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1. INTRODUCTION

Let a point (x1,2s,...,2y_1,2y) in the N-dimensional Euclidean space RY be
denoted by (x, ) with = standing for z1, L and b be positive numbers such that b < L,
S = (=L, L)xR""', s = (=b,b)xR"",0S = {(2,%) : v € {—L,L}, and & € RN},
Os = {(x,2) : x € {~b,b}, and T € RV"'}, v(x,Z) denote the unit outward normal
at (z,%) € 0s, and x5 (¢, %) denote a function which is 1 for |z| > b, and 0 for |z| < b.
Since the Dirac delta function is the derivative of the Heaviside function, it follows
that Oy (x, %) /Ov gives a Dirac delta function at each point on x = |b|, and is zero
everywhere else (cf. Chan and Tragoonsirisak [3]), and hence we have a concentrated
source on 0s. We would like to study the following problem with a concentrated

nonlinear source on 9Js:

Oxs () a(j’j) F(u)in S x (0,71,

u(z,0) =0on S, u(z,t) =0 on 4S x (0,77,

(1.1) u — Au =«

where o and T are positive real numbers, S is the closure of S, f is a given function
such that lim, .- f(u) = oo for some positive constant ¢, and f(u) and its derivatives
f'(u) and f” (u) are positive for 0 < u < ¢. We note that a similar problem without

a concentrated source was studied by Dai and Gu [6]. For problems involving a
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concentrated nonlinear source on the surface of a ball in RY, we refer to the papers
by Chan and Tragoonsirisak ([3], [4], [5]).

Let H = /0t — 8?/02®, D = (0,L), D = [0,L], and Q = D x (0,T]. Due to

symmetry, the problem (1.1) is equivalent to the following one-dimensional problem:

(12) Hu=ad(x—0b) f(u) in Q,
' u(r,0)=0o0n D, u, (0,t) =u(L,t) =0for 0 <t <T,

where 0 (z — b) is the Dirac delta function. Thus, the results obtained in this paper
are applicable not only to an infinite strip with NV > 2, but also to NV =1 for a one-
dimensional problem with mixed boundary conditions. The term 0 (z — b) implies
that u, has a jump discontinuity at z = b. Therefore, a solution u is at most a
continuous function satisfying (1.2).

A solution u is said to quench if there exists an extended real number ¢, € (0, oo]

such that

sup {u(z,t) :x € D} — ¢ ast —t,.
If t, < oo, then u is said to quench in a finite time. If ¢, = oo, then u quenches in
infinite time.

In Section 2, we show that the nonlinear integral equation corresponding to the
problem (1.2) has a unique nonnegative continuous solution w, which is a strictly
increasing function of ¢ for x € D. We then prove that u is the unique solution of
the problem (1.2). In Section 3, we show that if ¢, is finite, then u quenches at x = b
only.

2. EXISTENCE AND UNIQUENESS

Green’s function g (z,t; &, 7) (cf. Stakgold [8, pp. 197-203]) corresponding to the

problem (1.2) with mixed boundary conditions is determined by the following system:

Hg=0forz,£ € D and 0 <t, 7 < o0,
limy_,+ g (x>t;§a7—) = 5(I - 5) for z,§ € D,
9: (0,6, 1) =g (L, t;§,7)=0for £ € D and 0 < ¢, 7 < 00.
By the method of eigenfunction expansions,
(2.1)

g (0, 1:6,7) = %ims (W) cos (%) oxp (_ (2n - 12722 (t - T))

(cf. Trim [10, pp. 474-478]). By using Green’s second identity and the adjoint operator

L*, which is given by L*u = —u; — ug,, the problem (1.2) is converted into the

nonlinear integral equation,

(2.2) u(z,t) = a/o g(x,t;0,7) f(u(b,7))dr.
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We modify the techniques in proving Lemma 2.2(a) of Chan and Tian [2] for a
blow-up problem to establish the following result.
Lemma 2.1. For (z,t;£,7) € (D x (T, T]) X (D X [O,T)), g (z,t;&,7) is continuous.
Proof. From (2.1),

2 on — 1) 2 (t —
|g(x,t;§,7)|§znz::1exp <_( n )4L7T2( T))
2 o 272 (t—
SZ;eXP (‘771 7T4(Lz T))
2 & 2(t —
(2.3) < I ZGXP (—%) ;

3
Il
—

which is a geometric series with the common ratio exp (=72 (t — 7) / (4L?)). Hence

for ¢ in any compact subset of (7,7,

ip (- - - (M;)) —

412

By using (2.3) and the Weierstrass M-Test (cf. Stromberg [9, pp. 141-142)), g (z,¢; &, 7)
converges uniformly on D for ¢ in any compact subset of (7,T). This proves the

lemma. O

A physical interpretation of g (x,t;&,7) is the temperature at the point x on a
one-dimensional uniform and homogeneous rod of length L at time ¢ due to a point
source situated at the point £ on the rod at time 7 with 7 < ¢; the rod has no
heat source, and is subject to an insulated boundary condition at x = 0 and a zero
boundary condition at © = L. Thus for t > 7, g (z,t;&,7) should be positive inside

the rod. Our next result proves this positivity property.
Lemma 2.2. For z,6 € D and 0 <71 <t <T, g(x,t;&,7) is positive.

Proof. Let us assume that ¢ (z,t;£,7) < 0 somewhere in
Dl:{(xvt;£77—):x7£€Dand0§T<t§T}.

If g attains its minimum somewhere on the boundary x = 0, then by the parabolic
version of Hopf’s lemma (cf. Friedman [7, p. 49]), g, > 0 at that point. This con-
tradicts the given boundary condition g, = 0 there. Since g is zero on the boundary
x = L, it follows from Hg = 0 that g must attain its minimum m somewhere, say
(Z,t1;&1, 1) with £, > 7y in D;. By the strong maximum principle (cf. Friedman [7,
p. 34)), g(x,t;&, 1) =m for x € D and t € (71,t1]. By Lemma 2.1, g is continuous
for x € D. Thus, g = m with ¢t € (71,#] at the boundary z = L. This contradiction
shows that g (z,¢;&,7) > 0. Suppose g (z,t; £, 7) = 0 at some point (z, tg; &, 7o) in Dy.
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Since Hg = 0, it follows from the strong maximum principle that g (z,¢; &, ) = 0
for x € D and t € (7,t5]. On the other hand,

2
g (&a,t2; 80, 70) = ZCOS ( n- 1)7T£2) exp (_(Qn — 1)47222 (t2 — 7'2)> > 0,

which gives a contradiction. The lemma is then proved. 0

Our next result shows that for any continuous function r (¢) for 0 < ¢ < 7', the
function [ g(x,¢;b, 7)r(7)dr is continuous.
Lemma 2.3. If r(t) € C([0,T]), then fotg(a:,t; b, 7)r(T)dT is continuous for x € D
and t € [0, 7.
Proof. Let

K = max r(1),
0<7<T

and € be any positive number such that ¢t — e > 0. For any x € D and 7 € [0,t — €|,

2 t—e B ~ ~ B
2 o () o (58 25
0

2K [ on— 17272 (t —
<T exp (—( n-1)m(t 7)> dr
0

- 4172
2K [1€ n’m? (t — 1)
S (_T) o
SKL n’m2e

It follows from g(z,t; b, 7) converging uniformly for ¢ in any compact subset of (7, T

that we can interchange integration and summation (cf. Wade [11, p. 190]). By (2.4),

t—e SKL 1 n?m2e SKL < 1
/0 g(x, t; b, 7)r(r)dr < — gﬁexp( VE ) < = ol

n=1

Since Y >° n~? = 2 /6 (cf. Stromberg [9, p. 518]), we have

4K L

t—e
/ g, t:b,)r(r)dr < B
0 3

which is independent of €. By the Weierstrass M-test, f(f g(x,t; b, 7)r(T)dr converges
uniformly with respect to z and ¢, and hence is continuous for z € D and t € [0,T].
O

We modify the techniques in proving Theorems 1 and 2 of Chan and Jiang [1]

for a first initial-boundary value problem to establish the next two results.

Theorem 2.4. There exists some t, such that for 0 <t < t,, the integral equation
(2.2) has a unique continuous nonnegative solution u, and u is a strictly increasing
function of t in D. If t, is finite, then u quenches at t,.



QUENCHING IN AN INFINITE STRIP 509

Proof. Let us construct a sequence {u,} in Q by uy (z,t) =0, and for n =0,1,2, ...,

Hutps = a8 (2 — b) f(uy) in ©,
Upy1(2,0) =0 for x € D,

gunﬂ((),t) =0=1wup1(L,t) for 0 <t <T.
T
From (2.2),
t
(2.5) el t) = [ gl 0.7 (0. )
0

Since f (0) > 0, and g(x,t;b,7) > 0, it follows from (2.5) that u;(z,t) > ug(x,t) in .
Using the principle of mathematical induction, we have 0 < u; < ug < -+ < Up_1 <

u, in  for any positive integer n.

To show that each u,, is an increasing function of ¢ in D, we construct a sequence
{w,} such that for n = 0,1,2,..., w,(z,t) = u,(z,t + h) — u,(z,t), where h is any
positive number less than T". Then, wqy(z,t) = 0. By (2.5), we have

t+h t
wy (z,t) = af(0) (/ g(xz,t+ h;b,T)dr —/ g(z,t;b, T)dT) .
0 0
Let 0 =7 — h. Then,
t+h h t
/ g(z,t + h;b,T)dT = / g(x,t+ h;b, 7)dT + / g(z,t+ h;b,o+ h)do
0 0 0
h t
= / g(x, t+ h;b, 7)dT + / g(z,t;b,0)do
0 0
since g(z,t + h;b,0 + h) = g(x,t;b,0). Thus in D, we have for 0 <t < T — h,
h
wy(x,t) = af(O)/ g(x,t+ h;b,7)dr > 0.
0
In D, let us assume that for some positive integer j, w; > 0 for 0 <t < T — h. Then,
t+h t
wate)=a ([ gttt bt = [ ot tsb o)
0 0
Let 0 = 7 — h. We have

t+h
/ g(x,t+ h;b,7) f(u;(b,7))dr
0
h ¢
= / g(z,t+ hyb, 1) f(u;(b,7))dr + / g(x,t+ h;b,o + h)f(u;(b,o + h))do
0 0
h ¢
= / g(z,t 4+ hyb, 1) f(u;(b,7))dr + / g(x,t;0,0) f(u;(b,o + h))do
0 0

h ¢
(2.6) > / g(z, t 4+ hyb,7) f(u;(b, 7))dr +/ gz, t;0,0) f(u;(b,0))do.
0 0
Thus in D,
h
wi(z,t) > a/ g(x, t+ h;b,7) f(u;(b,7))dr > 0.
0
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By the principle of mathematical induction, w, > 0 in D for 0 <t < T — h and all
positive integers n. Thus, each u, is an increasing function of ¢ in D.

For any given positive constant M (< c¢), it follows from (2.5) and w, being
an increasing function of ¢t in D that there exists some ¢; such that u,.; < M for
0<t<tiandn=0,1,2,.... In fact, ¢; satisfies

t1
Unt1(x,ty) < af(M)/ g(x,ty;b,7)dT < M.
0

Let u denote lim,, o u,. From (2.5) and the Monotone Convergence Theorem (cf.
Stromberg [9, pp. 266-268]), we have (2.2) for 0 <t < ;.

To prove that w is unique, we assume that the integral equation (2.2) has two

distinct solutions v and @ on the interval [0,¢;]. From (2.2),

(2.7) u(z,t) —u(z,t) = a/o gz, t;0,7) (f(u(b, 7)) — f(a(b,7)))dr.

Since f”(u) > 0 for u € [0,¢), it follows from the Mean Value Theorem that
|f(w) = f(@)] < f'(M) |u— 4. From (2.7),

lu(x,t) —a(z, t)] < af’(M)/O g(x, t;0,7) |u(b,7) — a (b, T)| dr.

By Lemma 2.3, there exists some t5 (< ¢;) such that
t
(2.8) af' (M) max (/ g(z, t; b, T)dT) < 1.
Dx[0,t2] 0
Let © = maxp,o ) |u — @|. Then,
t
O < af'(M) max (/ g(z, t; b, T)dT) ©.
DX[O,tz] 0
By (2.8), this gives a contradiction. Thus, we have uniqueness of a solution for
0<t<ts.
If ty < tq, then for to <t < 1y,

(2.9) U(x,t)z/o g(fv,t;&ta)U(ﬁ,tz)d&+oa/tg(w,t;b,f)f(U(b,T))dT

to

(cf. Chan and Tian [2]). Thus for t, <t <ty
t
wt) = ie) = a [ glatib) (F(u(br) — f(a(b) dr
to
Let © = MAX Py [, min{2t,t:}] | U — U[. Then,
t
O <af (M)  max (/ g(z, t; b, T)dT) o.
Dx [t2 ,min{2t2 ,t1 }] ts
Let 0 = 7 —t. Then for t € [to, min{2ty, t1}],

af' (M) max } </t2 g(z,t;b, T)dT)

Dx[ta,min{2t2,t1}
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= af'(M) max (/t_t2 g(x,t;b,0 + tg)da)
0

DX[tz,min{QtQ,tl}]
t—to

(2.10) =af (M)  max (/ g(x,t —ta; b, a)da) <1

DX[tQ,min{QtQ,tl}] 0
by (2.8). This gives a contradiction. Hence, we have uniqueness of a solution for
0 <t < min{2¢y,t;}. By proceeding in this way, the integral equation (2.2) has a
unique solution u for 0 <t < t;.

To prove that u is continuous on D x [0, %], we note that f(u, (&, 7)) is bounded

by f(M). It follows from (2.5), Lemma 2.3 and f being continuous that for n =

0,1,2,..., Ups1(z,t) is continuous on D x [0,;]. From (2.5),

t
(2.11) Ups1 (2, 1) — up(z,t) = a/ g(z,t;0,7) (f(un(b,7)) — f(un_1(b,7))) dr.
0
Using the Mean Value Theorem, we have

fun) = flun-1) < f'(M) (un — tp_1).

Let A, = maxpyo4,) (Un — Up—1). From (2.11),

¢
A1 < af' (M) 7max} (/ g(x,t;b, T)dT) A,.
0

Dx|[0,t2

By (2.8), the sequence {u,(z,t)} converges uniformly to u(z,t) on D x [0,,], and

hence, u is continuous there.

If t5 < ¢y, then from (2.9),

L t
Un+1(l', t) - /0 g(l’, t; 57 t2)u (5, t2) df + Oé/ g(:t, t; ba T).f(un(b> T))dT'

to
Let A, = MAX Dy [t min{2ta,t1}] (Un — Un—1). Then for t, <t <y,

t
Apyi < af/ (M) max </ g(z, t;b, T)dT) A,

D x[t2,min{2t2,t1 }] to

t—to B
=af' (M)  max } (/ gz, t; bty + O’)dU) A,
0

D x[t2,min{2¢t2,t1}
t—to B
=af (M)  max (/ g(x,t —ta; b, a)da) A,.
Dx [tz,min{2t2,t1 H 0
It follows from (2.10) that for ¢ € [ty, min{2ts, 1 }], u is continuous. By proceeding in

this way, the integral equation (2.2) has a unique continuous solution u on D x [0, #;].

Let t, be the supremum of the intervals for which the integral equation (2.2)
has a unique continuous solution u. If ¢, is finite, and u does not reach ¢~ at ¢,
then for any positive constant between maxp u(x,t,) and ¢, a proof similar to the
above shows that there exists some 3 (> t,) such that the integral equation (2.2) has
a unique continuous solution u for 0 < ¢ < 3. This contradicts the definition of ¢,.

Thus, if ¢, is finite, then u reaches ¢~ somewhere at .
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Since u, is an increasing function of ¢, we have for x € D and any positive number
h such that t + h < t,,

u(z,t+ h) —u(z,t)

=« (/Oth(x, t+h;b, 1) f(u(b,7))dr — /Otg(x, t;b,7) f (u(b, T))dT) :

As in the derivation of (2.6), we have

t+h
/0 gzt + b, 7) fulb, 7))dr

h t
> [ gt habor) s, )i+ [ gt t0.0) b, )do
0 0
Hence,
h
u(z,t+h) —u(z,t) > a/ g(x,t + h;b,7) f(u(b,7))dr > 0,
0
which shows that u is a strictly increasing function of ¢ in D. O

Theorem 2.5. The problem (1.2) has a unique solution u for 0 <t < t,.
Proof. For any t, € (0,1),

/Ot g(x,t;b,7) f(u(b, 7))dr

t—1/m

= lim g(x, t;0,7) f(u(b, 7))dr

m—00 0
‘ ta C—l/m
i [ 2 / g(w, C;b,7) F(u(b, 7))dr | dC
m—00 t4 0
ta—1/m

(2.12) + lim g(x,t4;0,7) f(u(b, 7))dT.

m—00 0

Differentiating g(z, (; b, 7) with respect to ¢ term by term for any 7 € [0,{ — 1/m],

we have

8

n—1)2n2 n—1)rx n—1)mr n—1)272(¢—7
(_(2 ) )COS<<2 1) )COS(@ ) b) exp (_(2 Bl ))

n=1
2 2 _2
s 9 (2n—1)"m
< _N"(2n-1 i
=9r3 nz::l( n—1) eXp( AmL?

2 n?n?
< 2 —
= oL8 ;" eXp( 4mL2> ’
which converges by the Ratio Test, and by the Weierstrass M-Test, converges uni-
formly for ¢ in any compact subset of (7,t,) (cf. Wade [11, pp. 190-191]). Thus,

we can differentiate g(x,t;&, 7) with respect to t term by term, and g, (z,¢; &, 7) is
bounded for 7 € [0, ).

2
L
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By the Leibnitz Rule (cf. Stromberg [9, p. 380]),

¢—1/m
8% (/0 9(x, G b, 7) f (u(b, T))df)

(-1/m g
= gl Gb = 1 mf (v C = 1m)) + [ Sgle Gbory . )

¢—1/m
— g(a, 1/m; b, 0)f(u(b, ¢ — 1/m)) + / gc(r, b, 7) f(ulb, 7)) dr.
We have

t ¢—1/m
oy 8%( / g(x,c;b,ﬂf(u(bm))df) &

= lim | g(z,1/m;b,0)f(u(b,C —1/m))dC

m—00

+ lim / /C e Cob ) f (b, ).

m—>oo

Since g(z,1/m;b,0) is independent of ¢, and f(u(b, (—1/m)) increases as m increases,

it follows from the Monotone Convergence Theorem that
t

lim g(z,1/m;b,0) f(u(b,( —1/m))dC

m—0o0
tq

= / W}Ln;og(x, 1/m;b,0) f(u(b, ¢ — 1/m))d¢

_ / 5(x — b) f(u(b, €))dC

ta

since limy .+ g (x,t;&,7) = (z — &). To show that
¢— 1/m
lim / / (2, G5, 7) f (b, 7)) drdC
¢—1/m
(213) = [ [ g statt e

let .
on(1,€) = / gc (a0, C:b,7) f (ulb, 7).

Without loss of generality, let m > [. We have
¢—1/m

ho(z,C) — hy(z, () = /4—1/1 gc(, ¢ 0, 7) f(u(b, 7))dr.

Since f(u(b,7)) is an increasing function of 7, it follows from the Second Mean Value
Theorem (cf. Stromberg [9, p. 328]) that for ¢ in any compact subset of (0,t,), there
exists some real number v with ( —~ € [( — 1/,{ — 1/m] such that

¢—1/m
/ gc(@, C;b,7) F(u(b, 7))dr
¢-1/1
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C—v

= f (u (bv C - %)) /C_l/l gC(xu Cu b7 T>d7—
¢—1/m

+f<u (bvc_%))/c_ gc(I,C,b,T>dT

From (2.1), g¢(x,(;b,7) = —g-(z,(; b, 7). Thus, we have

hm(l’, C) - hl(zv )

f
(u(vc-7)) (o (m6ic-7) = stncitc =)
1 (u(ne-2)) (s(mcnc- o) - stncine )
AR

BTN e

which can be made as small as we wish by choosing [ and m sufficiently large since
f(u) is bounded, and g(z, €; b, 0) is continuous for any € > 0. Thus, {h,,} is a Cauchy
sequence converging uniformly with respect to ¢ in any compact subset of (0,¢,), and
hence, we have (2.13) (cf. Wade [11, pp. 186-187]).

From (2.12),
/Ot g(x,t;b,7) f(u(b, 7))dr
t t ¢
= [ o - vt cnac+ [ [ aeto gt fulb e

+ /0t4 g(x,ty; b, 7) f(u(b, 7))dr.

Thus,
a t
5 [ ot tb.0 b r)ar
0

(2.14) =0(x —b)f(u(b,t)) + /Ot gi(x, t;0,7) f(u(b, 7))dT.

By Lemma 2.3, f(f g(x,t;0,7) f(u(b, 7))dr is continuous for x € D. Differentiating
g(x,t;b,7) with respect to x term by term for any 7 € [0, — €] with € being any
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positive number such that t — e > 0, we have

2 S n—1)m . n—1)mx n—1)m n—1)2n2(t—7

- 3 <_%> sin <%> oS ((2 -1 b) exp (_(2 rie ))‘
T — (2n —1)° 72 (t —7)

< ﬁ > (2n—1)exp | — N

22
_Lzzne p( 4L2)’

which converges by the Ratio Test, and by the Weierstrass M-Test, converges uni-
formly on D. Thus, g,(z,t;b,7) exists, and is continuous on D x (0,t). Let ¢ be any
positive number such that t —e > 0. For any y € D and 7 € [0,1 — €],

t—e

lim g(x,t;b,7) f(u(b, 7))dr

e—0 0
t—e

= lim ’ <ﬁ /t_E (p,t;0,7) f (u(b, T))dT) dp+hm g(y,t;0,7) f(u(b,7))dr

:nm/ /t 00 (ps £, 7) F(u(b, T))dfdp+/ gy, t:b,7) F(u(b, 7))dr

(cf. Wade [11, pp. 319-320]). By the Fubini Theorem (cf. Stromberg [9, pp. 352-353]),

lim/ / o(p, 60, 7) f(u(b, 7))drdp

e—0

—tiny [ 5(.1) [ g0t )dpr

e—0 0

t—e

=lim [ f(u(b, 7)) (9(x,t:b,7) = gy, t;b,7)) d7

/f (b, 7)) (g(x,t;0,7) — g(y, t;b, 7)) dr,

which exists by Lemma 2.3. Thus,

/f (b,7)) (g(x, t:b,7) — gly, £:b, 7)) dr
_ / F(ub, 7)) / " gplpt:b, T)dpdr
:/: /Otgp(p,t; b, 7) f(u(b, 7))drdp.

lim g(z,t;0,7) f(u(b, 7))dr

e—0

/ / 9o(p, t;0,7) f (u(D, T))dep—k/Otg(y,t; b, 7) f (u(b, 7))dr.

Hence,
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Differentiating this with respect to x, we obtain
t

C%/o Q(SC,t;baT)f(U(b,T))dTZ/O Go(2,t;0,7) f(u(b, 7))dr.

A similar argument shows that

% /0 92 (2,0, 7) f (u(b, 7))dT = /0 oo (2,0, 7) f (u(b, 7))drT,

which gives
2

W/O g([E,t;b,T)f(u(b,T))dT:/o Gux(x, t;0,7) f(u(b, 7))dT.

From (2.2), (2.14) and (2.15), we have for x € D and 0 < t < t,,

(2.15)

Hu = ad(xz —b)f(u(b,t)) + a/o Hg(z,t;0,7)f(u(b, 7))dr

= ad(x — ) f(u(x, 1))

since Hg(x,t;b,7) = 0. From (2.2), lim,_g+ u(x,t) = 0 on D. Since ¢,(0,t;b,7) = 0,
and g,(z,t;b,7) is continuous on D x (0,t,), we have
t
uz (0,t) = lim u, (x,t) = a lim 9o(x,t;0,7) f(u(b, 7))dT = 0.

z—0t z—0% Jo

Using g(L,t;b,7) = 0 and u being continuous, we have

u(L,t) = oz/otg(L, t;b,7)f(u(b, 7))dr = 0.

Thus, the nonnegative continuous solution of the integral equation (2.2) is a solution
of the problem (1.2). Since a solution of the problem (1.2) is a solution of the integral
equation (2.2), which has a unique solution before quenching occurs, it follows that

u is the solution of the problem (1.2), and the theorem is proved. O

3. LOCATIONS FOR QUENCHING

We modify the proof of Theorem 3 of Chan and Jiang [1] for a first initial-

boundary value problem to prove the following result.

Theorem 3.1. For any t € (0,t,), u(x,t) attains its absolute maximum at (b,t) on
the region D x [0,t]. If t, is finite, then at t,, u quenches at x = b only.

Proof. By Theorems 2.4 and 2.5, there exists some ¢, such that for 0 <t < ¢,, the
problem (1.2) has a unique nonnegative (continuous) solution u, which is a strictly
increasing function of ¢ in D. Since u (b, t) for ¢t € (0,¢,) is known, let us denote it by
n(t), which is positive and increasing for t > 0. The problem (1.2) is equivalent to

the following two initial-boundary value problems:

(3.1) Hu=0in (0,b) x (0,t,),
' u(z,0) =0 on [0,0], u, (0,t) =0 and wu (b, t) = n(t) for t € (0,1,).
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Hu=0in (b L) x (0,2,),

(3.2)
u(xz,0) =0on [b, L], u(b,t)=n(t) and u(L,t) =0 for t € (0,¢,).

For the problem (3.1), if w attains its maximum or minimum somewhere on the
boundary x = 0 (with ¢ € (0,¢,)), then by the parabolic version of Hopf’s lemma,
u, # 0 there. This contradicts the boundary condition. Thus by the weak maximum
principle, we have for each ¢t € (0,%,), u attains its absolute maximum at (b,¢) on
[0,b] x [0,t]. For the problem (3.2), it follows from 7 (¢) being a strictly increasing
function of ¢ that u attains its absolute maximum at (b,¢) on [b, L] x [0, t]. Thus, if u

quenches, then it quenches at x = b.

Since u is a strictly increasing function of ¢t in D, u; > 0 there. For the problem
(3.1), it follows from the parabolic version of Hopf’s Lemma that for any fixed ¢t €
(0,t,), uy (b,t) > 0. For any = € (0,b), uze = uy > 0, and hence u is concave up.
Similarly, for the problem (3.2), we have that for any arbitrarily fixed ¢t € (0,t,),
ug (b,t) < 0. For any x € (b, L), tug, = uy > 0, and hence u is concave up. Therefore,
if u quenches, then it quenches at x = b only. If ¢, is finite, then by Theorems 2.4
and 2.5, u quenches at t,. The theorem is then proved. U
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