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Abstract: In this paper, neuro approach is proposed for solving Matrix Riccati Differential Equa-
tion(MRDE). Experiments show that the proposed Levenberg-Marquardt training method can be
efficient for obtaining solutions in shorter computation time. The goal is to provide optimal control
with reduced calculus effort by comparing the solutions of the MRDE in the well known RK-method
and RK-Butcher method. A numerical example is presented to illustrate the implementation of arti-
ficial neural network (ANN) for the proposed method is given.
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1. Introduction

Neural networks or simply neural nets are computing systems, which can be trained to learn a com-
plex relationship between two or many variables or data sets. Having the structures similar to their
biological counterparts, neural networks are representational and computational models processing in-
formation in a parallel distributed fashion composed of interconnecting simple processing nodes [17].
Neural net techniques have been successfully applied in various fields such as function approximation,
signal processing and adaptive (or) learning control for nonlinear systems. Using neural networks
a variety of off-line learning control algorithms have been developed for nonlinear systems [9, 11].
A variety of numerical algorithms have been discussed for solving the algebraic Riccati equation[3].
Neural networks problem have attracted considerable attentions in recent years of many researchers
for numerical aspects for algebraic Riccati equations (see [4, 6, 18, 19]).

Solving the Matrix Riccati Differential Equation(MRDE) is a central issue in optimal control the-
ory. The needs for solving such equations often arise in analysis and synthesis such as linear-quadratic
optimal control systems, robust control systems with H2 and Hoo-control [20] performance criteria,
stochastic filtering and control systems, model reduction, differential games etc., and many others. In
particular, the solution of algebraic Riccati matrix equations(ARME) in continuous-time (or) discrete
time is an important task for nonlinear matrix equations arising in mathematics and engineering. This
equation, in one form or another, has an important role in optimal control problems, multivariable
and large scale systems, scattering theory estimation, detection, transportation and radiative transfer
[7]. The solution of this equation is difficult to obtain from two points of view. One is nonlinear and
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the other is matrix form. Most general methods to solve MRDE with a terminal boundary condition
are obtained on transforming MRDE into an equivalent linear differential Hamiltonian system [8]. By
using this approach the solution of MRDE is obtained by partitioning the transition matrix of the as-
sociated Hamiltonian system (see [13, 16]). Another class of method is based on transforming MRDE
into a linear matrix differential equation and then solving MRDE analytically (or) computationally
(see [10, 14, 15]). In [10], an analytic procedure of solving the MRDE of the linear quadratic control
problem for homing missile systems is presented. The solution K(t) of the MRDE is obtained by using
K(t) = p(t)/ f(t), where f(t) and p(t) are solutions of certain first order ordinary linear differential
equations. However the given technique is restricted to single input.

Although parallel algorithms can compute the solutions faster than sequential algorithms, there
is no report on neural network solutions for MRDE. Recently Balasubramaniam et al [1, 2] focused
upon to find the optimal control for singular systems using neural networks. This paper focuses upon
the implementation of neurocomputing approach for solving MRDE so for the optimal solution. The
structured neural network architecture is trained using Levenberg-Marquardt algorithm [5J to prove
the efficiency for solutions in shorter computation time. An example is given which illustrates the
advantage of the fast and accurate solutions compared with RK-method and RK-Butcher method
solutions.

This paper is organized as follows. In section 2 the statement of the problem is given. In section
3, solution of the MRDE is presented. In section 4, a numerical example is discussed. The final
conclusion section demonstrates the efficiency of the method.

Consider a completely state controllable linear system as follows:

x(t) = Ax(t) + Bu(t), x(O) = XQ

where x(t) E jRn is the state vector, u(t) E jRm is the control vector, A E jRnxn and B E jRnxm are
known coefficient matrices associated with x(t) and u(t) respectively, XQ is a given initial state vector
and m :Sn. If all state variables are measurable, then a linear state feedback control law

u(t) = -W1BTA(t)

can be obtained to the system described by equation (1) where

K(t) E jRnxn matrix such that K(tf) = S.

In order to minimize both the state and control signals of the feedback control system a quadratic
performance index is usually minimized :

1 I1t
!min J = _xT (tf )Sx(tf) + - [xT (t)Qx(t) + uT (t)Ru(t)]dt2 2 Q

where the superscript T denotes the transpose operator, Q E jRnxn is a symmetric and positive definite
(or semidefinite) weighting matrix for x(t), R E jRmxm is a symmetric and positive definite weighting
matrix for u(t). It is well known in the control literature that to minimize J is equivalent to minimize
the Hamiltonian equation

1 1
H(x, u, A, t) = "2xT(t)Qx(t) + "2uTRu(t) + AT(t)[Ax(t) + Bu(t)]

along the optimal trajectory.
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Since equation (8) holds for all non-zero x(t), then the term pre-multiplying x(t) must be zero.
Therefore, we obtain the following (MRDE) for the linear system (1)

In the process of solving the equation (9), the MRDE is transformed into a system of nonlinear
differential equations.

Hence the equation (9) can be written as

In the following subsections the above system will be solved by RK-method, RK-Butcher method
and Neural networks approaches respectively.



3.1. Runge-Kutta Method. RK-algorithms have always been considered as the best tool for the
numerical integration of ordinary differential equations(ODEs). Since the system (10) contains n2

first order ODEs with n2 variables, RK method is explained for a system of three first order ODEs
with three variables.

kll(i + 1) kll(i) + ~(k1 + 2k2 + 2k3 + k4)

k12(i + 1) k12(i) + ~(11 + 212 + 213 + 14)

k22(i + 1) k22(i) + ~(m1 + 2m2 + 2m3 + m4)

where

k1 h * iJ>ll(kll, k12, k22)

11 h * iJ>12(kll, k12, k22)

m1 h * iJ>13(kll, k12, k22)

k2 k1 11 m1
h * iJ>ll(kll + 2' k12 + 2' k22 + 2)

12
k1 11 m1

h* iJ>12(kll + 2,k12+ 2,k22+ 2)

m2
k1 11 m1

h * iJ>13(kll + 2,k12 + 2,k22 + 2)

k3
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k2 12 m2
l3 h * iJ>12(kll + 2' k12 + 2' k22 + 2)

k2 12 m2
m3 h * iJ>13(kll + 2,k12 + 2,k22 + 2)

k4 h * iJ>1l(kll + k3, k12 + 13,k22 + m3)

14 h * iJ>12(kll + k3, k12 + 13,k22 + m3)

m4 h * iJ>13(kll + k3, k12 + 13,k22 + m3).

3.2. Runge-Kutta Butcher Method. RK-Butcher algorithm is nominally considered as a sixth
order since it requires six functions evaluation. The accuracy of this algorithm is better than other
algorithms. Even though it seems to be sixth order method, it is a fifth order method only.
RK-Butcher method is explained for a system of three first order ODEs with three variables.

h
kll (i) + 90 (7k1 + 32k3 + 12k4 + 32k5 + 7k6)

k12(i) + :0 (711+ 3213 + 1214+ 3215 + 716)

k22(i) + ~ (7m1 + 32m3 + 12m4 + 32m5 + 7m6)
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3.3. Neural Network Solution. In this approach, a new feedforward neural network is used to
solve the system of differential equations (10). A neural network architecture is shown in figure 1.

The architecture consists of 3 layers of artificial neurons which are connected in a feed forward node.
The network consists of integrators and adders with associated connecting weights. The connection
weights denoted by aij (= aij) and Ji-ij are the coefficients of the third order matrices A and Ji-.

Each neuron produces its output by computing the inner product of its input kij, i,j = 1,2,3 and
its appropriate weight vector and possibly by passing the result through the nonlinear tansigmoid
functions. The learning supervised rule that modifies the weights of the connections according to the
input patterns that are presented in the Levenberg-Marquardt algorithm [12]. During the training
the weights and biases of the network are iteratively adjusted till the following error quantity becomes

3

E = L ((kij) - c/>ij(t, (kij)))2 = 0
i,j=l



0.2 -0.242057 -0.237297 -0.532972
0.4 -0.572630 -0.509861 -1.336832
0.6 -1.007613 -0.698837 -2.267480
0.8 -1.624486 -0.684054 -3.076698
1.0 -2.583961 -0.428650 -3.656955
1.2 -4.083993 0.059739 -4.070754
1.4 -6.293067 0.780564 -4.419200
1.6 -9.259361 1.724925 -4.767664
1.8 -12.808259 2.833062 -5.133368
2.0 -16.530706 3.981502 -5.495683

This algorithm is fastest method for training moderate-sized feedforward neural networks. The learn-
ing rule that was implemented with a PC, CPU 1.7 GHz which has unit roundoff == 1.1 x 10-4 in
MATLAB for the neuro computing approach to solve MRDE (9) for the linear system (1).

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Feed the random input vector kij, i,j = 1,2,3.
Initialize randomized weight matrix and bias in each layer.
Computing the inner product in each neuron and pass through tansigmoidal function.
Pass the output of the third layer through integrator with initial values.
Repeat the neural network training until the following error function becomes zero.

n 2
E= L (kij-<I>ij(t,kij)) =0

i,j=l

The numerical solution of MRDE were calculated and displayed respectively in the following tables 1,
2 and 3 using the RK-method, RK-Butcher methd and the Neural Networks approach. The solution
of MRDE and the deviation of RK solution is displayed in Fig. 2,3 and 4. The computation time for
neural network solution is 1.6330sec. whereas the RK method is 2.1930sec. Hence the neural solution
is faster than RK method.



0.2 -0.258775 -0.238316 -0.487425
0.4 -0.627679 -0.517358 -1.220125
0.6 -1.112443 -0.721680 -2.112111
0.8 -1.750488 -0.716365 -2.953969
1.0 -2.663129 -0.453504 -3.596852
1.2 -4.023458 0.041253 -4.057855
1.4 -5.982123 0.740360 -4.427505
1.6 -8.604144 1.622707 -4.774734
1.8 -11.807094 2.643066 -5.124072
2.0 -15.331792 3.716645 -5.466076

0.2 0.2927 -0.2818 -0.4961
0.4 -0.6045 -0.5491 -1.2291
0.6 -1.0612 -0.6632 -2.1458
0.8 -1. 7266 -0.6554 -2.9159
1.0 -2.6888 -0.4907 -3.5424
1.2 -4.0628 0.0525 -4.0501
1.4 -5.9843 0.8098 -4.4640
1.6 -8.5722 1.4832 -4.8107
1.8 -11.8157 2.6431 -5.1257
2.0 -15.3191 3.7166 -5.4655
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Solving MRDE by neural network is a naval approach. Computation time is very minimum when
compared with existing methods stated in the survey paper [3]. High accuracy of numerical solutions
compared with traditional methods like Rung-Kutta, RK-Butcher method have been analysed. Once
network is trained, it allows instantaneous evaluation of solutions at any desired number of points
with less memory occupation. The neural network approach for solving MRDE is different from the
previous methods discussed in the survey paper [3] in various directions stated sequentially as follows:

(i) In direct integration method, there is a difficulty to apply for higher order Riccati Differential
Equation

(ii) In negative exponential method, the computation of transformation matrix is numerically un-
reliable in a fixed precession of arithmetic.



(iii) In Davison Maki metho, Pad approximation is used to compute the solution. Accuracy of
Pade's solution is not better than this neural network approach

(iv) In ASP(Automatic Synthesis program) matrix iteration procedure for computation of matrix
exponential of size 2n x 2n is time consuming.

(v) In a method using an algebric Riccati solution the computation of matrix exponential of size
n x n is also time consuming.

(vii) In analytic approximation method, the accuracy of solution depends upon accuracy of solution
of Algebraic Riccati equation.

(viii) A matrix valued approach the accuracy of solution depends upon the solution of Sylvester
equation.

5. Conclusion

The numerical results of the MRDE (9) in the above tables indicate that the neural networks
solutions are much more efficient, compared with other well-known RK-method solutions. The long
calculus time of the MRDE (9) was avoided by using a neuro-optimal controller based Lenvenberg-
Marquardt training algorithm. The efficient approximations of the optimal solution were done with
PC, CPU 1.7 GHz in MATLAB which has unit roundoff ~ 1.1 x 10-4.
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