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Abstract

The main objective of this work is to develop a methodology for risk management in a
distributed system. Security is a very important issue when different users have potential
access to operations of various databases of a system. There are benefits and risks
involved in allowing these accesses overtime. Assuming that the probability of a user
being hostile may be crisp or fuzzy is partially known, we implement fuzzy linear
programming to maximize the benefits while keeping the loss under a certain fuzzy limit
within the time allocation for each user. Furthermore, we develop an approach using
fuzzy cognitive map to help estimate the probability of the user being hostile. In the
paper, we use a specific model for simplicity in illustrating our methodology but the
model can be extended to general problems of allocation of resources in a highly
sensitive information distributed system such as online banking.

Recently, requirements in computer communications relative to the benefits and risks
posed by a great variety of users have dramatically expanded. Distributed processing
systems have brought in a very large population of users accessing multiple databases.
The banking area [2] is just one example of the many areas involved.
Distributed systems provide potential benefits and risks. Security is of prime concern and
is a much more complex issue than the one raised by traditional networks [13]. An
attempt to address the issue of the potential risk was the main goal of [1]. In this work a
set of users is considered. Each of these users has potential access to operations of
various databases. There is fuzzy probability of hostility associated with each user, and a
fuzzy tolerance for potential damage. The fuzzy expected loss is then computed and
compared with the fuzzy tolerable damage using the criterion defined by Jain in [4]. No
potential benefit is considered in [1]. To obtain a more realistic model we propose in the
present work to maximize the potential benefit subject to not going over the tolerance for
potential fuzzy losses. Another important element missing in [1] is how to begin
estimating the fuzzy probability of hostility for a user. The problem considered in the
present work is also different from the direction taken in [1]. The purpose here is to
evaluate a "reasonable" amount of time to be allocated to a user for different operations
on different databases. In section 2, we define formally the main goal of the present work
and maximize the potential benefit subject to not going over fuzzy tolerable losses. For
the necessary background in Fuzzy Logic we refer the reader to the work contained in
[9]. For specific information in fuzzy linear programming we refer to [9,11, 17].

The results of Section 2 do depend on the fuzzy probability of hostility of a user. In
Section 3 we outline an approach to estimate that probability. We propose the use of a
fuzzy cognitive map. For material on fuzzy cognitive maps we refer to [3, 16]. In this
section, we use a specific model for simplicity in illustrating our methodology but the



model can be extended to general problems of allocation of resources in a highly
sensitive information distributed system such as online banking.

In Section 4 we assume that we have some information on a set of users (some of the
information might be obtained by the methods outlined in the previous sections). Now a
new user is considered. Some policies are applied to the new user by comparing that user
to the set of users we have some information on. We achieve this by introducing masses
in the sense of [15] and obtaining a body of evidence on the set of users. For information
on the use of body of evidence we refer to the works of [10, 14].

Finally, in Section 5, a different approach is taken. There is a set of possible time slices
for a user. A selection of the "right slice" must be made. To do this a fuzzy decision
approach is taken where goals and constraints playa symmetrical role. For fuzzy decision
making the works contained in [5, 7, 8] constitute a comprehensive source. It is worth
noting that in this context the potential benefits and losses are fuzzy sets of type 2 which
recently have become the subject of much interest. The works in [6, 12] are excellent
introduction to fuzzy sets of type 2.

We begin by formally defining the problem. Let X = {xl'X2, ... ,xn} be the set of n users.
Each user may want to perform operations {Oi\' Oi\'" ., Oi\J on the data set dk where 1
~k~N.

We have some partial information regarding these users. In particular we have some
estimate on the probability Phi of the user Xi being hostile. Denote by ti~/ the time slice
allocated to user Xi to perform operation Oi~jon the data set dk where 1 ~j ~ nk, 1 ~ k ~ N,

and 1 ~ i~n. Denote by <jthe benefits/losses associated with Oi~jper unit of time. We

may express Ci~j as

L

ck
. = (1-Ph. )bk . - Ph." a/k .J,J J l,) I L..J ,r,)
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Where 1denotes the type of damage/loss and 1 ~ 1~ L. bi~jdenotes the benefit derived per

unit of time from Oi~jif no hostility was present, and a~i,jdenotes the damage of type 1

sustained per unit of time by operation Oi~j if the user turns out to be hostile.

The main goal of the present work is to get reasonable estimates for tk . under a variety of'.J
conditions. As noted above, there are L types of potential losses. Let {'Z'1' 'Z'2'"'' 'Z'J denote
the set of tolerances for each of those losses. (n other words, one does not really want to
exceed Zi for losses of type I. A straight forward way to think about these losses could be
in terms of dollar amounts.

Obviously we would like to maximize the potential gain while not exceeding our
tolerance for loss of type 1where 1 ~ 1 ~ L. The problem then can be formulated as linear
programming problem. The solution should yield reasonable values for tk .•
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The solution to the above problem represents maximizing the benefit subject to keeping
the losses within the appropriate tolerance over the set of all n users. We make ti fuzzy.
The membership functions of ti where 1 ~ I ~ L are of the type shown in Figure 1.

Thus we decide to totally tolerate loss up to Tl, then our willingness to tolerate goes
down.

!~
TZ Tl+!lfl

Figure 1: Membership Function of 1;

Past a loss of T1 + Ml our willingness is null. The quantity Ml thus denotes the largest
"extra tolerance", the willingness to go "the extra mile" for loss. Thus the membership
function for ti is defined as

{

I if x..:;, ~
~+M/-x .t',(x)= ---- If1;5:x'5:I;+M/
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Thus the right hand sides of the constraints are fuzzy sets. We assume right now that the
left-hand side consists of real quantities. We define the vector 'f'whose typical component
is tk .• Let

I,J

D/('f')='f'/(""a/k .tk.J£... ,I,j 't)

k,i,j

Then D/ ('f') represents the degree to which the ti~j satisfy the lib constraint. Indeed

'f'/(La~;,}i~jJ = 1 if and only if La~;,}i~j ~ ~
k,i,j k,i,j

otherwise the constraints are partially satisfied. The feasible set is then defined as
Ln D/ ('f') where n denotes the minimum operator. The feasible set is then the minimum

/=1



degree overall constraints satisfied by t~j' The lower bound of the optimal values is given
by the solution to the standard linear programming problem.

M" Z~kkaxullize = £..Ci,}i,j
k,i.i

~ all. .tk. '5. T.
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k,i,j

The upper bound of the optimal values is given by replacing T/ in the above constraints
by T/ + M/. Let Z/ and Zu denote the lower and upper bound values of Z, The extent to
which t~.meet the goal of maximizing Z is 1 if Z exceeds Zu and is 0 if Z falls below Z/•• J

and is defined linearly between Z/ and Zu. Thus the extent to which the goal is met is
given by

if Zu '5. L<jt~j
k,i,j

The problem is to maximize the joint condition of meeting the goal and satisfying the
L

constraints, i.e. to obtain the -rmaximizing n DI (-r) /\ G(-r)i.e. we need to obtain the
1:1

L

AE nD/(-r)/\G(-r)
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A(Zu-Z/)- LCi~A~j '5.-Z1
k,i,j

AM/+ 'L<lj '5.1;+M/
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A,tikj ~ 0

The above is a standard linear programming problem. The first constraint comes from
L

A ~ Get'). The second constraint comes from A '5. nD/(-r). To sum up the steps outlined
1:1

1) Obtain Z/ by solving (Pl).
2) Obtain Zu by solving (PI) with 1; replaced by 1; +MI'



3) Obtain ti~j by solving (P2) with c:j replaced by

L
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h=l

with ai,h and Pi,h in [0, 1], Recall that this notation (see [9] for example) implies that the
probability that Phi is Pi,h is ai,h' The procedure then is to solve the linear programming
problem as outlined in the 3 steps above for every index vector
h=(~,~, ... ,hJ,I~hi~Niwith Phi=Pi,hi where i = 1, 2" .. , n and obtain the

corresponding time slices tk .(h). The final solution is then given by the fuzzy time slices
.,J

defined by

tk. = '" (mina. h)/tk. (h)I.J L.. . J, I J,)

h •

where the sum is overall index vectors h. A defuzzification process, see [9] would then
yield a numerical value for t:j•

3. USING FUZZY COGNITIVE MAPS TO ESTIMATE Phi

The results of the previous section depend on the values of Phi. The goal of this section is
to indicate how using Fuzzy Cognitive Maps will help in the estimate of Phi. Fuzzy
Cognitive Maps have been used in a variety of situations including plant control [3] and
fuzzy knowledge processing [16]. The information compiled on a typical user Xi could
look as outlined below.

c3: Past History of
Devious Behavior

c4: User Worked
for Competitor

cq: User has
Trustworthy

For clarity sake only a few lines are represented. The lines labeled "+" from Ci to Cj
represent the proposition Ci implies Cj• Lines label "-" represent the fact that Ci prevents
Cj. Of course such a directed graph need to be binary and links can have values between



-1 and +1 for example. Again for simplicity sake we have assumed that a link can only
have the value -lor +1. Thus the completed graph above could be represented by matrix

C1 C2 C3 C4 Cs C6 C7 Cs Cg CIO
C1 0 1 0 0 1 0 0 0 1 0
C2 0 0 0 0 0 0 -1 1 1 0
C3 0 0 0 0 0 1 -1 1 0 0
C4 0 0 0 0 0 0 0 0 1 0

M= Cs 0 1 0 0 0 -1 -1 0 0 1

C6 0 0 0 0 0 0 0 1 1 1

C7 0 -1 -1 0 0 1 0 -1 -1 1
Cs 0 0 0 0 -1 0 -1 0 -1 -1

Cg 0 0 0 0 0 0 -1 -1 0 -1

CIO 0 0 0 0 0 0 0 -1 -1 0

A zero entry in Cijdenotes the absence of any link from C to Cj.We input to the system
the node CI i.e. the user is "not a US citizen. This system behaves similarly to temporal
associative memories that is a dynamical system reaches equilibrium via forward
evolving inferences. The system forms a recurrent net where links provide the means of
"input" nodes to fire at "output" nodes and vice versa. In our example

[10, 0,0,0.,=[0 0,1, ,1,O,O,Q<»]=> [1, ,0,1,00,0,1,0]

The -1 are changed to 0 on account of the threshold operation, where the threshold is say
0.5. Therefore [,1 ,0,1 ,0,I,otDjis a fixed point, meaning -- If the user is a non US
citizen then there is unknown history, the user is relatively new, the risk is average. In
this case we might consider Phi = 0.5 as a reasonable value. On the other hand if we
assume the user has a trustworthy background, we turn off C1 and turn on C7 then

C7 is continuously on

[0 0,0,

Thus we have a fixed point and no inference shows up except that user has a trustworthy
background. As the last example take the case of a non US citizen with highly
sophisticated skills then taking the first fixed point, turning off non citizen and turning on
C6 we obtain

[01, ,0, I,I,o,o,O]M= [0 ,1, ,0,91,-3 ,1,1]

After the threshold operation this changes to [0, 0,1,0,0,0, ,Ulland

[01, 0,0,0, ,Iij. = [0, ,0,0,0,0,00,0]=> [0, 0,0,0 0,1,0,0]0



[0 ,0,O)IWi9,Ao.0 ,0,0,0,QI"t]=>[0 0,0,0,1,0,1))]

[0 0,0,00,1 ,otlJ1 = [0, ,0 ,0,0,0,1\Ql]=> [00,0, ,0,10,1. ,1]

Now the risk is low, average, high. This indicates the fuzzy nature of Phi under such
conditions. A reasonable fuzzy value for Phi might be

Phi = 0.6/0.2 +0.7/0.5 + 0.6/0.8

In this section we assume we have determined possible time slices ti~j for a set of users
X = {Xl' X2' ••• , xJ. A new user x' is now under consideration and our goal is to determine
the time slices t:.j for x· . On a scale of 0 to 1 it might be difficult to assign a similarity

score to the pair x·, Xi' Instead we chose to partition [0, 1] into subintervals

Let m;(Ii,s) denote the fraction of experts whose opinion is that similarity score of
x· andxj is some number falling in Ii,s. Clearly

N,

"m.(/. )=1
~ I 'tS

s=1

We may view mi as a mass with focal element in the sense of [15]. We now introduce a
function that reflects on how falling in the interval!;,t implies similarity. Let

• I-a
ds(x ,xJ=(l-Mis)+--II .. 1, a I,.

Here I Ii,s I denotes the length of Ii,s that is ri,s - ii,s. Mi,s denotes the midpoint of Ii,s that is
r +i.

I,S 2 I.S and a is a parameter where 0 :::;a :::;1. The function ds actually reflects the

dissimilarity of x· and Xj' If Mi,s is close to 0, 1- Mi.s is large, d s(x' , Xi) is large and the
similarity score being in Ii,s is low. Conversely, if Mi,s is close to 1, I Ii,s I is small and the
similarity score falling in Ii,s is high while ds(x' ,xJ is low. It is worth noting that a large I
Ii,s I leads to large dissimilarity because experts are then uncertain about the similarity
score to assign.

If we pick a = 0 5. then

ds(x',xJ = (l-Mi,s)+ I Ij,s I

The distance of Mi•s to 1 and I Ii,s I play then an equal role in contribution to the
dissimilarity of x· andxj• We would like to normalize the dissimilarity so we set



D (• .) = d s (x' ,xJsx,xr ~
Maxlds(x ,xJJ

s

Ss(x' ,xJ = 1-DsCx' ,xJ

This comes from placing the score in Ii•s so we define the average similarity of
x· andxjas

N,

AvgSim(x',xJ = Lm;CIj.JSs(x·,xJ
s=l

We then define the fuzzy time slices for x· as

t~j = L AvgSim( x· ,xJ Itj~j

Then estimating t:j, for example, by methods previously outlined and applying some

defuzzification to t~j [9], we obtain an estimate for t~j' It is worth mentioning that the

estimate t~j was obtained by looking how similar x· was on the average to the set of
users {Xl' xl" .. ,xJ. Applying the combination of masses rule for independent experts,
one could work with a consensus mass instead of mi, see [5]. Again, for simplicity sake
we did not do this. The same comment could be applied to the previous section where a
consensus fuzzy cognitive map could have been considered.

Example: Assume a set of users is X = {.xl' x2' x3} with the following subintervals and
assigned masses.

User Subinterval Mass Midpoint

Xl It 1 = (0, 0.5] m(1t 1) = 0.5 Mil =0.25
It 2 = (0.5, 1] m(1t 2) = 0.5 M12 = 0.75
lz 1 = (0, 1/3] m(lz 1) = 1/3 M21 = 1/6

X2 lz 2 = (1/3, 2/3] m(lz2) = 1/3 M22 =0.5
lz 3 = (2/3, 1] m(l23) = 1/3 M23 = 5/6

X3 hi = (0,1/4] m(h 1) = 0.4 M31 = 1/8
h2 = (1/4,1] m(h2) = 0.6 M32 = 5/8

Then, the dissimilarity for the new user x· and Xl can be computed as follows. First find
the dissimilarity score, that is

d\ (x' ,Xl) = (1-0 25) +05.= 1.25
d2(x' ,Xl) = (1-0 75) +05.= 0.75

Then normalize the score between 0 and 1, we obtain normalized dissimilarity as

D\(x',x\)=1251 .15=1
D2(x',x\)=0751 25.:t0.6

Next the similarity can be determined as



SI(X',x1)=1-1=0

S2(X',X1) =0 75/125.= 1-0.6=0.4

Thus, the average similarity of x· and Xl is

AvgSim(x',x1) = 0.5xO+0 5x0.4 = 0.2

Similarly, the average similarity of x· and X2, and x· and X2 can be obtained as follows

AvgSim(x',x2) = 0.27 and AvgSim(x',x3) = 0.27

That means the fuzzy time slices for x· is

t~j = 0 /~j +0 29/t~,j +0.27/t~,j

By defuzzification, the numerical value oftime slices for x· can be determined.

We assume in this section that for client x·, there is a list of possible time slices
{t:,j,p, P = 12, ... ,N~J Which of these slices should be allocated to x'? A possible way
to approach this is to view this as a decision problem, see [5, 7]. For a decision problem
the following components are needed: A set of possible actions/alternatives, a set of goals
and a set of constraints. Reasonable goals in the present case could be

(1) Potential benefit should be high
(2) Losses should be kept low

Constraints could be

(1) Assume that the time line is partitioned into subintervals K~,v' where 1:S; v:S; M,

we would like the solution t:,j,p to fall in an interval K~,vofhigh mass m~,/K~,v)

(2) For that K~,v of high mass we would like time slice of a user Xi, t~j to fall not too

far off K~,v

Constraints (1) and (2) can be summed up as follows: The candidate t:, is a good time
,J,P

slice for x· if the belief is high that it falls in some interval such that some user has been
allocated a time slice not falling too far from that interval.

The benefit coming from t:,j,p being allocated is

B(t:,j,p) = (1- Ph.)b~jt~j,p

And the loss of type j for such an allocation is

~(t:,j,p) = Ph.a;",jt~j,p

Note that Band L[ are fuzzy sets of type 2 on candidate time slices as Ph., b:., a;.. are
,J , ,J

typically fuzzy. We now define three fuzzy sets whose membership functions are as
shown in Figure 2.
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fuzzy time slice for the new user. A defuzzification process would then yield a possible
time slice for the new user. In the last section there is a list of possible time slices for a
new user. A selection from that list is then make by defining reasonable goals and
constraints and treating this problem as a classic fuzzy decision making problem. The
goals involve fuzzy sets of type 2 and for this reason possibility functions are introduced
in the expression of the fuzzy decision.
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