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1. INTRODUCTION

Let a point (x1, x2, . . . , xN−1, xN ) in the N -dimensional Euclidean space R
N be

denoted by (x, x̃) with x standing for x1, L and b be positive numbers such that b < L,

S = (−L, L)×R
N−1, s = (−b, b)×R

N−1, ∂S =
{

(x, x̃) : x ∈ {−L, L} , and x̃ ∈ R
N−1

}

,

∂s =
{

(x, x̃) : x ∈ {−b, b} , and x̃ ∈ R
N−1

}

, ν(x, x̃) denote the unit outward normal

at (x, x̃) ∈ ∂s, and χs (x, x̃) denote a function which is 1 for |x| > b, and 0 for |x| < b.

Since the Dirac delta function is the derivative of the Heaviside function, it follows

that ∂χs (x, x̃) /∂ν gives a Dirac delta function at each point on x = |b|, and is zero

everywhere else (cf. Chan and Tragoonsirisak [3]), and hence we have a concentrated

source on ∂s. We would like to study the following problem with a concentrated

nonlinear source on ∂s:

(1.1)







ut −△u = α
∂χs (x, x̃)

∂ν
f(u) in S × (0, T ],

u(x, 0) = 0 on S̄, u(x, t) = 0 on ∂S × (0, T ],

where α and T are positive real numbers, S̄ is the closure of S, f is a given function

such that limu→c− f(u) = ∞ for some positive constant c, and f(u) and its derivatives

f ′(u) and f ′′ (u) are positive for 0 ≤ u < c. We note that a similar problem without

a concentrated source was studied by Dai and Gu [6]. For problems involving a
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concentrated nonlinear source on the surface of a ball in R
N , we refer to the papers

by Chan and Tragoonsirisak ([3], [4], [5]).

Let H = ∂/∂t − ∂2/∂x2, D = (0, L), D̄ = [0, L], and Ω = D × (0, T ]. Due to

symmetry, the problem (1.1) is equivalent to the following one-dimensional problem:

(1.2)

{

Hu = αδ (x − b) f(u) in Ω,

u(x, 0) = 0 on D̄, ux (0, t) = u (L, t) = 0 for 0 < t ≤ T,

where δ (x − b) is the Dirac delta function. Thus, the results obtained in this paper

are applicable not only to an infinite strip with N ≥ 2, but also to N = 1 for a one-

dimensional problem with mixed boundary conditions. The term δ (x − b) implies

that ux has a jump discontinuity at x = b. Therefore, a solution u is at most a

continuous function satisfying (1.2).

A solution u is said to quench if there exists an extended real number tq ∈ (0,∞]

such that

sup
{

u(x, t) : x ∈ D̄
}

→ c− as t → tq.

If tq < ∞, then u is said to quench in a finite time. If tq = ∞, then u quenches in

infinite time.

In Section 2, we show that the nonlinear integral equation corresponding to the

problem (1.2) has a unique nonnegative continuous solution u, which is a strictly

increasing function of t for x ∈ D. We then prove that u is the unique solution of

the problem (1.2). In Section 3, we show that if tq is finite, then u quenches at x = b

only.

2. EXISTENCE AND UNIQUENESS

Green’s function g (x, t; ξ, τ) (cf. Stakgold [8, pp. 197–203]) corresponding to the

problem (1.2) with mixed boundary conditions is determined by the following system:

Hg = 0 for x, ξ ∈ D and 0 < t, τ < ∞,

limt→τ+ g (x, t; ξ, τ) = δ (x − ξ) for x, ξ ∈ D,

gx (0, t; ξ, τ) = g (L, t; ξ, τ) = 0 for ξ ∈ D and 0 < t, τ < ∞.

By the method of eigenfunction expansions,

(2.1)

g (x, t; ξ, τ) =
2

L

∞
∑

n=1

cos

(

(2n − 1) πx

2L

)

cos

(

(2n − 1)πξ

2L

)

exp

(

−
(2n − 1)2 π2 (t − τ)

4L2

)

(cf. Trim [10, pp. 474–478]). By using Green’s second identity and the adjoint operator

L∗, which is given by L∗u = −ut − uxx, the problem (1.2) is converted into the

nonlinear integral equation,

(2.2) u(x, t) = α

∫ t

0

g (x, t; b, τ) f (u (b, τ)) dτ.
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We modify the techniques in proving Lemma 2.2(a) of Chan and Tian [2] for a

blow-up problem to establish the following result.

Lemma 2.1. For (x, t; ξ, τ) ∈
(

D̄ × (τ, T ]
)

×
(

D̄ × [0, T )
)

, g (x, t; ξ, τ) is continuous.

Proof. From (2.1),

|g (x, t; ξ, τ)| ≤
2

L

∞
∑

n=1

exp

(

−
(2n − 1)2 π2 (t − τ)

4L2

)

≤
2

L

∞
∑

n=1

exp

(

−
n2π2 (t − τ)

4L2

)

≤
2

L

∞
∑

n=1

exp

(

−
nπ2 (t − τ)

4L2

)

,(2.3)

which is a geometric series with the common ratio exp (−π2 (t − τ) / (4L2)). Hence

for t in any compact subset of (τ, T ),

∞
∑

n=1

exp

(

−
nπ2 (t − τ)

4L2

)

=
1

exp

(

π2 (t − τ)

4L2

)

− 1

.

By using (2.3) and the Weierstrass M-Test (cf. Stromberg [9, pp. 141–142]), g (x, t; ξ, τ)

converges uniformly on D̄ for t in any compact subset of (τ, T ). This proves the

lemma. �

A physical interpretation of g (x, t; ξ, τ) is the temperature at the point x on a

one-dimensional uniform and homogeneous rod of length L at time t due to a point

source situated at the point ξ on the rod at time τ with τ < t; the rod has no

heat source, and is subject to an insulated boundary condition at x = 0 and a zero

boundary condition at x = L. Thus for t > τ , g (x, t; ξ, τ) should be positive inside

the rod. Our next result proves this positivity property.

Lemma 2.2. For x, ξ ∈ D and 0 ≤ τ < t ≤ T , g (x, t; ξ, τ) is positive.

Proof. Let us assume that g (x, t; ξ, τ) < 0 somewhere in

D1 = {(x, t; ξ, τ) : x, ξ ∈ D and 0 ≤ τ < t ≤ T} .

If g attains its minimum somewhere on the boundary x = 0, then by the parabolic

version of Hopf’s lemma (cf. Friedman [7, p. 49]), gx > 0 at that point. This con-

tradicts the given boundary condition gx = 0 there. Since g is zero on the boundary

x = L, it follows from Hg = 0 that g must attain its minimum m somewhere, say

(x̄, t1; ξ1, τ1) with t1 > τ1 in D1. By the strong maximum principle (cf. Friedman [7,

p. 34]), g (x, t; ξ1, τ1) = m for x ∈ D and t ∈ (τ1, t1]. By Lemma 2.1, g is continuous

for x ∈ D̄. Thus, g = m with t ∈ (τ1, t1] at the boundary x = L. This contradiction

shows that g (x, t; ξ, τ) ≥ 0. Suppose g (x, t; ξ, τ) = 0 at some point (x̂, t2; ξ2, τ2) in D1.
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Since Hg = 0, it follows from the strong maximum principle that g (x, t; ξ2, τ2) = 0

for x ∈ D and t ∈ (τ2, t2]. On the other hand,

g (ξ2, t2; ξ2, τ2) =
2

L

∞
∑

n=1

cos2

(

(2n − 1)πξ2

2L

)

exp

(

−
(2n − 1)2 π2 (t2 − τ2)

4L2

)

> 0,

which gives a contradiction. The lemma is then proved. �

Our next result shows that for any continuous function r (t) for 0 ≤ t ≤ T , the

function
∫ t

0
g(x, t; b, τ)r(τ)dτ is continuous.

Lemma 2.3. If r (t) ∈ C ([0, T ]), then
∫ t

0
g(x, t; b, τ)r(τ)dτ is continuous for x ∈ D̄

and t ∈ [0, T ].

Proof. Let

K = max
0≤τ≤T

r(τ),

and ǫ be any positive number such that t − ǫ > 0. For any x ∈ D̄ and τ ∈ [0, t− ǫ],

2

L

∫ t−ǫ

0

∣

∣

∣
cos
(

(2n−1)πx
2L

)

cos
(

(2n−1)πb
2L

)

exp
(

− (2n−1)2π2(t−τ)
4L2

)

r(τ)
∣

∣

∣
dτ

≤
2K

L

∫ t−ǫ

0

exp

(

−
(2n − 1)2 π2 (t − τ)

4L2

)

dτ

≤
2K

L

∫ t−ǫ

0

exp

(

−
n2π2 (t − τ)

4L2

)

dτ

≤
8KL

n2π2
exp

(

−
n2π2ǫ

4L2

)

.(2.4)

It follows from g(x, t; b, τ) converging uniformly for t in any compact subset of (τ, T ]

that we can interchange integration and summation (cf. Wade [11, p. 190]). By (2.4),
∫ t−ǫ

0

g(x, t; b, τ)r(τ)dτ ≤
8KL

π2

∞
∑

n=1

1

n2
exp

(

−
n2π2ǫ

4L2

)

≤
8KL

π2

∞
∑

n=1

1

n2
.

Since
∑∞

n=1 n−2 = π2/6 (cf. Stromberg [9, p. 518]), we have
∫ t−ǫ

0

g(x, t; b, τ)r(τ)dτ ≤
4KL

3
,

which is independent of ǫ. By the Weierstrass M-test,
∫ t

0
g(x, t; b, τ)r(τ)dτ converges

uniformly with respect to x and t, and hence is continuous for x ∈ D̄ and t ∈ [0, T ] .

�

We modify the techniques in proving Theorems 1 and 2 of Chan and Jiang [1]

for a first initial-boundary value problem to establish the next two results.

Theorem 2.4. There exists some tq such that for 0 ≤ t < tq, the integral equation

(2.2) has a unique continuous nonnegative solution u, and u is a strictly increasing

function of t in D. If tq is finite, then u quenches at tq.
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Proof. Let us construct a sequence {un} in Ω by u0 (x, t) = 0, and for n = 0, 1, 2, . . .,

Hun+1 = αδ (x − b) f(un) in Ω,

un+1(x, 0) = 0 for x ∈ D̄,
∂

∂x
un+1(0, t) = 0 = un+1(L, t) for 0 < t ≤ T.

From (2.2),

(2.5) un+1(x, t) = α

∫ t

0

g(x, t; b, τ)f(un(b, τ))dτ.

Since f (0) > 0, and g(x, t; b, τ) > 0, it follows from (2.5) that u1(x, t) > u0(x, t) in Ω.

Using the principle of mathematical induction, we have 0 < u1 < u2 < · · · < un−1 <

un in Ω for any positive integer n.

To show that each un is an increasing function of t in D, we construct a sequence

{wn} such that for n = 0, 1, 2, . . . , wn(x, t) = un(x, t + h) − un(x, t), where h is any

positive number less than T . Then, w0(x, t) = 0. By (2.5), we have

w1(x, t) = αf(0)

(
∫ t+h

0

g(x, t + h; b, τ)dτ −

∫ t

0

g(x, t; b, τ)dτ

)

.

Let σ = τ − h. Then,
∫ t+h

0

g(x, t + h; b, τ)dτ =

∫ h

0

g(x, t + h; b, τ)dτ +

∫ t

0

g(x, t + h; b, σ + h)dσ

=

∫ h

0

g(x, t + h; b, τ)dτ +

∫ t

0

g(x, t; b, σ)dσ

since g(x, t + h; b, σ + h) = g(x, t; b, σ). Thus in D, we have for 0 < t ≤ T − h,

w1(x, t) = αf(0)

∫ h

0

g(x, t + h; b, τ)dτ > 0.

In D, let us assume that for some positive integer j, wj > 0 for 0 < t ≤ T −h. Then,

wj+1(x, t) = α

(
∫ t+h

0

g(x, t + h; b, τ)f(uj(b, τ))dτ −

∫ t

0

g(x, t; b, τ)f(uj(b, τ))dτ

)

.

Let σ = τ − h. We have
∫ t+h

0

g(x, t + h; b, τ)f(uj(b, τ))dτ

=

∫ h

0

g(x, t + h; b, τ)f(uj(b, τ))dτ +

∫ t

0

g(x, t + h; b, σ + h)f(uj(b, σ + h))dσ

=

∫ h

0

g(x, t + h; b, τ)f(uj(b, τ))dτ +

∫ t

0

g(x, t; b, σ)f(uj(b, σ + h))dσ

>

∫ h

0

g(x, t + h; b, τ)f(uj(b, τ))dτ +

∫ t

0

g(x, t; b, σ)f(uj(b, σ))dσ.(2.6)

Thus in D,

wj+1(x, t) > α

∫ h

0

g(x, t + h; b, τ)f(uj(b, τ))dτ > 0.
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By the principle of mathematical induction, wn > 0 in D for 0 < t ≤ T − h and all

positive integers n. Thus, each un is an increasing function of t in D.

For any given positive constant M (< c), it follows from (2.5) and un being

an increasing function of t in D that there exists some t1 such that un+1 ≤ M for

0 ≤ t ≤ t1 and n = 0, 1, 2, . . .. In fact, t1 satisfies

un+1(x, t1) ≤ αf(M)

∫ t1

0

g(x, t1; b, τ)dτ ≤ M .

Let u denote limn→∞ un. From (2.5) and the Monotone Convergence Theorem (cf.

Stromberg [9, pp. 266–268]), we have (2.2) for 0 ≤ t ≤ t1.

To prove that u is unique, we assume that the integral equation (2.2) has two

distinct solutions u and ũ on the interval [0, t1]. From (2.2),

(2.7) u(x, t) − ũ(x, t) = α

∫ t

0

g(x, t; b, τ) (f(u(b, τ)) − f(ũ(b, τ))) dτ.

Since f ′′ (u) > 0 for u ∈ [0, c), it follows from the Mean Value Theorem that

|f(u) − f(ũ)| ≤ f ′(M) |u − ũ|. From (2.7),

|u(x, t) − ũ(x, t)| ≤ αf ′(M)

∫ t

0

g(x, t; b, τ) |u (b, τ) − ũ (b, τ)| dτ.

By Lemma 2.3, there exists some t2 (≤ t1) such that

(2.8) αf ′(M) max
D̄×[0,t2]

(
∫ t

0

g(x, t; b, τ)dτ

)

< 1.

Let Θ = maxD̄×[0,t2] |u − ũ|. Then,

Θ ≤ αf ′(M) max
D̄×[0,t2]

(
∫ t

0

g(x, t; b, τ)dτ

)

Θ.

By (2.8), this gives a contradiction. Thus, we have uniqueness of a solution for

0 ≤ t ≤ t2.

If t2 < t1, then for t2 ≤ t ≤ t1,

(2.9) u (x, t) =

∫ L

0

g(x, t; ξ, t2)u (ξ, t2) dξ + α

∫ t

t2

g(x, t; b, τ)f(u(b, τ))dτ

(cf. Chan and Tian [2]). Thus for t2 ≤ t ≤ t1,

u(x, t) − ũ(x, t) = α

∫ t

t2

g(x, t; b, τ) (f(u(b, τ)) − f(ũ(b, τ))) dτ.

Let Θ̃ = maxD̄×[t2,min{2t2,t1}] |u − ũ|. Then,

Θ̃ ≤ αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t

t2

g(x, t; b, τ)dτ

)

Θ̃.

Let σ = τ − t2. Then for t ∈ [t2, min{2t2, t1}],

αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t

t2

g(x, t; b, τ)dτ

)
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= αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t−t2

0

g(x, t; b, σ + t2)dσ

)

= αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t−t2

0

g(x, t − t2; b, σ)dσ

)

< 1(2.10)

by (2.8). This gives a contradiction. Hence, we have uniqueness of a solution for

0 ≤ t ≤ min{2t2, t1}. By proceeding in this way, the integral equation (2.2) has a

unique solution u for 0 ≤ t ≤ t1.

To prove that u is continuous on D̄ × [0, t1], we note that f(un(ξ, τ)) is bounded

by f(M). It follows from (2.5), Lemma 2.3 and f being continuous that for n =

0, 1, 2, . . ., un+1(x, t) is continuous on D̄ × [0, t1]. From (2.5),

(2.11) un+1(x, t) − un(x, t) = α

∫ t

0

g(x, t; b, τ) (f(un(b, τ)) − f(un−1(b, τ))) dτ.

Using the Mean Value Theorem, we have

f(un) − f(un−1) ≤ f ′(M) (un − un−1) .

Let Λn = maxD̄×[0,t2] (un − un−1). From (2.11),

Λn+1 ≤ αf ′(M) max
D̄×[0,t2]

(
∫ t

0

g(x, t; b, τ)dτ

)

Λn.

By (2.8), the sequence {un(x, t)} converges uniformly to u(x, t) on D̄ × [0, t2], and

hence, u is continuous there.

If t2 < t1, then from (2.9),

un+1(x, t) =

∫ L

0

g(x, t; ξ, t2)u (ξ, t2) dξ + α

∫ t

t2

g(x, t; b, τ)f(un(b, τ))dτ.

Let Λ̃n = maxD̄×[t2,min{2t2,t1}] (un − un−1). Then for t2 ≤ t ≤ t1,

Λ̃n+1 ≤ αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t

t2

g(x, t; b, τ)dτ

)

Λ̃n

= αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t−t2

0

g(x, t; b, t2 + σ)dσ

)

Λ̃n

= αf ′(M) max
D̄×[t2,min{2t2,t1}]

(
∫ t−t2

0

g(x, t − t2; b, σ)dσ

)

Λ̃n.

It follows from (2.10) that for t ∈ [t2, min{2t2, t1}], u is continuous. By proceeding in

this way, the integral equation (2.2) has a unique continuous solution u on D̄× [0, t1].

Let tq be the supremum of the intervals for which the integral equation (2.2)

has a unique continuous solution u. If tq is finite, and u does not reach c− at tq,

then for any positive constant between maxD̄ u(x, tq) and c, a proof similar to the

above shows that there exists some t3 (> tq) such that the integral equation (2.2) has

a unique continuous solution u for 0 ≤ t ≤ t3. This contradicts the definition of tq.

Thus, if tq is finite, then u reaches c− somewhere at tq.
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Since un is an increasing function of t, we have for x ∈ D and any positive number

h such that t + h < tq,

u(x, t + h) − u(x, t)

= α

(
∫ t+h

0

g(x, t + h; b, τ)f(u(b, τ))dτ −

∫ t

0

g(x, t; b, τ)f(u(b, τ))dτ

)

.

As in the derivation of (2.6), we have
∫ t+h

0

g(x, t + h; b, τ)f(u(b, τ))dτ

>

∫ h

0

g(x, t + h; b, τ)f(u(b, τ))dτ +

∫ t

0

g(x, t; b, σ)f(u(b, σ))dσ.

Hence,

u(x, t + h) − u(x, t) > α

∫ h

0

g(x, t + h; b, τ)f(u(b, τ))dτ > 0,

which shows that u is a strictly increasing function of t in D. �

Theorem 2.5. The problem (1.2) has a unique solution u for 0 ≤ t < tq.

Proof. For any t4 ∈ (0, t),
∫ t

0

g(x, t; b, τ)f(u(b, τ))dτ

= lim
m→∞

∫ t−1/m

0

g(x, t; b, τ)f(u(b, τ))dτ

= lim
m→∞

∫ t

t4

∂

∂ζ

(

∫ ζ−1/m

0

g(x, ζ ; b, τ)f(u(b, τ))dτ

)

dζ

+ lim
m→∞

∫ t4−1/m

0

g(x, t4; b, τ)f(u(b, τ))dτ.(2.12)

Differentiating g(x, ζ ; b, τ) with respect to ζ term by term for any τ ∈ [0, ζ − 1/m],

we have

2

L

∣

∣

∣

∣

∣

∞
∑

n=1

(

− (2n−1)2π2

4L2

)

cos
(

(2n−1)πx
2L

)

cos
(

(2n−1)πb
2L

)

exp
(

− (2n−1)2π2(ζ−τ)
4L2

)

∣

∣

∣

∣

∣

≤
π2

2L3

∞
∑

n=1

(2n − 1)2 exp

(

−
(2n − 1)2 π2

4mL2

)

≤
π2

2L3

∞
∑

n=1

n2 exp

(

−
n2π2

4mL2

)

,

which converges by the Ratio Test, and by the Weierstrass M-Test, converges uni-

formly for t in any compact subset of (τ, tq) (cf. Wade [11, pp. 190–191]). Thus,

we can differentiate g(x, t; ξ, τ) with respect to t term by term, and gt(x, t; ξ, τ) is

bounded for τ ∈ [0, t).
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By the Leibnitz Rule (cf. Stromberg [9, p. 380]),

∂

∂ζ

(

∫ ζ−1/m

0

g(x, ζ ; b, τ)f(u(b, τ))dτ

)

= g(x, ζ ; b, ζ − 1/m)f(u(b, ζ − 1/m)) +

∫ ζ−1/m

0

∂

∂ζ
g(x, ζ ; b, τ)f(u(b, τ))dτ

= g(x, 1/m; b, 0)f(u(b, ζ − 1/m)) +

∫ ζ−1/m

0

gζ(x, ζ ; b, τ)f(u(b, τ))dτ.

We have

lim
m→∞

∫ t

t4

∂

∂ζ

(

∫ ζ−1/m

0

g(x, ζ ; b, τ)f(u(b, τ))dτ

)

dζ

= lim
m→∞

∫ t

t4

g(x, 1/m; b, 0)f(u(b, ζ − 1/m))dζ

+ lim
m→∞

∫ t

t4

∫ ζ−1/m

0

gζ(x, ζ ; b, τ)f(u(b, τ))dτdζ.

Since g(x, 1/m; b, 0) is independent of ζ , and f(u(b, ζ−1/m)) increases as m increases,

it follows from the Monotone Convergence Theorem that

lim
m→∞

∫ t

t4

g(x, 1/m; b, 0)f(u(b, ζ − 1/m))dζ

=

∫ t

t4

lim
m→∞

g(x, 1/m; b, 0)f(u(b, ζ − 1/m))dζ

=

∫ t

t4

δ(x − b)f(u(b, ζ))dζ

since limt→τ+ g (x, t; ξ, τ) = δ (x − ξ). To show that

lim
m→∞

∫ t

t4

∫ ζ−1/m

0

gζ(x, ζ ; b, τ)f(u(b, τ))dτdζ

=

∫ t

t4

lim
m→∞

∫ ζ−1/m

0

gζ(x, ζ ; b, τ)f(u(b, τ))dτdζ,(2.13)

let

hm(x, ζ) =

∫ ζ−1/m

0

gζ(x, ζ ; b, τ)f(u(b, τ))dτ.

Without loss of generality, let m > l. We have

hm(x, ζ) − hl(x, ζ) =

∫ ζ−1/m

ζ−1/l

gζ(x, ζ ; b, τ)f(u(b, τ))dτ.

Since f(u(b, τ)) is an increasing function of τ , it follows from the Second Mean Value

Theorem (cf. Stromberg [9, p. 328]) that for ζ in any compact subset of (0, tq), there

exists some real number γ with ζ − γ ∈ [ζ − 1/l, ζ − 1/m] such that
∫ ζ−1/m

ζ−1/l

gζ(x, ζ ; b, τ)f(u(b, τ))dτ
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= f

(

u

(

b, ζ −
1

l

))
∫ ζ−γ

ζ−1/l

gζ(x, ζ ; b, τ)dτ

+ f

(

u

(

b, ζ −
1

m

))
∫ ζ−1/m

ζ−γ

gζ(x, ζ ; b, τ)dτ.

From (2.1), gζ(x, ζ ; b, τ) = −gτ (x, ζ ; b, τ). Thus, we have

hm(x, ζ) − hl(x, ζ)

= −f

(

u

(

b, ζ −
1

l

))
∫ ζ−γ

ζ−1/l

gτ(x, ζ ; b, τ)dτ

− f

(

u

(

b, ζ −
1

m

))
∫ ζ−1/m

ζ−γ

gτ(x, ζ ; b, τ)dτ

= f

(

u

(

b, ζ −
1

l

))(

g

(

x, ζ ; b, ζ −
1

l

)

− g(x, ζ ; b, ζ − γ)

)

− f

(

u

(

b, ζ −
1

m

))(

g

(

x, ζ ; b, ζ −
1

m

)

− g(x, ζ ; b, ζ − γ)

)

= f

(

u

(

b, ζ −
1

l

))(

g

(

x,
1

l
; b, 0

)

− g(x, γ; b, 0)

)

− f

(

u

(

b, ζ −
1

m

))(

g

(

x,
1

m
; b, 0

)

− g(x, γ; b, 0)

)

which can be made as small as we wish by choosing l and m sufficiently large since

f(u) is bounded, and g(x, ǫ; b, 0) is continuous for any ǫ > 0. Thus, {hm} is a Cauchy

sequence converging uniformly with respect to ζ in any compact subset of (0, tq), and

hence, we have (2.13) (cf. Wade [11, pp. 186–187]).

From (2.12),

∫ t

0

g(x, t; b, τ)f(u(b, τ))dτ

=

∫ t

t4

δ(x − b)f(u(b, ζ))dζ +

∫ t

t4

∫ ζ

0

gζ(x, ζ ; b, τ)f(u(b, τ))dτdζ

+

∫ t4

0

g(x, t4; b, τ)f(u(b, τ))dτ.

Thus,

∂

∂t

∫ t

0

g(x, t; b, τ)f(u(b, τ))dτ

= δ(x − b)f(u(b, t)) +

∫ t

0

gt(x, t; b, τ)f(u(b, τ))dτ.(2.14)

By Lemma 2.3,
∫ t

0
g(x, t; b, τ)f(u(b, τ))dτ is continuous for x ∈ D̄. Differentiating

g(x, t; b, τ) with respect to x term by term for any τ ∈ [0, t − ǫ] with ǫ being any
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positive number such that t − ǫ > 0, we have

2

L

∣

∣

∣

∣

∣

∞
∑

n=1

(

− (2n−1)π
2L

)

sin
(

(2n−1)πx
2L

)

cos
(

(2n−1)πb
2L

)

exp
(

− (2n−1)2π2(t−τ)
4L2

)

∣

∣

∣

∣

∣

≤
π

L2

∞
∑

n=1

(2n − 1) exp

(

−
(2n − 1)2 π2 (t − τ)

4L2

)

≤
π

L2

∞
∑

n=1

n exp

(

−
n2π2ǫ

4L2

)

,

which converges by the Ratio Test, and by the Weierstrass M-Test, converges uni-

formly on D̄. Thus, gx(x, t; b, τ) exists, and is continuous on D̄ × (0, t). Let ǫ be any

positive number such that t − ǫ > 0. For any y ∈ D and τ ∈ [0, t − ǫ],

lim
ǫ→0

∫ t−ǫ

0

g(x, t; b, τ)f(u(b, τ))dτ

= lim
ǫ→0

∫ x

y

(

∂

∂ρ

∫ t−ǫ

0

g(ρ, t; b, τ)f(u(b, τ))dτ

)

dρ + lim
ǫ→0

∫ t−ǫ

0

g(y, t; b, τ)f(u(b, τ))dτ

= lim
ǫ→0

∫ x

y

∫ t−ǫ

0

gρ(ρ, t; b, τ)f(u(b, τ))dτdρ +

∫ t

0

g(y, t; b, τ)f(u(b, τ))dτ

(cf. Wade [11, pp. 319–320]). By the Fubini Theorem (cf. Stromberg [9, pp. 352–353]),

lim
ǫ→0

∫ x

y

∫ t−ǫ

0

gρ(ρ, t; b, τ)f(u(b, τ))dτdρ

= lim
ǫ→0

∫ t−ǫ

0

f(u(b, τ))

∫ x

y

gρ(ρ, t; b, τ)dρdτ

= lim
ǫ→0

∫ t−ǫ

0

f(u(b, τ)) (g(x, t; b, τ) − g(y, t; b, τ))dτ

=

∫ t

0

f(u(b, τ)) (g(x, t; b, τ) − g(y, t; b, τ))dτ,

which exists by Lemma 2.3. Thus,
∫ t

0

f(u(b, τ)) (g(x, t; b, τ) − g(y, t; b, τ))dτ

=

∫ t

0

f(u(b, τ))

∫ x

y

gρ(ρ, t; b, τ)dρdτ

=

∫ x

y

∫ t

0

gρ(ρ, t; b, τ)f(u(b, τ))dτdρ.

Hence,

lim
ǫ→0

∫ t−ǫ

0

g(x, t; b, τ)f(u(b, τ))dτ

=

∫ x

y

∫ t

0

gρ(ρ, t; b, τ)f(u(b, τ))dτdρ +

∫ t

0

g(y, t; b, τ)f(u(b, τ))dτ.
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Differentiating this with respect to x, we obtain

∂

∂x

∫ t

0

g(x, t; b, τ)f(u(b, τ))dτ =

∫ t

0

gx(x, t; b, τ)f(u(b, τ))dτ.

A similar argument shows that

∂

∂x

∫ t

0

gx(x, t; b, τ)f(u(b, τ))dτ =

∫ t

0

gxx(x, t; b, τ)f(u(b, τ))dτ,

which gives

(2.15)
∂2

∂x2

∫ t

0

g(x, t; b, τ)f(u(b, τ))dτ =

∫ t

0

gxx(x, t; b, τ)f(u(b, τ))dτ.

From (2.2), (2.14) and (2.15), we have for x ∈ D and 0 < t < tq,

Hu = αδ(x − b)f(u(b, t)) + α

∫ t

0

Hg(x, t; b, τ)f(u(b, τ))dτ

= αδ(x − b)f(u(x, t))

since Hg(x, t; b, τ) = 0. From (2.2), limt→0+ u(x, t) = 0 on D̄. Since gx(0, t; b, τ) = 0,

and gx(x, t; b, τ) is continuous on D̄ × (0, tq), we have

ux (0, t) = lim
x→0+

ux (x, t) = α lim
x→0+

∫ t

0

gx(x, t; b, τ)f(u(b, τ))dτ = 0.

Using g(L, t; b, τ) = 0 and u being continuous, we have

u (L, t) = α

∫ t

0

g(L, t; b, τ)f(u(b, τ))dτ = 0.

Thus, the nonnegative continuous solution of the integral equation (2.2) is a solution

of the problem (1.2). Since a solution of the problem (1.2) is a solution of the integral

equation (2.2), which has a unique solution before quenching occurs, it follows that

u is the solution of the problem (1.2), and the theorem is proved. �

3. LOCATIONS FOR QUENCHING

We modify the proof of Theorem 3 of Chan and Jiang [1] for a first initial-

boundary value problem to prove the following result.

Theorem 3.1. For any t ∈ (0, tq), u (x, t) attains its absolute maximum at (b, t) on

the region D̄ × [0, t]. If tq is finite, then at tq, u quenches at x = b only.

Proof. By Theorems 2.4 and 2.5, there exists some tq such that for 0 ≤ t < tq, the

problem (1.2) has a unique nonnegative (continuous) solution u, which is a strictly

increasing function of t in D. Since u (b, t) for t ∈ (0, tq) is known, let us denote it by

η(t), which is positive and increasing for t > 0. The problem (1.2) is equivalent to

the following two initial-boundary value problems:

(3.1)

{

Hu = 0 in (0, b) × (0, tq),

u(x, 0) = 0 on [0, b] , ux (0, t) = 0 and u (b, t) = η(t) for t ∈ (0, tq).
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(3.2)

{

Hu = 0 in (b, L) × (0, tq),

u(x, 0) = 0 on [b, L] , u (b, t) = η (t) and u (L, t) = 0 for t ∈ (0, tq).

For the problem (3.1), if u attains its maximum or minimum somewhere on the

boundary x = 0 (with t ∈ (0, tq)), then by the parabolic version of Hopf’s lemma,

ux 6= 0 there. This contradicts the boundary condition. Thus by the weak maximum

principle, we have for each t ∈ (0, tq), u attains its absolute maximum at (b, t) on

[0, b] × [0, t]. For the problem (3.2), it follows from η (t) being a strictly increasing

function of t that u attains its absolute maximum at (b, t) on [b, L]× [0, t]. Thus, if u

quenches, then it quenches at x = b.

Since u is a strictly increasing function of t in D, ut ≥ 0 there. For the problem

(3.1), it follows from the parabolic version of Hopf’s Lemma that for any fixed t ∈

(0, tq), ux (b, t) > 0. For any x ∈ (0, b), uxx = ut ≥ 0, and hence u is concave up.

Similarly, for the problem (3.2), we have that for any arbitrarily fixed t ∈ (0, tq),

ux (b, t) < 0. For any x ∈ (b, L), uxx = ut ≥ 0, and hence u is concave up. Therefore,

if u quenches, then it quenches at x = b only. If tq is finite, then by Theorems 2.4

and 2.5, u quenches at tq. The theorem is then proved. �
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