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ABSTRACT. Hydrophobicity is probably the most important property of amino acid that is being
often exploited to predict protein folds. There are many amino acid hydrophobicity scales available
in the literature. Here we propose two computational approaches based on self-organizing map
(SOM) and fuzzy clustering to find some consensus scales. Although SOM and fuzzy clustering
produce centroids, we propose new schemes to compute more effective representative scales that
exploit the properties of SOM and fuzzy memberships. To demonstrate the utility of the new scales,
we apply them to predict the protein folds of a benchmark data set using neural networks. Our
experiments show that it is possible to generate useful scales with better utility compared to some
existing scales. There can be other applications of the proposed scales.
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Hydrophobicity of amino acids is an important feature for the still unsolved prob-
lem of protein structure prediction. However, the hydrophobicity is a difficult prop-
erty to measure. According to Charton and Charton [2] "There is no special phe-
nomenon denoted by hydrophobicity in amino acids. It is the natural and predictable
result of differences in the intermolecular forces between water and the amino acid
and those between the amino acid and some other medium." There are many hy-
drophobicity scales available in [4]. Some of these scales are radically different from
others (having negative correlation), while some others are strongly related. Cornette
et al.[4] describe 46 scales, out of which 12 are experimental, 22 are based on sta-
tistical studies, 9 that combine experimental and statistical data and 3 are averages
of other scales. Some of these scales do not assign values to all amino acids. The
scales analyzed by Cornette et al. [4]are first normalized but a uniform normalization
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scheme has not been used for all scales because some scales were anomalous. We be-
lieve that it is not appropriate to take different centers for different scales. If a scale
is anomalous then we should discard it, and the choice of the center should affect only
the magnitude, not the order relationship of the amino acids in that scale. Neumaier
et al.[14] analyzed 39 complete scales from [4] and the q-values scale by Li et al. [12]
using Principal Component Analysis (PCA) [7]. Each amino acid is represented by
an ordered tuple of 40 real numbers corresponding to the 40 scales. The principal
component analysis is used and the top 3 principal components are used to construct
a minimum spanning tree (MST). It is concluded from the MST that the nearest
neighbor relation between amino acids is not fully linear. The closest approximation
to their average scale is the scale by Li et al.[12] and the scale MIJER by Mijazawa
and Jernigan [13].

Given such a diversity of hydrophobicity scales, we explore the possibility of
finding consensus scales computationally. Our objective in this paper is to design
computational methods to find useful scales with neural and fuzzy computing. In
this regard, we have successfully used the self-organizing map and fuzzy clustering to
derive new hydrophobicity scales that capture the salient properties of existing scales.
The superiority of the new derived scales are demonstrated in protein fold prediction
using a well known benchmark data set.

2.1. Data Set. Among the 46 scales available in [4], we consider experimental and
statistical scales in this study and do not consider average scales and scales that
combine experimental and statistical data. We consider only complete scales because
our methods are not suitable for incomplete scales. This leaves us with 28 of the
46 scales. In addition to these, we use another experimental scale of the so called
"q-values scale" by Li et al.[12] since it has been used in a previous study, and thus
finally we have 29 scales for analysis. The original 29 scales are shown in Table 1. In
this Table, as well as in the rest of this paper, we use the same abbreviated names of
the scales as used in [4].

2.2. Normalization Schemes. We use three different normalization schemes each
of which preserves the relative ordering of hydrophobicity among different scales :

1. mean is made zero and standard deviation one;
2. hydrophobicity of Glycine is made zero and then the average is made equal to 1

(by dividing each scale by it's average);

3. hydrophobicity of Glycine is made zero and then the ranges equal (by dividing
each scale with the difference of its maximum and minimum values).



Our objective is to compute representative scales. This can be done by finding
homogeneous gropes of scales and replacing each group by a representative scale. To
motivate that such approaches we first look at the correlation structure in the data.

2.3. Correlation Analysis. Both correlation and rank-correlation divide the 29
scales into 2 groups of 23 scales and 6 scales, such that one group has positive correla-
tion with all the scales in that group and negative correlation with all the scales in the
other group [Table 2]. This property of the scales is independent of the normalization
scheme used for the scale as only the magnitude of the hydrophobicity values change
by normalization. Note that the correlation values in Table 2 are rounded to single
digit to accommodate the table into one page for display purposes only.

These two groups of scales are described in Table 3. From this grouping, we
observe that the analysis in [14]tried to group highly dissimilar scales together. In
the averaging scheme of theirs, MIJER and LI scales are found to be the closest to
the first principal component. However, these two scales have negative correlation
with each other [Table 2]. Thus we should be careful in averaging the scales, if they
are not well correlated [Table 3].

Our analysis suggests that the set of scales has both positively and negatively
(strongly) correlated subgroups. Hence, next we try to compute one or more rep-
resentative scale(s) using neural networks and fuzzy clustering. Groups in a data
set can be found using any clustering algorithm. We use here the fuzzy c-means
[1] algorithm and the self-organizing maps [8] because the chances of finding poor
prototypical scales due to bad initialization are less with both approaches.

2.4. Fuzzy C-Means Based Scale Computation. The Fuzzy C-Means (FCM)
clustering algorithm [1]attempts to cluster data vectors into C groups based on the
distances between them.

The FCM algorithm minimizes the objective function

J = E~1 E.f=,1uijllxj - vi112,

where C is the number of clusters, Xj E RP is the ith data vector, N is the number of
data vectors, m > 1 is the fuzzifier, Uik denotes the membership of kth data vector to
ith cluster and Vi E RP is the centroid of the ith cluster.

First order necessary conditions for U and V at a local minima of J are:

[~ (11Xi - Viii) "'~1]-1 .

f;; IIXi - Vj II ' Vz, k



Scale Amino acids

No Name A R N D C Q E G H I L K M F S T W Y V P

1 ZIMMR 0.83 0.83 0.09 0.64 1.48 0.00 0.65 0.10 1.10 2.52 3.07 1.60 1.40 2.75 2.70 0.14 0.54 0.31 2.97 1.79

2 JONES 0.87 0.85 0.09 0.66 1.52 0.00 0.67 0.10 0.87 3.15 2.17 1.64 1.67 2.87 2.77 0.07 0.07 3.77 2.67 1.87

3 FAUPL 0.31 -1.01 -0.60 -0.77 1.54 -0.22 -0.64 0.00 0.13 1.80 1.70 -0.99 1.23 1.79 0.72 -0.04 0.26 2.25 0.96 1.22

4 KUNTZ 1.50 3.00 2.00 6.00 1.00 2.00 7.50 1.00 4.00 1.00 1.00 4.50 1.00 0.00 3.00 2.00 2.00 2.00 3.00 1.00

5 ABODR 5.10 2.00 0.60 0.70 0.00 1.40 1.80 4.10 1.60 9.30 10.00 1.30 8.70 9.60 4.90 3.10 3.50 9.20 8.00 8.50

6 MEEK 0.50 0.80 0.80 -8.20 -6.80 -4.80 -16.90 0.00 -3.50 13.90 8.80 0.10 4.80 13.20 6.10 1.20 2.70 14.90 6.10 2.70

7 BULDG -200 -120 80 -200 -450 160 -300 0 -120 2260 2460 -350 1470 2330 -980 -390 -520 2010 2240 1560

8 CHOTH 0.38 0.01 0.12 0.15 0.50 0.07 0.18 0.36 0.17 0.60 0.45 0.03 0.40 0.50 0.18 0.22 0.23 0.27 0.15 0.54

9 WERSC 0.52 0.49 0.42 0.37 0.83 0.35 0.38 0.41 0.70 0.79 0.77 0.31 0.76 0.87 0.35 0.49 0.38 0.86 0.64 0.72

10 JANIN 1.70 0.10 0.40 0.40 4.60 0.30 0.30 1.80 0.80 3.10 2.40 0.05 1.90 2.20 0.60 0.80 0.70 1.60 1.50 2.90

11 OLSEN 1.38 0.00 0.37 0.52 1.43 0.22 0.71 1.34 0.66 2.32 1.47 0.15 1.78 1.72 0.85 0.86 0.89 0.82 0.47 1.99

12 MEIRO 0.93 0.98 0.98 1.01 0.88 1.02 1.02 1.00 0.89 0.79 0.85 1.05 0.84 0.78 1.00 1.02 0.99 0.83 0.93 0.81

13 NNEIG 50.76 48.66 45.80 43.17 58.74 49.09 43.48 50.27 49.33 57.30 53.89 42.92 52.75 53.45 45.39 47.24 49.26 53.&9 51.79 56.12

14 CHDLG -0.27 2.00 0.61 0.50 -0.23 1.00 0.33 -0.22 0.37 -0.80 -0.44 1.17 -0.31 -0.55 0.36 0.17 0.18 0.05 0.48 -0.65

15 WSDLG 0.05 0.12 0.29 0.41 -0.84 0.46 0.38 0.31 -0.41 -0.69 -0.62 0.57 -0.38 -0.45 0.46 0.12 0.38 -0.98 -0.25 -0.46

16 JADLG 0.30 -1.40 -0.50 -0.60 0.90 -0.70 -0.70 0.30 -0.10 0.70 0.50 -1.80 0.40 0.50 -0.30 -0.10 -0.20 0.30 -0.40 0.60

17 GUY 0.10 1.91 0.48 0.78 -1.42 0.95 0.83 0.33 -0.50 -1.13 -1.18 1.40 -1.59 -2.12 0.73 0.52 0.07 -0.51 -0.21 -1.27

18 NIOIl 0.23 -0.26 -0.94 -1.13 1.78 -0.57 -0.75 -0.07 0.11 1.19 1.03 -1.05 0.66 0.48 -0.76 -0.67 -0.36 0.90 0.59 1.24

19 MIJER 5.33 4.18 3.71 3.59 7.93 3.87 3.65 4.48 5.10 8.83 8.47 2.95 8.95 9.03 3.87 4.09 4.49 7.66 5.89 7.63

20 ROSEF 0.74 0.64 0.63 0.62 0.91 0.62 0.62 0.72 0.78 0.88 0.85 0.52 0.85 0.88 0.64 0.66 0.70 0.85 0.76 0.86

21 SWEET -0.40 -0.59 -0.92 -1.31 0.17 -0.91 -1.22 -0.67 -0.64 1.25 1.22 -0.67 1.02 1.92 -0.49 -0.55 -0.28 0.50 1.67 0.91

22 SWEIG -0.41 -0.58 -0.92 -1.31 0.16 -0.91 -1.22 -0.68 -0.63 1.24 1.22 -0.67 1.02 1.94 -0.50 -0.56 -0.29 0.51 1.70 0.90

23 PRIFT -0.96 0.75 -1.94 -5.68 4.54 -5.30 -3.86 -1.28 -0.62 5.54 6.81 -5.62 4.76 5.06 -4.47 -1.92 -3.99 0.21 3.34 5.39

24 PRILS -0.26 0.08 -0.46 -1.30 0.83 -0.83 -0.73 -0.40 -0.18 1.10 1.52 -1.01 1.09 1.09 -0.62 -0.55 -0.71 -0.13 0.69 1.15

25 ALFT -0.73 -1.03 -5.29 -6.13 0.64 -0.96 -2.90 -2.67 3.03 5.04 4.91 -5.99 3.34 5.20 -4.32 -3.00 -1.91 0.51 2.87 3.98

26 ALTLS -1.35 -3.89 -10.96 -11.88 4.37 -1.34 -4.56 -5.82 6.54 10.93 9.88 -11.92 7.47 11.35 -10.86 -6.21 -4.83 1.80 7.61 8.20

27 TOTFT -0.56 -0.26 -2.87 -4.31 1.78 -2.31 -2.35 -1.35 0.81 3.83 4.09 -4.08 3.11 3.67 -3.22 -1.85 -1.97 -0.11 2.17 3.31

28 TOTLS -1.37 -1.33 -6.29 -8.93 4.47 -3.88 -4.04 -3.39 1.65 7.92 8.68 -7.70 7.13 7.96 -6.25 -4.08 -4.02 -0.79 4.73 6.94

29 LI -0.12 -0.02 -0.02 0.03 -0.27 0.01 0.04 -0.05 -0.11 -0.39 -0.44 0.07 -0.33 -0.44 -0.05 -0.01 -0.06 -0.30 -0.23 -0.31



No Scale 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 ZIMMR 1 .7 .6 .6 .5 .6 .4 .5 .4 .4 .4 .3 .5 .5 .5 .7 .7 .6 .7 .6 .6 .6 .6 -.2 -.5 -.4 -.4 -.5 -.7

2 JONES .7 1 .8 .7 .7 .7 .4 .7 .4 .4 .5 .4 .6 .7 .6 .7 .7 .5 .6 .5 .5 .5 .6 -.3 -.7 -.4 -.7 -.5 -.7

3 FAUPL .6 .8 1 .8 .7 .7 .8 .9 .8 .7 .8 .8 .9 .9 .9 .8 .8 .8 .8 .8 .8 .8 .8 -.6 -.9 -.8 -.9 -.9 -.9

4 KUNTZ .6 .7 .8 1 .8 .9 .6 .7 .5 .7 .6 .6 .6 .8 .7 .9 .9 .7 .7 .8 .7 .8 .7 -.5 -.8 -.6 -.6 -.7 -.8

5 ABODR .5 .7 .7 .8 1 .7 .4 .6 .3 .4 .5 .4 .5 .6 .5 .7 .7 .5 .5 .5 .5 .5 .5 -.7 -.6 -.4 -.5 -.5 -.7

6 MEEK .6 .7 .7 .9 .7 1 .5 .8 .5 .5 .6 .5 .7 .8 .7 .9 .9 .8 .8 .8 .8 .8 .8 -.5 -.8 -.5 -.7 -.7 -.9

7 BULDG .4 .4 .8 .6 .4 .5 1 .7 .9 1 .8 .9 .8 .8 .9 .7 .7 .8 .8 .7 .7 .8 .8 -.6 -.8 -.9 -.7 -.9 -.8

8 CHOTH .5 .7 .9 .7 .6 .8 .7 1 .8 .7 .9 .7 .9 .9 .9 .8 .8 .9 .9 .9 .9 .9 .9 -.6 -.9 -.6 -1 -.9 -.9

9 WERSC .4 .4 .8 .5 .3 .5 .9 .8 1 .8 .9 .9 .9 .8 .9 .7 .6 .8 .8 .7 .7 .8 .8 -.6 -.7 -.8 -.8 -.8 -.8

10 JANIN .4 .4 .7 .7 .4 .5 1 .7 .8 1 .8 .9 .7 .8 .8 .6 .6 .7 .7 .7 .7 .7 .7 -.6 -.8 -.9 -.6 -.8 -.8

11 OLSEN .4 .5 .8 .6 .5 .6 .8 .9 .9 .8 1 .8 1 .9 1 .8 .8 .9 .9 .8 .8 .9 .9 -.7 -.9 -.7 -.9 -.8 -.9

12 MEIRO .3 .4 .8 .6 .4 .5 .9 .7 .9 .9 .8 1 .8 .8 .9 .6 .6 .7 .7 .7 .7 .7 .7 -.7 -.8 -.9 -.7 -.9 -.8

13 NNEIG .5 .6 .9 .6 .5 .7 .8 .9 .9 .7 1 .8 1 .9 .9 .8 .8 .9 .9 .8 .9 .9 .9 -.6 -.9 -.6 -.9 -.8 -.9

14 CHDLG .5 .7 .9 .8 .6 .8 .8 .9 .8 .8 .9 .8 .9 1 1 .9 .9 .9 .9 .9 .9 .9 .9 -.7 -1 -.7 -.9 -.9 -1

15 WSDLG .5 .6 .9 .7 .5 .7 .9 .9 .9 .8 1 .9 .9 1 1 .8 .8 .9 .9 .9 .9 .9 .9 -.7 -.9 -.8 -.9 -.9 -.9

16 JADLG .7 .7 .8 .9 .7 .9 .7 .8 .7 .6 .8 .6 .8 .9 .8 1 1 .9 .9 .9 .8 .9 .9 -.6 -.8 -.6 -.7 -.8 -.9

17 GUY .7 .7 .8 .9 .7 .9 .7 .8 .6 .6 .8 .6 .8 .9 .8 1 1 .9 .9 .9 .8 .9 .9 -.6 -.8 -.6 -.7 -.8 -.9

18 NIOII .6 .5 .8 .7 .5 .8 .8 .9 .8 .7 .9 .7 .9 .9 .9 .9 .9 1 1 .9 .9 1 1 -.6 -.9 -.6 -.8 -.8 -.9

19 MIJER .7 .6 .8 .7 .5 .8 .8 .9 .8 .7 .9 .7 .9 .9 .9 .9 .9 1 1 .9 .9 1 1 -.6 -.9 -.6 -.8 -.8 -.9

20 ROSEF .6 .5 .8 .8 .5 .8 .7 .9 .7 .7 .8 .7 .8 .9 .9 .9 .9 .9 .9 1 1 1 1 -.6 -.9 -.6 -.8 -.8 -.9

21 SWEET .6 .5 .8 .7 .5 .8 .7 .9 .7 .7 .8 .7 .9 .9 .9 .8 .8 .9 .9 1 1 1 1 -.5 -.9 -.6 -.8 -.8 -.9

22 SWEIG .6 .5 .8 .8 .5 .8 .8 .9 .8 .7 .9 .7 .9 .9 .9 .9 .9 1 1 1 1 1 1 -.6 -.9 -.6 -.8 -.8 -.9

23 PRIFT .6 .6 .8 .7 .5 .8 .8 .9 .8 .7 .9 .7 .9 .9 .9 .9 .9 1 1 1 1 1 1 -.6 -.9 -.6 -.8 -.9 -.9

24 PRILS -.2 -.3 -.6 -.5 -.7 -.5 -.6 -.6 -.6 -.6 -.7 -.7 -.6 -.7 -.7 -.6 -.6 -.6 -.6 -.6 -.5 -.6 -.6 1 .6 .5 .5 .6 .7

25 ALFT -.5 -.7 -.9 -.8 -.6 -.8 -.8 -.9 -.7 -.8 -.9 -.8 -.9 -1 -.9 -.8 -.8 -.9 -.9 -.9 -.9 -.9 -.9 .6 1 .7 .9 .9 1

26 ALTLS -.4 -.4 -.8 -.6 -.4 -.5 -.9 -.6 -.8 -.9 -.7 -.9 -.6 -.7 -.8 -.6 -.6 -.6 -.6 -.6 -.6 -.6 -.6 .5 .7 1 .6 .8 .7

27 TOTFT -.4 -.7 -.9 -.6 -.5 -.7 -.7 -1 -.8 -.6 -.9 -.7 -.9 -.9 -.9 -.7 -.7 -.8 -.8 -.8 -.8 -.8 -.8 .5 .9 .6 1 .8 .9

28 TOTLS -.5 -.5 -.9 -.7 -.5 -.7 -.9 -.9 -.8 -.8 -.8 -.9 -.8 -.9 -.9 -.8 -.8 -.8 -.8 -.8 -.8 -.8 -.9 .6 .9 .8 .8 1 .9

29 LI -.6 -.7 -.9 -.8 -.7 -.9 -.8 -.9 -.8 -.8 -.9 -.8 -.9 -1 -.9 -.9 -.9 -.9 -.9 -.9 -.9 -.9 -.9 .7 1 .7 .9 .9 1



The algorithm iterates between equations 2.2 and 2.1 in that order, as described

below.
Algorithm:Fuzzy C-Means

1. Initialize a valid fuzzy c-partition U.
2. Compute a new set of prototypes using eq. (2.2).
3. Compute a new partition matrix using eq. (2.1) with these new prototypes.
4. Repeat this process ( Steps 2 and 3 alternately) till the entries of the partition

matrix stabilize.
5. Defuzzification : Assign the data vector Xk to the cluster j for which it's mem-

bership value Ujk is largest.

The same procedure can be carried out by initializing the prototypes instead of
the partition matrix in which case the algorithm iterates between equations 2.1 and
2.2 in that order. As the value of m increases the algorithm produces more fuzzy

partitions [1].

We clustered the hydrophobicity scales with various parameters in the above
algorithm and obtained consistent results for C =3 clusters. Experiments with more
than 3 clusters resulted in clusters, 3 of which contained most of the scales and the
rest were almost empty or completely empty. Therefore we settled for C =3 clusters.
The fuzzification parameter m was chosen to be 2 as suggested in [1]. We call a cluster
strong if the membership values of all data points in that cluster are high. Among
the 3 clusters, the strongest cluster is the one which contains the 6 scales which are
grouped together in Table 3. The membership values of the scales in this cluster are
: 0.41 (KUNTZ), 0.93 (MEIRO),0.49 (CHDLG), 0.90 (WSDLG), 0.93 (GUY), and
(0.96) LL

We call the FCM computed centroid as 'the FCM Cluster Center scale'. However,
the scales which are not members of a particular cluster also affect to some extent
the cluster center computation in FCM. Therefore, we create a new scale by taking
a weighted average of the 6 scales grouped together. This new scale is computed
by Equation (2.3). This averaging is unaffected by scales which are not part of this
group. We call this scale 'the scale obtained by FCM averaging'.

N S l L:~=1( membership of scale k in cluster) * ( scale k)ew cae= 6L:k=l ( membership of scale k in cluster)



Group 1 Group 2

ZIMMR, JONES, FAUPL, ABODR, MEEK, KUNTZ, MEIRO, CHDLG,
BULDG, CHOTH, WERSC, JANIN, OLSEN, WSDLG, GUY, LI
NNEIG, JADLG, NIon, MIJER, ROSEF,
SWEET, SWEIG, PRIFT, PRILS, ALFT,
ALTLS, TOTFT, TOTLS

2.5. Self Organizing Map Based Scale Computation. Kohonen's self-organizing
map (SOM) [8] has the interesting property of achieving a distribution of the weight
vectors that approximates the distribution of the input data. This property of the
SOM can be exploited for clustering. The visual display produced by a SOM helps
to form hypotheses about topological structure present in the data [11]. It is a two
layered network with complete connection between the layers. The number of nodes
in the input layer is equal to the dimension of the data. The output layer has a set of
neurons typically having a two dimensional lattice structure. Let the input dimension
be p, then each node in the output layer has an associated weight vector in ~p. For
example, the ith node in the output layer has the weight vector Wi E ~p representing
the connection weights of this node with the p nodes in the layer.
Algorithm:SOM

Input:

• a set of vectors Xi : i = 1,2, ... n =number of data vectors,
• learning rate coefficient a(t) which decreases with iteration t,
• a lateral feedback function gt(r, i) which decreases with iteration t and distance

of the node i from winner node r,
• neighbourhood function Nc(t) which denotes the set of nodes which is the neigh-

bourhood of node c at iteration t, and
• the grid size m x n.

1. Randomly initialize each weight vector Wi(O) for i E {1, 2, ... , m x n}.
2. For each Xi, in iteration no. t:

• (a) Identify the winner node (weight vector) c, that is closest to Xi according
to euclidean distance (i.e. Ilwc(t) - xil12 is smallest).

• (b) update the weights of all nodes in the neighbourhood of the winner node,
as

Wk(t + 1) = Wk(t) + a(t).gt(c, k)(Xi - Wk(t)) for each Wk(t) E Nc(t), the
neighborhood of winner node.

Usually gt(c,k) = exp(II~(t~f) is taken where a(t) decreases with iteration
no. t.



3. Repeat 2 with reducing learning rate a, reducing lateral function g and reducing

neighbourhood size, until all the weight vectors Wi stabilize.

In this paper, use a Map of size 5 by 5. In 15000 iterations the learning rate is reduced
from 0.50 to 0.05 and the square neighborhood size is reduced from 3 to O. Then the
training is continued for 5000 more iterations with learning rate 0.05. This reveals
the structure in data. The trained SOM of a typical run is shown in Table 4.

3 3 1 3

1 1

2 2 3

1 2

1 1 2 1 2

The numbers in this map represent the number of different scales that have
converged at a particular node. The top left corner has scales 12, 15 and 29; and just
below it are the scales 17; 4 and 14. It can be seen from the figure that other scales
are quite distributed and no strong grouping tendency is observed. This is consistent
with the correlation analysis of the data. The above structure is obtained for the
third normalization of the original data. Similar structures are obtained for the other
two normalizations as well. The same experiment was repeated 4 times with different
learning rate and neighborhood update parameters, and each time a similar structure
was observed.

In the above map we have 3 weight vectors, one at each node in the top left corner
of the map, which represent the 6 scales. Each of these 3 vectors can be assigned
importance equal to the number of scales that are represented by it. For example,
the scale which represents the top left corner node in SOM in Table 4 is assigned
importance 3. A weighted average of the 3 weight vectors obtained by SOM yields
a new hydrophobicity scale. The average scale is calculated according to Equation
(2.4). This scale is also included in Table 5.
(2.4)

N S l Lk( no. of scales converging at node k) * ( weight vedor of node k )ew ca e = -~----=------------'---'-----'----------'-
Lk( no. of scales converging at node k )

It is interesting to note that although the three scales in table 5 were computed
by two widely different methods, the correlation coefficient and the rank correlation
coefficient between the SOM scale and the FCM averaging scale is 0.9963 and 0.9868
respectively.



Amino BySOM By FCM By FCM
acid Analysis Averaging Cluster Center
A -0.11 -0.12 -0.14
R 0.20 0.16 0.11
N 0.06 0.04 0.02
D 0.19 0.16 0.12
C -0.37 -0.41 -0.44

Q 0.17 0.15 0.13
E 0.22 0.18 0.14
G 0.00 0.00 0.00
H -0.15 -0.18 -0.23
I -0.45 -0.52 -0.54
L -0.37 -0.47 -0.51
K 0.29 0.26 0.23
M -0.34 -0.42 -0.45

F -0.46 -0.56 -0.60
8 0.12 0.08 0.07
T 0.04 0.04 0.03
W 0.04 0.01 0.00
Y -0.37 -0.41 -0.45

V -0.09 -0.17 -0.21
P -0.39 -0.44 -0.47

First we assess the quality of the new scales in terms of the grouping of amino
acids that they impose. Then we evaluate the scales in prediction of protein folds.

3.1. Assessment of the Hydrophobicity Groups. We consider five scales here.
Three of these are proposed in this paper, the fourth one is the Kyte-Dolittle scale
[10] (it is widely used by the bioinformatics community) and the last one is used by
Dubchuk et al. [5]. The last scale was proposed by Chothia and Finkelstein [3] and
we denote it by CHOFIN in this paper.

Table 5 clearly suggests that the amino acids can be divided into three natural
groups. For example, the 80M scale gives the following groups: Polar (hydrophobicity
values ranging from 0.12 to 0.29), Neutral (values from -0.15 to 0.06) and Hydrophobic
(values from -0.46 to -0.34). The scales relating to the FCM Cluster Center, FCM
Averaging and the Kyte-Dolittle scale can similarly be grouped. The grouping for
CHOFIN scale is as used in [5]. The groups for all the five scales are shown in Table



6. It is evident from the table that the two new scales obtained by FCM analysis
divide the amino acids into identical groups. These groups are almost identical to
the grouping obtained by the SOM scale, except the position of amino acid Serine(S).
Serine is on the boundary of the groups "Polar" and "Neutral". In the SOM scale,
Serine falls in polar category whereas in the FCM scale it is categorized as neutral.

TABLE 6. Hydrophobicity ba$ed grouping of amino acids

Hydrophobic Neutral Polar
SOM C,F,I,L,M,P,Y A,G,H,N,T,V,W D,E,K,Q,R,S

FCM Average C,F,I,L,M,P,Y A,G,H,N,S,T,V,W D,E,K,Q,R
FCM Cluster Center C,F,I,L,M,P,Y A,G,H,N,S,T,V,W D,E,K,Q,R
Kyte- Dolittle A,C,F,I,L,M,V G,P,S,T,W,Y D,E,H,K,N,Q,R

CHOFIN C,F,I,L,M,V,W A,G,H,P,S,T,Y D,E,K,N,Q,R

3.2. Dubchuk et al.'s feature set for protein fold prediction. One of the most
successful set of features used for prediction of protein folds consists of global de-
scription of the chain of amino acids representing proteins [5]. This set of features
contains 125 features which have been used extensively in the context of SCOP clas-
sification [6]. The data sets with these features are available at http://www .nersc.
gov/-cding/protein.

In the present study we also use this set of 125 features. Of the 125 features, 21
features are computed based on assigning hydrophobicity values in 3 groups: Polar,
Neutral and Hydrophobic. The grouping is shown in Tabel 6.

We use the following four datasets :

1. 125 features from [5].

2. 104 features from [5] and 21 features corresponding to hydrophobicity generated
by using the proposed SOM hydrophobicity scale.

3. 104 features from [5] and 21 features corresponding to hydrophobicity generated
by using the proposed FCM hydrophobicity scales. (We need to generate only
one dataset for the two FCM scales since both these scales group the amino
acids in identical groups.)

4. 104 features from [5] and 21 features corresponding to hydrophobicity generated
by the widely used Kyte-Dolittle scale [10].

3.3. Extended feature set for protein fold prediction. The dataset used in the
previous section depends only on the hydrophobicity groups generated by the scale
used, and not on the actual magnitudes of the hydrophobicity assigned. A new set
of features consisting of 447 features was proposed in [15] which has been shown
to be superior to the SCOP dataset for protein fold prediction [15]. We generated



447 features, as described in [15], for the CHOFIN scale [3], Kyte-Dolittle Scale and
the three scales proposed by us. The three scales proposed in this paper are linear
combinations of 6 normalized scales as already described in previous sections. The
most dominant scale in our grouping is that scale which contributes the highest weight
in the linear combination. Similarly, the least dominant scale is the one which has the
least weight in the linear combiner. To evaluate whether the combination of scales
used by us has been effective in improving the protein fold prediction accuracy, we
also generated 447 features for the most and least dominant scales in our grouping of
scales, namely the scale due to Li et al. [12] and the scale due to Kuntz [9]. Multi

layered perceptron network is used to evaluate the protein fold prediction accuracy.

TABLE 7. Grouping of amino acids based on attributes ( an extended
version of Table 1 in [5])

Property Group 1 Group 2 Group 3 No of
features

Hydrophobiicty (H) Polar Neutral Hydrophobic 21
R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W

Volume (V) 0-2.78 2.95 - 4.0 4.43 - 8.08 21

Polarity (P) 4.9 - 6.2 8.0 - 9.2 10.4 - 13.0 21
Polarizability (Z) 0.0 - 0.108 0.128 - 0.186 0.219 - 0.409 21
Predicted Secondary
Structure (S) Helix Strand Coil 21
Composition (C) - - - 20

3.4.1. Dubchuk et ai. 's features. We use the same data set used by Dubchuk et al. [5].

The dataset consists of 313 training and 385 test protein sequences. Each sequences
is converted to features as described in [5]. Since the only group that we changed is
hydrophobicity, we only need to compute the 21 features related to hydrophobicity;
rest of the features are the same as used in [5]. From the features obtained, we have
experimented on various combinations of features. Results are reported on hydropho-
bicityalone (H), composition and hydrophobocity (CH) and all six types of features
namely composition, predicted secondary structure, hydrophobiicty, polarity, volume
and polarizability (CSHPVZ). We have used a multi layered perceptron (MLP) net-
work consisting of 3 layers: (a:b:c), where a,b and c are the number of nodes in the
input, hidden and output layer respectively. We use the architectures (21:70:27);
(41:75,27) and (125,9,27) for H, CH and CSHPVZ respectively. The number of hid-
den layer neurons is increased with the increase in the dimension of input vector.



The network is trained by backpropagation with no momentum and learning rate 0.3.
Each experiment was repeated 10 times with different initializations of weights and

the best results are reported in Tables 8 and 9.

It is evident from the tables that the proposed new scales have good discrimina-
tory power with respect to fold prediction. Table 8 shows that we are able to achieve
a 4.2% increase in classification accuracy over the CHOFIN scale by using the new
FCM scales with features genearted from hydrophobicity alone. All the three new
scales consistently give better or equal accuracy than CHOFIN and Kyte-Dolittle
scales even with more features. When all the 6 types of features (namely CSHPVZ)
are used, the new scales are better than CHOFIN scale and equal to the Kyte-Dolittle
scale in accuracy. Among themselves, the FCM scales are better than the SOM scale.
Note that, at this stage, we cannot distinguish between the two FCM scales as both

produce the same grouping of amino acids.
From Table 9, we can see that the FCM scales are better than or equal to the

Kyte-Dolittle and CHOFIN scales in 18 and 21 out of 27 classes when using the fea-
tures derived only from hydrophobicity (H). The FCM scales are better than or equal
to Kyte-Dolittle scale in 18 and 16 out of 27 classes for CH and CSHPVZ; and are
better than or equal to CHOFIN scale in 21 and 23 out of 27 classes in the case of
CH and CSHPVZ.

The SOM scale is better than or equal to Kyte-Dolittle in 17,16 and 27 classes
out of 27; and better than or equal to CHOFIN in 18,18 and 23 classes out of 27
when using feature sets H, CH and CSHPVZ respectively.

TABLE 8. Protein fold classification accuracy for 27 classes

Feature Sets Network Size FCM SOM CHOFIN Kyte- Dolittle
H 21:70:27 29.1 28.3 24.9 28.3

CH 41:75:27 44.2 43.9 43.9 43.6
CSHPVZ 125:95:27 50.9 50.9 47.0 50.9

3.4.2. Extended features. Using the same training - test partition as used in the pre-
vious section, we have generated an extended feature set containing 447 features for
the CHOFIN scale [3], the Kyte-Dolittle scale, the three proposed scales, the scale
by Kuntz [9] and the q-values scale of Li et al. [12]. Here also MLP network with
one hidden layer is used. The number of neurons in the hidden layer is kept fixed at
135 i.e., we used (447:135:27) architecture. Fixed learning rate of 0.3 is used without
any momentum term. The results for the extended feature set are summarised in
Table 10. In this case, the SOM scale and the two FCM scales exhibit a marginally
improved performance over the other scales. The scale obtained by FCM averaging
is found to produce the most accurate results among all the scales.



Folding No of H(%) CH(%) CSHPVZ (%)

Class Samples FCM SOM CHO KD FCM SOM CHO KD FCM SOM CHO KD

1 6 83.3 83.3 50.0 66.7 83.3 83.3 66.7 83.3 83.3 83.3 83.3 83.3

3 9 55.6 66.7 44.4 22.2 66.7 66.7 44.4 77.8 88.9 88.9 77.8 88.9

4 20 30.0 30.0 20.0 25.0 40.0 35.0 35.0 45.0 55.0 40.0 50.0 40.0

7 8 12.5 37.5 0.0 0.0 62.5 50.0 37.5 25.0 62.5 50.0 62.5 50.0

9 9 55.6 55.6 55.6 55.6 88.9 88.9 77.8 77.8 100.0 100.0 88.9 100.0

11 9 11.1 22.2 11.1 22.2 33.3 44.4 44.4 33.3 22.2 44.4 33.3 44.4

20 44 20.5 36.4 27.3 36.4 47.7 45.5 50.0 50.0 50.0 56.8 47.7 56.8

23 12 25.0 16.7 25.0 8.3 50.0 41.7 50.0 33.3 58.3 41.7 41.7 41.7

26 14 64.3 21.4 35.7 50.0 57.1 57.1 57.1 42.9 57.1 71.4 64.3 71.4

30 6 0.0 0.0 0.0 16.7 33.3 16.7 16.7 33.3 50.0 33.3 33.3 33.3

31 8 37.5 0.0 50.0 37.5 62.5 62.5 50.0 37.5 50.0 50.0 37.5 50.0

32 19 31.6 10.5 15.8 15.8 21.1 21.1 21.1 5.3 15.8 21.1 15.8 21.1

33 4 0.0 0.0 25.0 50.0 50.0 25.0 50.0 50.0 50.0 50.0 50.0 50.0

35 4 0.0 0.0 0.0 0.0 25.0 25.0 25.0 0.0 25.0 25.0 25.0 25.0

39 7 0.0 14.3 57.1 14.3 42.9 42.9 42.9 57.1 28.6 42.9 42.9 42.9

46 48 25.0 29.2 35.4 37.5 31.3 45.8 54.2 56.3 58.3 43.7 52.1 43.7

47 12 25.0 16.7 8.3 25.0 66.7 66.7 25.0 33.3 41.7 50.0 41.7 50.0
48 13 23.1 7.7 7.7 23.1 23.1 15.4 23.1 15.4 46.2 53.8 38.5 53.8
51 27 18.5 25.9 18.5 33.3 33.3 33.3 40.7 37.0 40.7 40.7 22.2 40.7
54 12 25.0 33.3 25.0 16.7 58.3 58.3 41.7 33.3 41.7 33.3 41.7 33.3
57 8 25.0 37.5 0.0 12.5 25.0 37.5 12.5 25.0 37.5 50.0 37.5 50.0
59 14 14.3 14.3 21.4 28.6 28.6 21.4 28.6 35.7 42.9 50.0 50.0 50.0
62 7 42.9 28.6 28.6 28.6 57.1 57.1 42.9 57.1 57.1 57.1 42.9 57.1
69 4 25.0 25.0 25.0 0.0 0.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
72 8 12.5 25.0 0.0 0.0 0.0 25.0 0.0 0.0 12.5 25.0 12.5 25.0
87 27 22.2 11.1 18.5 7.4 25.9 22.2 33.3 33.3 29.6 33.3 29.6 33.3
110 26 69.2 65.4 34.6 50.0 92.3 76.9 88.5 88.5 100.0 100.0 96.2 100.0

Total 385 29.1 28.3 24.9 28.3 44.2 43.9 43.9 43.6 50.9 50.9 47.0 50.9

Scale Classification Accuracy %
CHOF1N 50.1
Kyte-Dolittle 48.8
L1 50.6
KUNTZ 49.6
SOM 50.9
FCM Cluster Center 50.6
FCM Averaging 51.2

A large number of scales for amino acid hydrophobicity are available in literature.
We have chosen 28 scales from [4] and the scale due to Li et al. [12] in this study.
We first use correlation analysis to reveal that in the set of these 29 hydrophobicity



scales, there are two distinct groups of scales, such that the members in each group
have positive correlation with all scales in that group and negative correlation with all
scales in the other group. Then we have used self organizing feature map and fuzzy
clustering algorithm to generate three new hydrophobicity scales. We also proposed
new schemes to compute more useful representative scale exploiting properties of
SOM and fuzzy memberships.

To demonstrate the superiority and effectiveness of the proposed scales, we have
used them in protein fold prediction in the context of SCOP database. The three
scales proposed in this study are found to be at least as good as the widely used Kyte-
Dolittle scale and better than the CHOFIN scale [3] for protein fold prediction. The
new scales can also be used in other bioinformatics problems where hydrophobicity
of amino acids has a role to play.
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