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ABSTRACT. Monotone method combined with the method of upper and lower solutions yields

monotone sequences which converge uniformly and monotonically to minimal and maximal solutions

of the nonlinear systems, when the forcing function is quasi monotone nondecreasing. In this paper

we develop genearalized monotone method for N system of Caputo fractional differential equations

when the forcing function is the sum of an increasing and decreasing functions. In generalized

monotone method we use coupled upper and lower solutions and the method yields two monotone

sequences which converge uniformly and monotonically to coupled minimal and maximal solutions.

This method is applicable to the Lotka-Volterra equation with Caputo fractional derivative of order

q when 0 < q ≤ 1. This provides an opportunity to provide better results or improve on the existing

results with integer derivatives. Finally, under uniqueness condition we obtain the unique solution

of the Caputo fractional differential system.
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1. INTRODUCTION

Nonlinear problems namely nonlinear dynamics systems occur as mathematical

models in many branches of science, engineering, finance, economics, etc. For example

the well known population model namely the Lotka-Volterra equation is given in the

form:

u′ = a1u

(

1 −
b1u + c1v

k1

)

, u(0) = u0,

v′ = a2v

(

1 −
b2v + c2u

k2

)

, v(0) = v0.
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Here ai, bi, ci, ki are greater than 0. Also ai, bi, ci, ki can be continuous functions

of t. In general mathematical models or dynamic systems which arise in science and

engineering are nonlinear in nature. In the above system of differential equations

namely the Volterra-Lotaka model, integer derivatives are used. However, in practice

the use of fractional derivatives has been proven to be more useful and economical.

See [5] for details. Explicit solutions of nonlinear dynamic systems are rarely possible.

It is all the more true of nonlinear fractional dynamic systems. Hence in this work,

we develop generalized monotone method for N system of fractional differential equa-

tions. Also the forcing functions will have both increasing and decreasing components

of the unknown functions. See [3] for monotone method for many types of nonlinear

problem. In this work we develop generalized monotone method combined with cou-

pled upper and lower solutions [8, 9] for nonlinear fractional dynamic systems. The

method yields monotone sequences which converges uniformly and monotonically to

coupled minimal and maximal solutions. In order to prove the uniqueness of the

solution for the given nonlinear problem we have developed an auxiliary result which

is a comparison result. Using this comparison result we prove that the coupled min-

imal and maximal solutions reduces to the unique solution of the nonlinear Caputo

fractional differential system. Finally our method is applicable to the special case of

population model namely the Volterra-Lotka equation with Caputo fractional deriv-

ative of order q where 0 < q < 1, in place of integer derivatives. For stability results

on Volterra-Lotka model with fractional derivative see [7].

2. PRELIMINARY AND AUXILIARY RESULTS

In this section we recall some definitions [2, 4, 6] and known results which are

needed to develop our main result. We will also prove a comparison result of cou-

pled lower and upper solutions of the related nonlinear Caputo fractional differential

system. This will be useful in obtaining the unique solution of the nonlinear problem.

Definition 2.1. The Gamma function Γ(z) is defined as

Γ(z) =

∫ ∞

0

(t)z−1e−zdt

Definition 2.2. The Caputo fractional Derivative of order q of a function, f(t), is

defined

C
a D

q
tf(t) =

1

Γ(1 − q)

t
∫

a

f ′(s)

(t − s)q
ds, (0 < q < 1.)

Definition 2.3. The Mittag Leffler function is defined

Eα,β(λ(t − t0)
α) =

∞
∑

k=0

(λ(t − t0)
α)k

Γ(αk + β)
(α, β > 0).



MONOTONE METHOD FOR FOR CAPUTO FRACTIONAL DIFFERENTIAL SYSTEMS 497

For t0 = 0, α = q and β = 1, we get,

Eq,1(λtq) =
∞
∑

k=0

(λtq)k

Γ(qk + 1)
, (q > 0)

which is important in solving linear Caputo fractional differential equations.

Linear Fractional differential equation: Consider the linear Caputo fractional

differential equation of the form:

(2.1) CDqu(t) = λu(t) + f(t), u(t0) = u0.

The solution of (2.1) is given by

u(t) = u0Eq,1(λ(t − t0)
q) +

1

Γ(q)

t
∫

t0

(t − s)q−1Eq,q(t − s)qf(s)ds.

For details see [2, 4]. This proves that the solution of a simple linear equation requires

the computation of the Mittag Leffler function. However if λ = 0, the computation

of the linear problem is simple. In this paper we use generalized monotone method

which requires the computation of linear problems where λ is always zero, which

makes our method computationally efficient. If λ = 0, in equation (2.1), then the

solution of (2.1) reduces to

u(t) = u0 +
1

Γ(q)

t
∫

t0

(t − s)q−1f(s)ds.

Lemma 2.1. Let m(t) ∈ C1([0, T ], R). If there exists t1 ∈ [0, T ] such that m(t1) = 0

and m(t) ≤ 0 for 0 ≤ t ≤ T , then it follows that

cDqm(t1) ≥ 0.

The proof of this has been presented in [4] . However, they have used an additional

assumption that m(t) should be Hölder continuous of order λ > q. This assumption

in general does not hold good for the linear iterates which occur naturally in any

iterative methods. Thus our Lemma 2.1 is of practical importance. See [1] for proof.

Next we consider the system of N fractional differential equations with initial

conditions of the form:

(2.2) CDqui = fi(t, u1, u2, . . . , uN) + gi(t, u1, u2, . . . , uN), ui(0) = u0i.

Here fi(t, u1, u2, . . . , uN) and gi(t, u1, u2, . . . , uN) ∈ C[J × RN , RN ] where J =

[0, T ]. Further, fi(t, u) is nondecreasing in ui and gi(t, u) is nonincreasing in ui com-

ponents for i = 1, 2, . . . , N . This is a more general model than the Lotka-Volterra

equation, which is usually two systems with integer derivatives.

Here, and throughout this paper all the inequalities are component wise.
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Definition 2.6. Let vi, wi for i = 1, 2, . . . , N be C[J, R]. Then vi and wi are called

coupled lower and upper solutions of (2.2) if they satisfy the following inequalities:

CDqvi ≤ fi(t, v1, v2, . . . , vN) + gi(t, w1, w2, . . . , wN), vi(0) ≤ u0i,

CDqwi ≥ fi(t, w1, w2, . . . , wN) + gi(t, v1, v2, . . . , vN), wi(0) ≥ u0i.

Theorem 2.2. Let (v1, v2, . . . , vN) and (w1, w2, . . . , wN) be coupled lower and upper

solutions of (2.2). Further let

(i) fi(t, u) is nondecreasing in ui components and gi(t, u) is nonincreasing in ui

components for i = 1, 2, . . . , N ;

(ii) fi(t, u) and gi(t, u) satisfy the onesided Lipsicthz condition of the form.

fi(t, u) − fi(t, ū) ≤ Li(
N
∑

i=1

ui − ūi), Li > 0

gi(t, u) − gi(t, ū) ≥ −Mi(
N
∑

i=1

ui − ūi), Mi > 0

whenever ui ≥ ūi, for i = 1, 2, . . . , N . Then vi(t) ≤ wi(t), on J , for i =

1, 2, . . . , N , provided vi(0) ≤ wi(0).

Proof. We will initially prove the result when one of the inequalities is strict. If the

conclusion is not true the set

[Z : t ∈ J : wi(t) ≤ vi(t)]

is not empty. Let t1 = inf t ∈ Z. Then there exist an i such that vi(t1) = wi(t1),

vi(t) < wi(t) for t ∈ [0, t1) and vj(t) ≤ wj(t) on t ∈ [0, t1], i 6= j. From Lemma 2.1 we

get CDqmi(t1) ≥ 0 by setting mi(t) = vi(t) − wi(t). This implies that CDqvi(t1) ≥
C

Dqwi(t1) for t1 ∈ (0, T ]. Hence, from the strict inequality of the coupled upper and

lower solutions we get

fi(t1, v1(t1), v2(t1), . . . , wi(t1)., vN(t1)) + gi(t1, w1(t1), w2(t1), . . . , vi(t1), wN t1))

>C Dqvi(t1)

≥C Dqwi(t1)

≥ fi(t1, w1(t1), w2(t1), . . . , vi(t1), wi(t1)) + gi(t1, v1(t1), v2(t1), vi(t1), . . . , vi(t1))

≥ fi(t1, v1(t1), v2(t1), . . . , wi(t1)., vN(t1)) + gi(t1, w1(t1), w2(t1), dots, vi(t1), vN t1))

using the fact that fi and gi are nondecreasing and nonincreasing in their ui compo-

nents. This is a contradiction. Hence, vi(t) < wi(t) on J .

To obtain the result for non-strict inequality, we consider

vi,ǫ(t) = vi(t) − ǫEq

(

N

(

i=N
∑

i=1

(Li + Mi)

)

+ 1

)

tq)
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wi,ǫ(t) = wi(t) + ǫEq

(

N

(

i=N
∑

i=1

(Li + Mi)

)

+ 1

)

tq)

for each i = 1, 2, . . . , N .

Then using Lipschitz condition of fi and gi in u , we have

CDqvi,ǫ ≤ fi(t1, v1(t1), v2(t1), . . . , vi(t1), vN(t1)) + gi(t1, w1(t1), w2(t1), . . . , wi(t1), wN t1))

− (N(

i=N
∑

i=1

(Li + Mi)) + 1)ǫEq((

i=N
∑

i=1

(Li + Mi) + 1)tq)

≤ fi(t, v1,ǫ, v2,ǫ, . . . , vN,ǫ) + gi(t, w1,ǫ, w2,ǫ, .wiNǫ)

− ǫ(N(

j=N
∑

(j=1,j 6=i)

(Li + Mi))Eq(N(
i=N
∑

i=1

(Li + Mi)) + 1)tq)

< fi(t, v1,ǫ, v2,ǫ, . . . , vN,ǫ) + gi(t, w1,ǫ, w2,ǫ, .wiNǫ).

This proves that

CDqvi,ǫ < fi(t, v1,ǫ, v2,ǫ, . . . , vN,ǫ) + gi(t, w1,ǫ, w2,ǫ, .wNǫ).

From the strict inequality result we have

vi,ǫ(t) < wi,ǫ(t)

for i = 1, 2, . . . , N . Letting ǫ −→ 0, we can conclude v01(t) ≤ w01(t).

We note that the conclusion of the above result is valid under the weaker as-

sumption that fi, and gi are quasi-monotone nondecreasing and quasi-monotone non

increasing in u respectively. We also note that to obtain the result for non-strict

inequality result in the proof we can assume that

vi,ǫ(t) = vi(t) − ǫEq(N((L + M)) + 1)tq)

wi,ǫ(t) = wi(t) + ǫEq(N((L + M)) + 1)tq)

where L = maxi=1,2,...,N Li, M = maxi=1,2,...,N Mi.

In particular if f(t, u) and g(t, u) are linear then we can obtain the following

corollary as a special case of Theorem 2.2. For that purpose let

fi(t, u) =
N
∑

j=1

Lijuj, for i = 1, 2, . . . , N

and

gi(t, u) =
N
∑

j=1

−Mijuj, for i = 1, 2, . . . , N.

Also, let pi = vi(t) − wi(t). Then we have the following result as a special case of

Theorem 2.2.
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Corollary 2.3. Let

CDqpi(t) ≤
N
∑

j=1

(Lij + Mij)pj , for i = 1, 2, . . . , N.

Then we have pi(t) ≤ 0, for i = 1, 2, . . . , N , on J = [0, T ], whenever pi ≤ 0, for

i = 1, 2, . . . , N .

3. MAIN RESULTS

In this section we develop generalized monotone method for the nonlinear frac-

tional differential system (2.2) combined with the method of coupled upper and lower

solutions relative to 2.2. We obtain monotone sequences which converges uniformly

and monotonically to coupled minimal and maximal solutions of (2.2). Finally, using

the special case of the comparison Theorem 2.2, namely its corollary and the one

sided lipschitz condition of fi and gi for i = 1, 2, . . . , N in its u components, we prove

that there exists a unique solution of the system (2.2). The next result proves the

existence of coupled minimal and maximal solution of (2.2).

Theorem 3.1. Let fi, gi ∈ C[J × RN , RN ] such that fi(t, u) is nondecreasing in u

and gi(t, u) is nonincreasing in u for t ∈ J , and for each i = 1, 2, . . . , N . Let v0, w0 ∈

C1[J, RN ] be coupled lower and upper solutions of (2.2), such that v0i(t) ≤ w0i(t)

for i = 1, 2, N on J . Then there exists monotone sequences {vn} and {wn} which

converges uniformly and monotonically to coupled minimal and maximal solutions of

(2.2) such that vn → v and wn → w as n → ∞, provided v0i(0) ≤ ui(0) ≤ w0i(0) for

i = 1, 2, . . . , N . Further if u is any solution of (2.1) such that v0i ≤ ui ≤ w0i, then

v ≤ u ≤ w on J .

Proof. We define the sequences {vn} and {wn} as follows:

CDqvni = fi(t, vn−1,1, vn−1,2, . . . , vn−1,N) + gi(t, wn−1,1, wn−1,2, . . . , wn−1,N),(3.1)

vn,i(0) = u0i(3.2)

CDqwni = fi(t, wn−1,1, wn−1,2, . . . , wn−1,N) + gi(t, vn−1,1, vn−1,2, . . . , vn−1,N),(3.3)

wn,i(0) = u0i.(3.4)

It is easy to observe that each v1i(t) and w1i(t) for each i = 1, 2, . . . , N are

solutions of scalar linear equation of the form (2.1) with λ = 0. They can be computed

without involving Mittag-Lefleur function. The solution is unique as well. Now

continuing the process, the solution vni(t) and wni(t) for each i = 1, 2, . . . , N , exists

and is unique for each n ∈ N .

Initially, we prove that v0i ≤ v1i ≤ w1i ≤ w0i for each i = 1, 2, . . . , N . For

that purpose, set pi(t) = v0i(t) − v1i(t) which implies that pi(0) = v0i(0) − v1i(0) ≤
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u0i − u0i = 0. From the construction of v1i, the definition of coupled lower solution

and the hypotheses we get,

CDqpi(t) ≤ fi(t, v01, v02, . . . , v0N) + gi(t, w01, w02, . . . , w0N)

− fi(t, v01, v02, . . . , v0N) + gi(t, w01, w02, . . . , w0N) = 0.

Thus, pi ≤ 0 on J from scalar version of Corollary 2.3. This proves v0,i ≤ v1,i on J

for i = 1, 2, . . . , N . Similarly we can prove w1,i ≤ w0,i on J .

Now we will prove v1,i ≤ w1,i on J for each i = 1, 2, . . . , N . For that purpose, let

pi(t) = v1,i − w1,i. Then pi(0) = v1,i(0) − w1,i(0) = 0. Since v0i ≤ w0i, and by the

nondecreasing and nonincreasing nature of fi and gi, it follows that

CDqpi(t) ≤ fi(t, v01, v02, . . . , , v0N) + gi(t, w01, w02, . . . , , w0N)

− fi(t, w01, w02, . . . , w0N) + gi(t, v01, v02, . . . , v0N ) = 0.

Then from scalar version of Corollary 2.3, we have v1,i ≤ w1,i on J , for i = 1, 2, . . . , N .

Let ui for i = 1, 2, . . . , N be any solution of (2.1) such that v0i ≤ ui ≤ w0i on J ,

then we can prove v1i ≤ ui ≤ w1i. In fact we can prove v0i ≤ v1i ≤ ui ≤ w1i ≤ w0i.

We will prove v1i ≤ ui, for i = 1, 2, . . . , N and the proof for ui ≤ w1,i follows on the

same lines.

Now let pi = v1,i − ui. Then, we have pi(0) = 0. Also

CDqpi(t) =C Dqv1i −
C Dqui

= fi(t, v0i, v02, . . . , v0N ) + gi(t, w0i, w02, . . . , w0N)

− [fi(t, u1, u2, . . . , u0N) + gi(t, u1, u2, . . . , u0N)] ≤ 0,

since v0i ≤ u0i ≤ w0i. Thus we have CDqpi(t) ≤ 0 and pi(0) = 0 which implies

pi(t) ≤ 0, on J . This proves that v1i ≤ ui for i = 1, 2, . . . , N on J . Similarly we can

prove ui ≤ w1i on J . Now it follows that v1i ≤ ui ≤ w0i, on J , for i = 1, 2, . . . , N .

From the result we have v0i ≤ v1i ≤ ui ≤ w1i ≤ w0i on J . Now we claim that

sequences defined by (3.1—3.2) and (3.3—3.4) will satisfy.

v0i ≤ v1i ≤ v2i ≤ vni ≤ ui ≤ wni ≤ w2i ≤ w1i ≤ w0i

on J , for i = 1, 2, . . . , N , for all n. We will prove this by method of mathematical

induction. We assume that the inequalities above hold true for some n = k. Then we

will prove that is true for n = k + 1. Setting pi(t) = vki − vk+1,i, we have pi(0) = 0

Then

CDqpi = CDqvk,i −
CDqvk+1,i

= fi(t, vk−1,1, vk−1,2, . . . , vk−1,N) + gi(t, wk−1,1, wk−1,2, . . . , wk−1,N)

− [fi(t, vk,1, vk,2, . . . , vk,N) + gi(t, wk,1, wk,2, . . . , wk,N)] ≤ 0
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on J , since vk−1,i ≤ vk,i and wk+1,i ≤ wk,i. Similarly we can prove wk+1,i ≤ wk,i. Next

we prove vk+1,,i ≤ ui. Setting pi(t) = vk+1,i(t) − ui, we have pi(0) = 0. Then,

CDqpi(t) = CDqvk+1,i −
CDqui

= fi(t, vk,1, vk,2, . . . , vk,N) + gi(t, wk,1, wk,2, . . . , vk,N)

− [fi(t, u1, u2, . . . , uN) + gi(t, u1, u2, . . . , uN)] ≤ 0

on J , since vk,i ≤ ui and ui ≤ wk,i for i = 1, 2. This implies pi(t) ≤ 0 on J , which

proves vk+1,i ≤ ui. On the same lines we can prove ui ≤ wk+1,i. Since vn,i(t) and

wn,i(t) are continuous functions on a closed bounded set on

Ω = (t, u)|t ∈ J, v0 ≤ u ≤ w0,

one can easily prove that sequences {vn,i} and {wn,i} are uniformly bounded. Using

the integral representation of vn,i(t) and wn,i(t) we can show that the sequences {vn,i}

and {wn,i} for i = 1, 2, . . . , N are equi-continuous on J .

Hence by Ascoli-Arzela theorem there exist subsequences {vnk,i} and {wnk,i}

for i = 1, 2, . . . , N which converge uniformly and monotonically to ρi and ri for

i = 1, 2, . . . , N , respectively. Since the sequences are monotone the entire sequence

converges. This proves that

(3.5) CDqρi = fi(t, ρ1, ρ2, . . . , ρN ) + gi(t, r1, r2, . . . , rN) ρi(0) = u0i

(3.6) CDqri = fi(t, r1, r2, . . . , rN) + gi(t, ρ1, ρ2, . . . , ρN) ri(0) = u0i

for i = 1, 2, . . . , N . This also proves that ρi(t) ≤ ri(t) for i = 1, 2, . . . , N , on J .

In the next result we prove the uniqueness of the solution of fractional dynamic

systems (2.2).

Theorem 3.2 (Uniqueness). Let the hypothesis of Theorem 3.1 hold. Further let fi

and gi satisfy the one sided Lipschitz condition as in Theorem 2.2. Then ρi = ui = ri

for i = 1, 2, . . . , N , are the unique solutions of the system (2.2).

Proof. From Theorem 3.1 we have ρi(t) ≤ ri(t) on J , for i = 1.2, . . . , N . It is enough

to prove that ri(t) ≤ ρi(t) for i = 1, 2, . . . , N , on J . This can be achieved by setting

pi(t) = ri(t)−ρi(t), using the one sided Lipschitz condition on fi, gi and Corollary 2.3.

This enable us to prove that ri(t) ≤ ρi(t) on J , for i = 1.2, . . . , N . This concludes

the proof.
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Conclusion: In this paper we have developed generalized monotone method for non-

linear fractional differential systems via coupled lower and upper solutions of type

1. The advantage of the generalized monotone method is that each component of

the iterates are scalar fractional differential equation whose solution is easy to com-

pute compared to computing the solution corresponding linear system. In addition,

when we use generalized monotone method the computation of the solution of these

scalar fractional differential equation is considerably easier, since we do not require

the computation of Mittag-Lefleur function.
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