))
=

α2(t)

f(t, α2(t))
−

x(t)

f(t, x(t))

respectively. In each of these cases, we obtain d
dt

[

p(t)
f(t,p(t))

]

≤ 0, for all t ∈ J and

the claim (4.15) is established. The rest of the proof is similar to Theorem 3.2 with

appropriate modifications. Hence we omit the details.
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