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We develop a fourth order finite difference method for the solution

of a nonlinear biharmonic problems with third order derivative

terms subject to the boundary condition of first kind over a square

domain. An important feature of our method is that it uses only

9-grid points and discretize the boundary condition without use of

fictitious point. The first order derivative of solution is obtained

model test problem. Numerical solutions are included to demonstrate

computational potency and the order of the method.



a4U &4u a4u
ax4 + ax2ay2 + ay4 = f(x, y, u, Ux, Uy, Uxx, Uxy, Uyy, Uxxx, Uxxy, Uxyy, Uyyy)

0< x, y < 1 (1)

au
u and an prescribed.

For the numerical solution of above boundary value problem, difference

equations for mesh points near a boundary are obtained using central difference

methods requiring minimum 13-grid points (Jain (1987)). Mohanty et. at. (1996)

have developed difference methods of order two and four using 9-grid points

for solving nonlinear biharmonic problems. The idea of inclusion of third order

derivative terms in the reference boundary value problem originated while solving

third order boundary value problem by method of finite differences [8].

In this paper we discuss 9-point difference methods of order two and four

for solving nonlinear biharmonic equation (1) in bounded square region n =
{(x, y) 10 < x, y < I}, which may be partitioned into square subregions.

We consider square subregion that consist of central point (£, m) = (Xl, Ym)

and eight other points (£ ± 1,m) = (Xl ± h, Ym), (£, m ± 1) = (Xl, Ym ± h),

(£ ± I,m ± 1) = (Xl ± h,Ym ± h), (£ ± I,m =f 1) = (Xl ± h,Ym =f h), where

h > 0 is a grid size and £, m = O(I)N + 1, N being a positive integer. We

denote the grid point (£, m) as (0,0), (£ ± 1,m) as (±1, 0) etc. and the values of

f(x, Y, u, ... ), u, ux, etc. at the grid point (£, m) by ft,m, Ul,m, Uxl,m, ... etc. A

linear combination of the values of the solution u, ux, uy at these grid points are

used to derive difference formulas.

Let Ul,m be the approximate value of solution u. The difference methods

which we present here are based on the only eight grid points surrounding each



grid point. The systems that are generated by these formulas have a complicated

matrix structure and matrices are not positive definite. Since our method is

coupled system of equation at each grid point. A system of linear equations can be

solved using a variety of iterative methods including excellent results obtained in

[1]by using multigrid and preconditioned Krylov methods. But we adopt a direct

method for solving a linear system and the Newton-Raphson method otherwise

and we have obtained results which are both comparable and competitive.

In Section 2, we describe the finite difference method. Section 3, we have

consider singular linear equation. Section 4 we have estimated the order of

method and final Section 5 numerical examples are considered to explore the

computational potency of the method, to illustrate accuracy and fourth order of

the method.

In this paper, we are using the procedure given by Young (1965) etc., Boisvert

(1981), Mohanty et. al. (1996). We report two sets of difference methods of order

two and four. Let us define followingexpressions,

Ue+1,m + Ue-1,m

Ue,m+1 + Ue,m-l

Ue+1,m - Ue-1,m

Ue,m+l - Ue,m-l

Ue+1,m + Ue-1,m + Ue,m+1 + Ue,m-l

Ue+1,m+1 + Ui+l,m-l + Ue-1,m+1 + Ue-1,m-l

Ui+l,m+1 - Ui+l,m-l + Ue-1,m+1 - Ue-1,m-l



(10)

(11)

Uxxf,m (Uf+1,m + Uf-1,m - 2Uf,m)/h2 (2.1.1)

Uyyf,m (Uf,m+1 + Uf,m-l - 2Uf,m)/h2 (2.1.2)

Uxyf,m (Uf+1,m+1 - Uf+1,m-l - Uf-1,m+1 + Uf_1,m_l)/(4h2
) (2.1.3)

Uxxxf,m 3(-Us + hUx6)/(4h3) (2.1.4)

Uxxyf,m (-2U4 + U7)/(2h3) (2.1.5)

Uyyyf,m 3( -U7 + hUy6)/(4h3) (2.1.6)

Uxyyf,m (-2U3 + Us)/(2h3) (2.1.7)

A second order difference method using (2.1.1)-(2.1.7) for the nonlinear

equation (1) may be written as

LS[u] U6 - 8U5 + 3h(Ux3 + Uy4) + 28Uf,m
h2 _ _ _ _

2f (Xf, Ym, Uf,m, uxf,m, uyf,m, uxxf,m, uxyf,m, Uyyf,m, uxxxf,m,



(3(UR+1,m - UR-1,m) - hUx1)/(4h)

(3(UR,m+1 - UR,m-l) - hUy2)/(4h)

(13)

(14)

(Mohanty et. al. (1996) )

The proposed second order method has two advantages over the classical 13

point formula. It is based upon a single computational cell and incorporates the

boundary conditions in a natural way without the need to introduce fictitious

points or special schemes at the boundary.

UyyR,m

UxyR,m

UxxR±l,m

2UxxR,m - Ux3/(2h)

2UyyR,m - Uy4/ (2h)

-UxyR,m + (Ux4 + Uy3)/(2h)

(7UR~1,m + 16UR,m - 23UR±1,m)/(2h2)

±(6UxR±1,m + 8UxR,m + UXR~l,m)/(h)

(7UR,m~1 + 16UR,m - 23UR,m±1)/(2h2)

±(6UyR,m±1 + 8UyR,m + Uy,R,m~l)/(h)

2(UR+1,m±1 - 2UR,m±1 + UR_1,m±1)/(h2)

-(UxR+l,m±1 - UxR-1,m±1)/(2h)

(2.2.1)

(2.2.2)

(2.2.3)
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Uyyf±l,m 2(U£±l,m+l - 2U£±l,m + Uf±1,m_l)/(h2)

-(Uy£±l,m+l - Uyf±1,m-l)/(2h) (2.2.7)

Uxy£±l,m -Uxy£,m + Uy3/(2h) + (Ux7 ± Ux9)/(4h)

=f(Uy6 - 2Uy5 + 4Uy£,m)/(6h) (2.2.8)

Uxy£,m±l -Uxy£,m + Ux4/(2h) + (Uy8 ± Uy9)/(4h)

=f(Ux6 - 2Ux5 + 4Ux£,m)/(6h) (2.2.9)

Uxxx£±l,m (=f99U£±l,m ± 48U£,m ± 51U£=fl, m)/(2h3)

+(39Uxf±1,m + 96Ux£,m + 15Ux£=fl,m)/(2h2) (2.2.10)

Uyyy£,m±l (=f99U£,m±l ± 48U£,m ± 51U£,m=fl)/(2h3
)

+(39y£,m±l + 96Uy£,m + 15Uy£,m=fl)/(2h2) (2.2.11 )

Uxxx£,m±l 15(U£+l,m±1 - U£_1,m±1)/(2h3
) - 3(Ux£+1,m±l

+8Ux£,m±1 + Ux£_1,m±d/(2h2) (2.2.12)

Uyyy£±l,m 15(Uf±1,m+l - Uf±1,m_l)/(2h3) - 3(Uy£±l,m+l

+8Uyf±1,m + Uyf±1,m_l)/(2h2) (2.2.13)

Uxxx£,m 3[3U8 - U3 + h(Ux1 - 4Ux2 - Ux6)J!(2h3) (2.2.14)

Uyyy£,m 3[3U7 - U4 + h(Uy2 - 4Uy1 - Uy6)J!(2h3
) (2.2.15)

Uxxy£,m 5Uxxy£,m/2 + (2UY2 - Uy6 - Ux9) / (4h2) (2.2.16)

Uxyy£,m 5Uxyy£,m/2 + (2Ux1 - Ux6 - Uy9) / (4h2) . (2.2.17)

Set II

Uxxyf±l,m 7[Uf±1,m+l - Uf±l,m-l + U4 - 2(U£=fl,m+l - U£=fl,m-l)J!(2h3
)

+[2Uy2 =f lO(Ux£=fl,m+l - UX£=fl,m-l) =f 32Ux4 - Uy6J!(4h2)

(2.2.18)



264Ue,m + 6U6 - 75Us + h[Uxs + Uy7 + 28Ux3 + 28Uy4]

h4 = = = = =3[Fe+l,m + Fe-1,m + Fe,m+l + Fe,m-l + llFe,m]

h[40Uxe,m + 8Ux1 + Ux6 + Uyg] - 3[Us + 8U3]

h4 = =6" [Ff+l,m - Fe-1,m]



h[40Uy£,m + 8Uy2 + Uy6 + Ux9] - 3[U7 + 8U4]

h4 ~ ~
"6[F£,m+1 - F£,m-l]

Here we see that at interior mesh points we have three unknowns namely u, Ux

and uy. This means that the number of bands with nonzero entries is increased

and so is the size of the matrix for the same mesh size. However, the values of

3 The Singular Linear Equation

4 1 Q
~ U = Uxx + 2Uyy + -Ux + f(x, y), 0 < x, Y < 1x x

1 ~ Q

Uxx£+a,m + ( )2 Uyy£+a,m + --Ux£+a,m + f£+a,m, a = 0, ±1
x£+a x£+a

~ 1 ~ Q

Uxx£,m±l + -( )2 Uyy£,m±1 + -Ux£,m±1 + hm±1x£ x£

By the help of the approximations in Set I and using the methods (15, 16, 17), we

may obtain a difference scheme of O(h4) for equation (18). However scheme fails

when solution is to be determined at £ = 1, the vicinity of x = O. We overcome

this difficulty by modifying the method in such a way that the solutions retain

1 h h2
3 4

- =f -( )2 + -( )3 + O(=fh + h )x£ x£ x£



1 2h 3h2 (3 4)
(Xe)2 =F (Xe)3 + (Xe)4 + 0 =Fh + h

h2 3 2h,m ± hfxe,m + 2" fxxe,m + O(±h + h )

h2 3 2h,m ± hfye,m + 2" fyye,m + O( ±h + h ) .

By the help of these approximation and neglecting high order terms, we obtain

a new difference scheme of O(h4) for solving the equation (18) as

LF[u] h4
(19)3[Ro + R1 + R2 + R3 + R4 + R5]

LF[ux]
h4

(20)6'" [2hfxe,m + 31 + 32 + 33+ 34]

LF[uy]
h4
6'" [2hfye,m + T1 + T2 + T3 + T4] . (21)

where

Ro 15h,m + h2(fxxe,m + fyye,m)

R1 a [ 2 2 1 2]£h (15 + 8x + 8y) - f(2/-lx8x) + £2 Uxe,m

R2 2( 22 1 2h2 9 + 8y)8xUe,m - 2h (3 + 8y) (2/-lx8x) Uxe,m

R3 1 [2 2 2 1 2 ]£2h2 h2 (9 + 8x)8yUe,m - 2h (3 + 8x)(2/-ly8y)Uye,m

-2 [2 1 ]R4 £3h3 h(8~2/-lx8x)Ue,m - "2(4/-lx8x/-ly8y)Uye,m

R5 6 [2 h ]£4h4 28yUe,m - 2(2/-ly8y)Uye,m

31 1 [( 2 2) 8 2 ]h2 -15 + £2h28y (2/-lx8x)Ue,m - £3h28yUe,m

32 ~[30 + 78;]Uxe,m

33 - 2£;h3 [(2/-lx8x) - ~] (2/-ly8y)Uye,m



1
2"(Ul+l/2,m + Ul-1/2,m)

(Ul+l/2,m - Il-1/2,m) .

hence very easily solved for £ = 1 (1) N in the region n, when the value

of u is known explicitly on the boundary 8n and the boundary is parallel to



With help of approximation in set I, II expand u, ux, uy in Taylor series

about central mesh point (£, m) and let us denote H1,m = (of /oUxxy)e,m,

G1,m = (of /OUxyy)l,m. Similarly we define Hl±l,m and G1,m±1' We obtain

RT1 h3( -144 U51l+1,m + 120U33l+1,m) /6 !

RT2 h3(144 U51l-1,m - 120U331-1,m)/6!

RT3 lOh3U421,m+1/5 !

RT4 -lOh3Um,m_!/5 !

ST1 lOh3U24l+1,m/5 !

ST2 -lOh3U24l_1,m/5 !

ST3 h3(120 U331,m+l - 144U151,m+l) /6 !

ST4 h3( -120 U331,m-l + 144U151,m-d/6!

Expanding the Urs1±1,m in Taylor's series about central grid point (£, m), we find,

RT1 = -RT2 = O(h3), so from (4.6) and (4.7)



again expanding He+l,m and He-I,m in Taylor's series about central grid point

(e,m), from (4.14) we get

RTdHe+l,m - He-I,m] = O(h4
).

We can obtain similar result for other expression from (4.8) to (4.13).

So from (4.1) to (4.5) and (4.14) we obtained

Fe-I,m + Fe-I,m + Fe,m+l + Fe,m-l + l1Fe,m

= Fe+l,m + Fe-I,m + Fe,m+l + Fe,m-l + l1Fe,m + O(h4
) .

The local truncation error associated with (15) is O(h4
).

Thus the finite difference formula (15) is fourth order descretization of

nonlinear biharmonic equation (1). Using this method, we can estimate the

order of other formulas.

In this section we have solved the coupled nonlinear plate problem, the singular

problem and two other problems with third derivative terms whoseexact solutions

are known to us. In each case we have taken the unit square 0 < x, y < 1 as

the region of integration and covered it with a uniform grid of width h. The

right hand side functions and boundary conditions may be obtained using the

exact solution. We have used Gauss-Seidel iterative method for solving linear

equations and Newton-Raphson method for solving nonlinear equations. However

both iterative methods were very slow. In order to avoid a large number of

iterations and because of the machine storage limitations, we have restricted to

h = 1/4, h = 1/8 and h = 1/16 in computations work. The same initial vector

is used for both the difference methods and iterations were stopped when the



double precision arithmetic on an IBM AIX VERSION 4 at the computer center,

University of Delhi, Delhi - 110007.

84u 84u 84u
8x4 + 2 8x28y2 + 8y4 = 2c:(uxxvyy + UyyVxx - 2uxyvxy) + f(x, y)

84v 84v 84v
8x4 + 2 8x28y2 + 8y4 = (uxy)2 - UxxUyy + g(x, y)

Scheme (15) Scheme (12)

c: 0.5 1.0 5.0 0.5 1.0 5.0

h

1 u .2540 (-6) .5047 (-6) .2665 (-5) .1280 (-4) .1314 (-4) .1609 (-4)
-
4 v .5485 (-7) .5380 (-7) .4467 (-7) .1228 (-4) .1227 (-4) .1224 (-4)

1 u .1283 (-7) .3107 (-7) .1937 (-6) .2853 (-5) .2906 (-5) .3369 (-5)
-
8 v .3303 (-8) .3773 (-8) .3159 (-8) .2772 (-5) .2772 (-5) .2769 (-5)



Example 2. The problem is to solve (18), whose exact solution is given by

u = x4 cosy. The root mean square errors are calculated in Table 2 for a = 1

Scheme (19, 20, 21) Scheme (12, 13, 14)
a 1 2 1 2

h

u 0.1144 (-4) 0.2601 (-5) 0.6518 (-3) 0.9291 (-3)
1 0.3874 (-4) 0.3159 (-4) 0.1957 (-2) 0.2787 (-2)
4

Ux

uy 0.1144 (-4) 0.1528 (-4) 0.1985 (-2) 0.2830 (-2)
u 0.9762 (-6) 0.3005 (-6) 0.1552 (-3) 0.2213 (-3)

1 0.4404 (-5) 0.1667 (-5) 0.4523 (-3) 0.6440 (-3)- Ux8
uy 0.3048 (-5) 0.9779 (-6) 0.4720 (-3) 0.6727 (-3)

Example 3. The model problem with nonlinear third derivative term is

4 _ (flu (flu (flu
\7 u = 8x4 + 28x28y2 + 8y4 = au(uxxx +uyyy) +f(x,y)

whose exact solution is given by u = x4 cosY /120. The maximum absolute errors

Scheme (15, 16, 17) Scheme (12, 13, 14)
a 1 5 10 1 5 10

h

u .7682 (-8) .7695 (-8) .7712 (-8) .2079 (-5) .2067 (-5) .2052 (-5)1- Ux .5860 (-7) .5870 (-7) .5882 (-7) .6339 (-5) .6310 (-5) .6273 (-5)4
uy .6445 (-7) .6449 (-7) .6455 (-7) .6333 (-5) .6296 (-5) .6250 (-5)
u .6796 (-9) .6812 (-9) .6833 (-9) .4982 (-6) .4952 (-6) .4914 (-6)

1
- Ux .2526 (-8) .2531 (-8) .2537 (-8) .1504 (-5) .1500 (-5) .1494 (-5)8

uy .2609 (-8) .2614 (-8) .2621 (-8) .1499 (-5) .1490 (-5) .1477 (-5)
u .3997 (-10) .4008 (-10) .4022 (-10) .1225 (-6) .1217 (-6) .1208 (-6)1- u .1332 (-09) .1337 (-09) .1343 (-09) .3953 (-6) .3938 (-6) .3919 (-6)16 x
uy .1292 (-09) .1295 (-09) .1300 (-09) .3943 (-6) .3917 (-6) .3885 (-6)



Scheme (15, 16, 17) Scheme (12, 13, 14)
a 1 5 10 1 5 10

h
u .3671 (-6) .1784 (-5) .5135 (-5) .2756 (-4) .1338 (-3) .2350 (-3)

1 .1124 (-5) .5736 (-5) .1086 (-4) .1048 (-3) .3942 (-3) .7525 (-3)- Ux4
uy .1199 (-5) .5932 (-5) .1274 (-4) .1064 (-3) .4159 (-3) .7377 (-3)
u .2010 (-7) .3536 (-7) .2953 (-7) .6720 (-5) .3206 (-4) .5535 (-4)

1
.6489 (-7) .1155 (-6) .2550 (-6) .2098 (-4) .1241 (-3) .2483 (-3)- Ux8

uy .6061 (-7) .1223 (-6) .2698 (-6) .2413 (-4) .1006 (-3) .1683 (-3)
u .1223 (-8) .1653 (-8) .3899 (-8) .1716 (-5) .7893 (-5) .1312 (-4)1 .4102 (-8) .6035 (-8) .1943 (-7) .5653 (-5) .3061 (-4) .5705 (-4)- u16 x
uy .3780 (-8) .5832 (-8) .2231 (-7) .6108 (-5) .2632 (-4) .4079 (-4)

In this paper, we have outlined a procedure for obtaining difference methods

of O(h2
) and O(h4

) for the nonlinear biharmonic problems with third order

derivative terms and method applied to solve coupled nonlinear plate problem.

generalization of nonlinear biharmonic problem (Mohanty et. al. (1996)). A

drawback of these methods is that solutions to the resulting systems of equations

cannot be obtained quickly because of the lack of the simple structure and

positive-definiteness. From the numerical results, we conclude that the higher



order methods may be attractive for those problem where solution is sufficiently

smooth. It is hoped that the ideas presented here may lead to development of new

techniques for solving even more general problems with accurate/computational
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