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Abstract
Feed-forward and recurrent neural networks ~ave been successfully used for modelling
and control of non-linear systems. The main ~atures of these systems such as the ability
to learn from examples and to self-adapt ar4 very well suited for the multi-resolution
approach intrinsic to wavelets. Wavelets. offer an adequate framework for the
representation of "natural" signals and imagds that are described by piece-wise smooth
functions, with rather sharp transitions betwe4n neighbouring domains. The combination
of wavelet theory and neural networks has letd to the development of wavelet networks
(WNNs). WNNs are neural networks using wavelets as activation function, where both
the position and the dilation of the wavelets are optimised besides the weights. Their
strength lies in the capability of catching esse*ial features in "frequency-rich" signals. In
this paper an infmite impulse response (IIR) rlj:current structure is combined in cascade to
a WNN in a proposed controller-scheme. Th~ effectiveness of the proposed controller is
illustrated through an application to composiltion control in a continuously stirred tank
reactor (CSTR) system. Simulation results deplOnstrate the applicability of the proposed
design method to non-linear control systems.

Keywords: wavelet theory, neural networks, infinite impulse response, modelling,
control

The currently existing complex plants canqot be accurately described by traditional
rigorous mathematical models, and there are ipcreasing needs for highly accurate control
and autonomous behaviour in control, rob~tics and artificial life communities. The
conventional approaches for understanding aqd predicting the behaviour of such systems
based on analytical techniques can prove to be inadequate. These difficulties lead to a
number of challenging problems, i.e., embe~ the human intelligence into a machine,
because there is a huge gap between the humap intelligence and the machine intelligence.
With emerging development in neural networlcs (NN) and fuzzy logic technologies, non-
linear modelling designs can expand to e'len greater horizons. Generally, in many
applications multi/single layer feed-forwar4 neural networks have demonstrated an
amazing ability to learn the desired map trom discrete data. A number of rigorous
mathematical proofs have been provided to ekplain this uncanny ability of feed-forward
neural networks to approximate maps [1].



In recent years, wavelets have become a ',veryactive subject in many scientific and
engineering research areas. Especially WNNs, inspired by both the feed-forward neural
networks and wavelet decompositions, have received considerable attention [2] and
become a popular tool for function approxirr$tion. The main characteristic of WNN is
that some kinds of wavelet functions are used fiS the nonlinear transformation function in
the hidden layer, instead of the usual sigmoid lfunction. Incorporating the time-frequency
localisation properties of wavelets and the learning abilities of NNs, WNNs have shown
its advantages over the regular methods su$ as NNs for complex nonlinear system
modelling. Unlike the multilayer perceptron which is a global network, WNN is a local
network in which the output function is wcj:lllocalised in both time and frequency
domains. In a local network only a small subs¢t of weights are active at each point in the
output space and the training of the network in one part of the input space does not
corrupt that which has already been learned ~nmore distant regions. Thus the learning
speed of the local network is generally much faster than the global network. The radial
basis function (RBF) network is also an exam~le of a spatially local network. In addition,
local recurrent networks or temporal local networks such as centre recurrent, linear
recurrent, and IIR recurrent structures can b~ used in cascade with RBF networks to
provide a double local network architecture resulting in even quicker learning and faster
convergence [3].

At present, there are two different kinds ¢IfWNN structure, one with fixed wavelet
bases, where the dilation and translation pararpeters of wavelet basis are fixed, and only
the output layer weights are adjustable. For the WNN with fixed wavelets, the main
problem is the selection of wavelet bases/fratnes. The wavelet basis has to be selected
appropriately since the choice of the wavel¢t basis can be critical to approximation
performance. Another type is the variable wavelet bases, where the dilation parameters,
translation parameters and the output layer welights are adjustable. Stability of the WNN
structures as identification/controller schemesi (structural WNN's adaptation, parameter
adjusting and control of nonlinear systems) has been carried out using the Lyapunov
theory [16].

In terms of engineering applications, wrtNs have also shown promising results in
both signal representation and classification [4-5]. The main objective ofthis work is to
investigate the applicability of an Adaptive Neuro-Wavelet Network (ANW) architecture
that incorporates an impulse infinite-response (IIR) filter for modelling and control of
non-linear processes. Traditional self-tuning &daptive control approaches are limited in
that they cannot deal with complex nonlin~ar systems. Typically, these techniques
assume that the control model is operating jin a linear region. The parameters of a
linearised plant model are estimated recursively and used to update the controllers.
Generally, it is not possible to design a conttoller based on mathematical analysis for
such plants that consist of the nonlinearity and the uncertainty. The problem is
exacerbated when the functions describing the!plants are unknown and change with time
[6]. It is important to develop an effective itechnique in which the structure of the
unknown, linear/nonlinear plant models can ~e identified as an adaptive process; and
controllers have to be designed which act rapidly, accurately and in a stable fashion.
Developments in neuro-control design [7] have proved to be useful for a wide class of
practical situations showing that they can cOJl>ewith significant unknown nonlinearity.
The idea of neuro-control is to first process an !identification model that approximates the
unknown dynamics of the plant in which tfue parameters of the neural network are
adjusted off-line. In a recent research study a PI control strategy using WNN schemes
combined with IIR filters has been proposed for the identification/control of a wind



turbine used in a wind energy conversion s~stem [17]. The authors utilised adaptive
RASP (Rational Functions with Second-Order) wavelet functions. These functions
although are characterized from a fast train~ng time when they are incorporated in a
WNN structure. However oscillations and i$tability has been reported when the used
number of RASP functions is exceed a specifi¢ number.

The goal of this research study is to impJement a control method that addresses the
self-tuning PI control problems for severely nonlinear systems by utilising ANWs to
achieve a nonlinear controller design. In contrast to the RASP function, in this study, the
usage of Modet functions is proposed. The Modet wavelet function is directional (in the
sense of being effective in selecting orientations) and capable of fme tuning specific
frequencies. These latter capabilities are ¢specially important in filtering out the
background noise, and comprise the advanta~es of the Modet wavelet with respect to
other filters such as RASP and Shannon. In fact, having exponential decay in both the
time and frequency domain, the Modet fttnction has optimal joint time-frequency
concentration.

Simulation results to a pH CSTR demoqstrate the above concept. In this proposed
method, the ANW scheme is needed to learh the characteristics of the plant dynamic
systems and make use of it to determine the future inputs that will minimise error
performance index so as to compensate the PI controller parameters.

We investigate a benchmark problem for nonlinear control system design, which is based
on a specific continuous stirred tank reactor (CSTR). Let consider a pH CSTR
schematically shown in Fig. 1.-=:t1

The CSTR has two input streams, one containing sodium hydroxide and the other acetic
acid. A dynamic model for the pH in the tank can be obtained using the approach
presented by Jean Saint-Donat [8]. Fig. 2 sh<1'wsthat the process has highly non-linear
steady-state behaviour. It is a weak acid/stropg base system which exhibits large gain
changes. It can be seen that pH CSTR is h~ghly nonlinear around pH=7. In fact, the
steady state pH gain to basic flow changes by • factor of 2.8.
The model is derived from first principles, material balances and chemical equilibria, and
has become generally accepted in the literatute. The method implements mass balances
on components, or combinations of componen~s, called reaction invariants by Gustafsson
and Waller [9], of the CSTR solution's iorlic species. These reaction invariants are
suitable for mass balancing because, unlike tl)e concentration of the hydrogen ion, they
do not change as the reaction equilibrium shifts. The equilibrium relations for the weak
acid/strong base system are:



[AC][H+]
HAC - Ka (1)

[Na+][ OH-] =K (2)
[NaOH] b

[H+][OH-]=Kw (3)

where,Ka is the dissociation constant of /fAC, Kbis the dissociation constant of
NaOH and Kw is the dissociation constant of ~ater. NaOH is a strong base which fully
dissociates (i.e. 1/Kb = 0) and hence Eq. 2 yie~ds NaOH = 0 .
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Fig. 2: CSTR pnocess curve

Two reaction invariants for the reactions of tht! system are the total ionic concentration of
the acid and the total ionic concentration of the base:

; = [HAC]+[ AC-] (4)

'=[Naf (5)
In addition to the chemical equilibria for the acid and base, the solution must remain
electrically neutral at all times, giving

'+[H+]=[OH-]+[~C] (6)

The reaction invariants, ; and , are found frob the following mass balances
Total acetate balance:

ik
FzCz -(1'; +F;K = V 11 (8)

where F1 is the acid flow rate, F2 is the base t10w rate, Cl is the acid concentration, C2 is
the base concentration and V is the CSTR li~uid volume. Finally the pH is calculated
using

pH = -LoglO ([ H+ ])



Pati and Krishnaprasad [10] described a n~twork in which the sigmoidal activation
functions of a typical neural network are repl~ced by particular shifts and dilations of a
given mother wavelet. Thus, consider Eq.l w~ere T, a closed proper subset of R x R, is
the set of all training pairs (x,y):

y r::; I(x) = LWm.n'Vm.n(x), V(x,y) E T, Wm1n,x,y E R,m E Z,n E Z+ (10)

where" r::;" is defined such that there exists E EI R + so that

E > I/(x) _ yl2
and where '!'m,n is a wavelet such that

'l'mn(x)=2-mI2~(2-mx-n) (12)

Pati's network is similar to the general exprersion of the discrete wavelet transform. In
this case, a network structure is being consideted, that is simply a projection onto a basis
- an inner product - where the basis is a wav~let basis. The training vectors are thus just
been projecting onto the wavelet basis. Since ~ infinite basis cannot be implemented, a
finite subset over the compactly supported interval on which the training data is defined
is chosen. Furthermore, the set is also limite~ to a maximum dilation. Define I as the
finite set of all shifts and dilations (m,n).1 Then the training data can now been
approximated by the finite set of shifts and dil~tions (m, n) E I and a corresponding set of

coefficients (or weights) {wm,nhm,n)EIc R ijlO]. The overall approximation error is

determined by

E = LI/(x) _~12
(x,y)ET

This error functional is nearly identical to that of the Back-propagation (BP) algorithm
with only one important difference. It turns O1ftthat the error functional described above
is convex in terms of the weights Wm,n. This! is quite different from the BP algorithm,
which, in general, has a non-linear error sulrface. Due to the convexity of the error
functional, any minimiser is a global mininiiser. Furthermore, it is clear that simple
iterative schemes such as gradient descen1 perform adequately since there is no
possibility of getting stuck in local minim~. The authors have presented a network
synthesis algorithm. The algorithm involves ~etermining the set of wavelets for use as
activation functions for the hidden layer neur~ns by considering the time and frequency
limits of the training data. Given that the train~ng data is bounded in time and frequency,
the exact shifts and dilations of the mothqr wavelet can be determined which are
necessary to adequately cover the time and (requency range of the training data. This
number is the upper bound of hidden lay~r neurons necessary to approximate the
functional relationship between x and y to an~ precision e. However, this method can be



computationally intractable if the number ofreHuired wavelets is very large; i.e., the time
and frequency bounds are very large. In an alt~rnative approach, Zhang [11] describes an
implementation of a wavelet neural network I based on Pati and Krishnaprasad's [10]
synthesis algorithm and the orthonormal le~st squares minimisation method. Zhang
proposes to build a candidate set of wavelet~ based from the initial infmite set of all
possible shifts and dilations of the mother w,velet by first truncating it to a finite set
based on some a priori knowledge about the training data. His method involves using the
Gram-Schmidt ortho-normalisation method to!determine the N wavelets and their shift
and dilation parameters. Finally, the weights ljre calculated by a simple inversion of an
upper triangular matrix. The criteria are given:by the time and frequency support of the
training data set. The resulting set is a subset of the regular pyramid structure of wavelets
usually associated with dyadic multiresolutio* decomposition. The goal is to select N
wavelets from the candidate set, such thai these N are optimal with respect to
approximation error [11].

In contrast to the networks proposed by Pati ~ Krishnaprasad and Zhang, an alternative
approach is proposed that does not fix the' shift and dilation parameters [12]. The
"Adaptive Neural-Wavelet network" (ANW) ¢oncept could be considered as a capable
for approximating arbitrary nonlinear functioJjJ.s.Fig. 3 illustrates the schematic of the
proposed network. In this proposed architecture, the approximation model consists of an
adaptive neural-network topology with the wavelet transformation embedded in the
hidden units.
Such architecture approximates any desired signal z(t) by generalising a linear

combination if a set of daughter wavelets ha•b (t) , where ha•b (t) are generated by dilation a

and translation b from a mother waveleth(t):

ha•b (t) = h (t : b )I
with the dilation factor a > O. Given a list ot1K candidate wavelets obtained from the
discrete wavelet decomposition, the approxinjlated signal of the network Ht) can be

represented by:
K

z(t) = u(t) L wkha,,4k (t)
k=l

where wk are the weight coefficients towards n¢twork's output.

The inversion fonnula of the wavelet transfonn cannot be expressed directly by finite neural
networks, but can be approximatedusing neural n~tworktopology with finite hidden units. This
is so because most targets are restricted in both ~hetime and frequency domain. The training



algorithm consists of two processes: the initialis~ion phase and the parameters' update through
the minimisationof error. The network consists df one hidden layer with an appropriatenumber
of nodes,which are definedby the user.

,

Fig. 3: Schematic df ANW network

It is assumed that the network output functi9n satisfies the admissibility condition and
that the network sufficiently distributes K s~ts of the mother wavelet basis function
defmed by the user, evenly partitioning the r~gion of interest. The wavelet used in this
study is the Modet function.
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The Modet's basic wavelet function is a multjplication of Fourier basis with a Gaussian
window [13]:

Its real part is a Cos-Gaussian and the imag~ary part is a Sin-Gaussian function. The
Cos-Gaussian wavelet is a real even function. [he Fourier transform of the Cos-Gaussian
wavelet is the Gaussian functions shifted to lUoland -lUo respectively:

~

,

H(lU) = -(exp[ -O.5(lU-~.O)2] + exp[-O.5(lU+ lUo)2])2 :
Which is even and real positive valued. Fig. ~ illustrates the plots of the Modet wavelet
and its Fourier spectrum, withlUo= 4. The Modet wavelets do not satisfy the wavelet

admissible condition, because
~ 12H(O) = ,,2,.. exp(-O.5aro );e 0



That leads toch = +00. However, if (00 is suffi9iently large, say (00 = 4, then H(O) comes
I

very close to zero and can be practically comjidered as zero in numerical computations.

The neural-network parameters wk ' ak ' bk an b~ optimised by minimising the mean square
!

error (E) function over all samples. Thus, le(t) = zn(t) - zn(t) is a time varying error

function at time t, where Yn(t) is the desired (*get) response. The (E) function is defined

by
T '

E = l/2~)z(t)-f(t))2
t~l

We choose to minimise E using the gradietit descent minirnisation algorithm for the
variables a, and b. Therefore we must fmd th~ partial derivatives of Eq. 19 with respect

towk,ak ,bk·

BE T , t-b,
- = - L (z(t) - z(t))h( __ k )u(t)'
Bwk t~1 ak

BE T , • t-b· 1- = L(z(t)-z(t))u(t)wkh (~)(-)
Bbk ,~I ak ak

BE T • t-bl t-b- = L (z(t) - z(t))u(t)wkh (-=---..::!.j)(-z_k) =
Bak 1=1 ak ak

f (z(t) - z(t))u(t)wkh/ -bk )(t -b k) (J...] = (t - b k) 8E
t~1 ak . ak ak ak 8bk

The resulting update for all parameters to be tqned is as follows:

new old 8E
ak = ak -'la-'

8ak

bnew _ bold _ 8E
k - k 'lb 8b '

k

8Ewnew = Wold -n -- (21)
k k 'IWaw'

k

where 'la,b,w E 9{ is the step-size parameter oft~e gradient descent update.



In cascade with this network we have deplo~ed a local infinite impulse response (UR)
block structure. The UR structure is then Jsed to create a "double" local network
architecture that provides a computationally e~ficient method of training the system and
results accordingly in quick learning, and fast ¢onvergence, subjected to the number of K
wavelet functions employed in the ANW scherPe [18].
Fig. 5 illustrates the structure which ap~roximating any desired signal y(t) by

generalising a linear combination of a set ofl daughter wavelets h(t) cascaded with the

local IIR recurrent networks. The approxintated signal of the network yt) can be

modelled by:
M N

Yet) = L c;z(t - i)u(t) + L d}(t j)v(t)
;=0 j=1

where M andc; are the number of feed-forwar~ delays and coefficients of the IIR filter,

respectively, Nand dj are the number of feedb~ck delays and recursive filter coefficients,

respectively. The IIR structure as shown throu$h Eq. 22 is illustrated in Fig. 6.

The signals u(t) and vet) are the input and cOlinput to the system at time t, respectively.

Input vet) is usually kept small for feedback s*bility purposes. In this extended structure,

the neural-network parameters wk' ak ' bk ' c;' djican be optimised by minimising the mean

square error (E) function over all samples ~sing again the gradient descent learning
algorithm. The related gradients that are requirbd to update these parameters are given as:

BE T M (t-b )-=-Lu(t)e(t)Lc;h __ k -i (23)
Bwk 1=1 ;=0 ak

BE T M ,(t-b)-= Lu(t)e(t)Lc;wkh __ k_i
Bbk 1=1 ;=0 ak

BE = fu(t)e(t)fc;(t-bk)Wkh,(tj-bk _i)=(t-bk) BE
Bak 1=1 ;=0 ak iak ak Bbk

BE T
- = - Lu(t)e(t)z(t - i)
Bc; 1=1



aE = _f v(t)e(t)y(t - j)
adj 1=1

The resulting update for the remaining parameters to be tuned is as follows:

new old aE
c; =c; -1]c-;:-'

uc;

dnew = dold _ aE
j j 1]d ad. '

}

with 1]c,d E 91 is the step-size parameter of the $I"adient descent update.

ANW scheme is similar to the structure of a RBF network, in the sense that wavelets
are local basis functions that provide less ij.1terfering than global ones, leading to a

noncomplex dependency in the neural network parameters. However, during the
initialisation phase, care should be taken for dt'jtermining the initial parameters values. All

initial weights wk are initialised to small i values between ±0.2 (similarly to the

initialisation of MLP networks) while the dilajtion parameters ak are initialised using the

heuristic rule "globaljirst nearest-neighbour"![19]. It uses the uniform average width for
I

all units using the Euclidean distance in the· input space between each unit m and its

nearest neighbour n. Note that if the dilation parameters are set too wide, they can cause

several overlapping partitions and thus cann~t be realised. Setting ak too narrow may

result in longer convergence. Initial translati~n parameters bk are spaced equally apart
I

throughout the training data to provide n~n-overlapping partitions throughout the
neighbouring intervals. Finally, the initial IIR; coefficients c and d should be set so that
the system has poles inside the unit circle, thus both are set to 0.1.

A common problem of IIR adaptive networks is the problem of guaranteeing
stability and convergence. In particular, IIR a4aptive networks are prone to instability as
a consequence of unbounded growth of ~e adaptation coefficients. Furthermore,
recursively adapting coefficients creates movement in the location of poles from the
origin, causing the network to become unstable, even if the adaptation is stable. Finally,

the convergence of the steepest descent gradiept algorithm that is applied to minimise the
error sometimes becomes stuck in a local ~inimum. The problem of the potential
adaptive instability can be solved by succes4veiy reducing the learning rate factor. In
addition, as it is shown in Fig.6, a "gamma op¢rator", which imposes both trivial stability
conditions and is computationally effective ha* been utilised [20]. The "gamma operator"
has the following form:

v(t)=-L-
t-(~-r)

where 'Yis a real parameter that controls the ml'lmory depth of this operator and usually is

in the range 0 < r < 2 .



Traditional self-tuning adaptive control appro~ches are limited in that they cannot deal
with complex nonlinear systems. Typically, ~hese techniques assume that the control
model is operating in a linear region. The p~rameters of a linearised plant model are
estimated recursively and used to update the ~ontrollers. Generally, it is not possible to
design a controller based on mathematical aJjlalysisfor such plants that consist of the

I

nonlinearity and the uncertainty. The prob~em is exacerbated when the functions
describing the plants are unknown and chanSe with time. Such nonlinear time-varying
adaptive control problems are arising with incteasing frequency in today's technology. It
is important to develop an effective techniqub in which the structure of the unknown,
linear/nonlinear plant models can be identifi~d as an adaptive process; and controllers
have to be designed which act rapidly, accuratdly and in a stable fashion.

The proposed scheme in this research st4dy is the usage of adaptive self-tuning PI
controllers using the ANW network. In this m¢thodology, the ANW scheme is needed to
learn the characteristics of the plant dynamic systems and make use of it to determine the
future inputs that will minimise error perfoJinance index so as to compensate the PI
controller parameters.
The PI controller is one of the simplest of thb traditional feedback controller schemes.
Nevertheless, the linear PI algorithm might ibe difficult to deal with processes with
complex dynamics such as those with large dead time, inverse response and highly
nonlinear characteristics. To improve the control performance, an adaptive PI algorithm
is proposed by utilising the simple PI controller structure based on self-tuning schemes of
the ANW parameters. The basic idea of PI co~trol is that the control action u(k) should

be proportional to the error and the integral jof the error over time. However, limited
performance can be of disadvantages to the lin~ar PI controller i.e., the PI mode is used to
eliminate the steady-state offset, which somet~es can cause excessive overshoot due to
direct implementation of the integral action, etc. The proposed adaptive variable PI
controller can help to improve the limited pedj'ormance of the static PI controller dealing
with conflict in nature between static acqmacy (steady-state error) and dynamic
responsiveness (speed of response). Sev~ral tuning components determine the

contribution of the weights of the error that stFts a cost functionE =2. f(r(k)- y(k))2 ,
• 2 k=!

where r(k) is the desired set-point and y(k~ is the ANW output. Before beginning
tracking operation using the ANW based PI Icontroller, the unknown nonlinear CSTR
must be identified according to a certain mod¢l. In this particular identification process,
the model consists of a "neuraf' network topoiogy with the wavelet transform embedded
in the hidden units. In cascaded with the network is a local infinite impulse response (IIR)
block structure as shown in Fig. 5.



Let us consider a general SISO dynamical syStem represented in discrete domain by the
state equations

x(k + 1) = f( x(k),u(k)jk)

y(k) = g(x(k),k)

where x(k) E 9ln and u(k),y(k) E 9l. The onlyl accessible data are the input u and output

y.
It has been shown [14] that if the linearise~ system around the equilibrium state is

observable, an input-output representation exis~s which has the form
I

y(k + 1)= <p(y(k),y(k -l), ...,y(k - n + l),*(k),u(k -1), ...,u(k - n + 1)) (32)

i.e. a function <p(.)exists that maps y(k) ~d u(k) ,and their n -1past values into

y(k+l). In view of this, a learning-based m04el tjJcan be trained to approximate <p over

the domain interest. The considerations are ba$ed on the neural network controller design
of the control system. The following alternative model of an unknown plant that can
simplify the computation of the control input i~ described by the equation

y(k + 1) = <p(y(k))+ r (y(k))u(k) (33)

for a discrete-time process of dimension 1, wh¢re y(k) and u(k) denote the input and the

output at the k'h instant of time.

If the nonlinearity terms <p(.) and ro are kndwn exactly, the required control u(k) for

tracking a desired output r(k + 1)can be comp4ted at every time instant using the formula

u(k) = r(k + 1) - <p(y(k)) (34)
r(y(k))

However, if <p(.) and r(.) are unknown, the idea is to use the proposed ANW scheme to

approximate the system dynamics i.e.,

y(k + 1) = tjJ(y(k),E>9»+ f(y(k)~E>r )u(k) (35)

PI r
S(·1,'..1"III'II,::' .•

Comparing the model ofEq. (35) with the one pfEq. (22) we can conclude that
N

tjJ(y(k),E>9»= Ldjy(k- j)v(k)
;=1



M

t(y(k),er) = Lc;z(k-i)
i=O

,

After the nonlinearities tp(.) and ro are aIfroximated by the two distinct network

functions <p(.) and to with adjusta~le parameters, represented byeq>and

errespectively, the PI control u(k) for tracki!tg a desired output r(k + 1)can be obtained

from
u(k) = u(k -1) + p(e(k) -e&e -1)] + Ie(k) (38)

where P and I are proportional and integral gajins, u(k) is a plant input at kT, where Tis
a sampling interval, and

e(k)=r(k)-y(k) (39)
P and I parameters are considered as part of the function of E and can be optimised and
updated according to the cost function E, .

,

P(k) = P(k -1) + ,upe(k)r(k)( e(") -e(k -1») (40)

I(k) = I(k -1) + ,ule(k)r(k)e(k) i (41)

where t comes from Eq. (37), and ,u is th~ fixed learning rate of each adaptive PI

parameter. Fig. 7 illustrates the diagram of the resulting network topology based on the PI
controller for self-tuning control of CSTR. ,Stability of the closed loop, where the
parameters of a linear controller are been tuned via a learning model of the nonlinear
plant/process, has been already been addressed in [21], where the proof of tracking error
asymptotic stability is provided.

The first step in the ANW model design proc~dure is the generation of training data set
and this requires the design of the process inp~t signal. The design of the input signal for
nonlinear system identification is more cqmplicated than it is for linear system
identification. The input signal should excite: all the frequencies of interest and should
also excite the process over the whole of the reAuired operating region [14].

A Random Amplitude Signal (RAS) is pommonly used as the process excitation
signal to generate open loop data for neural *etwork training. This signal consists of a
uniformly distributed random variable applie4 to the process input at each clock period
and is more likely to exercise the process over the desired operating range than a binary
signal [15], such as a pseudo-random binary s~quence (PRBS) which is widely employed
for linear system identification. A Random 4mplitude Signal is specified by its clock

I

period, which should be a multiple of the sam~le time so that the process input is constant
between consecutive samples, and by its amp\itude range, which may be expressed as a
percentage maximum deviation from a steadY-$tatevalue.

i



The aim of CSTR process excitation is to $enerate I/O process data which contains
sufficient information for a neural network td identify the non-linear process dynamics
over the entire operating range, and a RAS is commonly employed to achieve this.
However, there is no reason why this signal Ishould achieve adequate excitation of the
non-linear dynamics of all processes. This is I particularly so for this CSTR pH process
where the strong non-linearity is characterise~ by its steady-state titration curve (Fig. 2).
One of the obstacles to accurately modelling s~ch a process is to obtain output data in the
high gain region for network training. When the pH process is excited by a standard
RAS, little output data is generated in the area where the process gain is a maximum. The
data distribution of Fig. 8 illustrates the lack of output data between pH 7 and 10, and any
learning-based network model which is trained with such data could have large prediction
errors in this region.

Such training data base was developed byiforcing the stream of sodium hydroxide F2
with a Random Amplitude Signal superimpos~d on its steady-state value. The parameters
for the CSTR considered can be seen in [8]. It ~sseen in Fig. 8 the changes in consecutive
process inputs generated by the RAS are ofttjn small and this can result in the process
output remaining in a low gain region for several consecutive RAS clock pulses. This is
disadvantageous because it promotes an uneven output data distribution. One practical
way of improving the uneven distribution of the training data is to force the signal
through the region of maximum process gain on each clock pulse.



The resulting "modified" RAS, illustrated in fig. 9, has a uniformly distributed input in
the two intervals above and below a threshqld level which was chosen as the process
input at maximum steady-state gain. While ~e data distribution still appears to be very
uneven, there is a threefold increase in the idata density between pH 7 and 10 when
compared to the output data density generatedlby a standard RAS.
Using the data extracted from a RAS, the ANw scheme with Morlet mother wavelets is
employed to approximate the pH data. IIR block structure with feed forward coefficients
M=3 and feedback coefficients N=3 is alsp implemented. Note that if the dilation
parameters are set too wide, they can cause seteral overlapping partitions and thus cannot
be rallied. Fig. 10 illustrates the approximatfon of the CSTR performance using RAS
input signals. The ANW approximates satisfa9tory the process curve.

i.i~~---=
In this training process, 36 Morlet wavelets harvebeen employed in the ANW scheme and
the error goal of 0.032 was achieved at 250 iterations/epochs. In general, more
iterations/epochs as well as larger training dataset are needed for a more accurate
performance. The learning rate parameters for weights, dilations, translations, IIR
feedforward coefficients, and feedback coeffi~ients were fixed at 0.01, 0.05, 0.05, 0.02,
and 0.02, respectively.
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All initial weights wk were initialised to to.l and the dilations ak were set initially to

7.5. Just for comparison, an ANW scheme without the feed-forward and feedback
coefficients managed to achieve the same errqr goal however with an increased number
of epochs. Future work will be focused to addtess the self-structure of the ANW scheme
during the training phase, i.e. the number of ~avelet functions to be determined during
the learning process.

After the identification model is complete4i, the tracking operation takes command of
the neuro-process control to track the desired ~et-point. On-line control results are shown
in Fig. 11. Fig. lla shows the control result when the system traces step responses, while
Fig. 11b shows that when the system traces ~ smooth curve. The proposed self-tuning
neuro-wavelet controller utilised the ANW-IIIR scheme. Controller parameters P and I
were initially set at 0.2 and 0.1 respectively! which then later vary with local control
network conditions. The emphasis is on the qlant output responses to the reference set
point.

This paper discussed the application of neuro-wavelet networks in the implementation of
adaptive controllers for the identification $1d control of nonlinear processes. The
approach used, based on a single layer feed f~rward neural networks with hidden nodes
of adaptive Modet wavelet functions, PI contr~ller and an infinite impulse response (IIR)
recurrent structure, allowed fast convergence t<1>a simple nonlinear dynamic behaviour. In
this research study, controller ability for set point tracking was demonstrated on a pH
CSTR process.
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