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Abstract 

Two major entities that play a major role in understanding Global Warming is 

temperature and Carbon Dioxide. The purpose of the present study is to utilize historical 

temperature in the Continental United States from 1895 to 2007 to develop a forecasting 

process to estimate future average monthly temperatures. In addition, we shall study 

through our modeling if there is a difference in the two methods that are being used to 

collect and massage the temperatures in the Continental United States. 
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1. INTRODUCTION 

 

Temperature plays a very important role in Global Warming and its relation with 

Carbon Dioxide. The aim of the present study is to develop a statistical forecasting model 

for the temperature in the Continental United States. There are two methods being used in 

recording temperatures and we shall refer them as Version 1 and Version 2 data sets. 

Thus, an additional aim in the present study is to determine if the two methods of 

recording temperatures are indeed different. Version 1 data was collected by the United 

States Climate Division, USCD, and Version 2 data by the United States Historical 

Climatology Network, USHCN. 



The Version 1 data set consists of monthly mean temperature and precipitation for 

all 344 climate divisions in the contiguous U. S. from January 1895 to June 2007. The 

data is adjusted for time of observation bias, however, no other adjustments are made for 

inhomogeneities. These inhomogeneities include changes in instrumentation, observer, 

and observation practices, station and instrumentation moves, and changes in station 

composition resulting from stations closing and opening over time within a division. 

The Version 2 data set was first become available in July 2007, and it consists of 

data from a network of 1219 stations in the contiguous United States that were defined by 

scientists at the Global Change Research Program of the U. S. Department of Energy at 

National Climate Data Center. A methodology was developed and applied to test known 

station changes for their impact on the homogeneity, and necessary adjustments were 

made if the changes caused a statistically significant response in the time series. They 

claim that the data set is a consistent network through time, which minimizes any biasing 

due to network changes through time. For additional information concerning Version 1 of 

the data, see (Easterling & Peterson, 1995; Karl et al., 1986; Karl & Williams, 1987; Karl 

et al., 1988; Karl et al., 1990; Peterson & Easterling, 1994; Quayle et al., 1991). 

Information for Version 2 of the time series, see (Alexandersson & Moberg, 1997; Baker, 

1975; Easterling et al., 1996; Easterling et al., 1999; Hughes et al., 1992; Karl et al., 1990; 

Karl et al., 1988; Karl et al., 1986; Karl & Williams, 1987; Lund & Reeves, 2002; Menne 

& Williams, 2005; Quinlan et al., 1987; Vose et al., 2003; Wang, 2003). Graphical 

presentations of both data sets are given by Figure 1.1 and 1.2. 
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Figure 1.1 Time Series Plot for Monthly Temperature from the Continental United States 
1895-2007 (Version 1 Dataset) 
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Figure 2.2 Time Series Plot for Monthly Temperature from the Continental United States 
1895-2007 (Version 2 Dataset) 
 

2. ANALYTICAL PROCEDURE 

 

The multiplicative seasonal autoregressive integrated moving average, ARIMA 

model is defined by 
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where p is the order of the autoregressive process, d is the order of regular differencing, q 

is the order of the moving average process, P is the order of the seasonal autoregressive 

process, D is the order of the seasonal differencing, Q is the order of the seasonal moving 

average process, and the subindex s refers to the seasonal period. We shall denote the 

subject model by ARIMA sQDPqdp ),,(),,( × , and  defined 
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The order of the multiplicative ARIMA model determines the structure of the 

model, and it is essential to have a good methodology in terms of developing the 



forecasting model. In the present study, we start with addressing the issue of the seasonal 

subindex s. After we examine the original data, shown by Figure 1.1 and 1.2, we have 

reason to believe the monthly temperature of the Continental United States behaves as a 

periodic function with a cycle of 12 months. Hence, we let the seasonal subindex 12=s .  

In time series analysis, one cannot proceed with a model building procedure without 

confirming the stationarity of a given stochastic realization, thus, we test the overall 

stationarity of the series by using the method introduced by Kwiatkowski, D., Phillips, P. 

C. B., Schmidt, P., and Shin, Y in 1992, (Kwiatkowski et al., 1992).  

Once the order of the differencing is identified, it is common for one 

ARIMA  model that we have several sets of  that are all 

adequately representing a given set of time series. Akaile’s information criterion, AIC, 

(Akaile, 1974), was first introduced by Akaile in 1974 plays a major role in our model 

selecting process. We shall choose the set of   that produces the smallest AIC.  
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Another important aspect in our model selection process is to determine the seasonal 

differencing, D, the goal is to select a smaller AIC without complicating the selected 

model. Hence, we only compute the AIC for both 0=D  and  based on our 

previous selection of the orders ( ), and choose the model with smaller AIC to 

be our final model.  
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Below we summarize the model identifying procedure: 

• Determine the seasonal period s. 

• Check for stationarity of the given time series  by determining the order of 

differencing d, where 

}{ tx

,...2,1,0=d  according to KPSS test, until we achieve 

stationarity. 

• Deciding the order m  of the process, for our case, we let  where 
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• For each set of , estimates the parameters for each model, that is, ),,,( QPqp

QPqp ΓΓΓΦΦΦ ,...,,,,...,,,,...,,,,...,, 21212121 θθθφφφ . 

• Compute the AIC for each model, and choose the one with smallest AIC. 



• After ( ) is selected, we determine the seasonal differencing filter by 

selecting the smaller AIC between the model with 

QPqdp ,,,,

0=D  and . 1=D

• Our final model will have identified the order of ( ). QDPqdp ,,,,,

In order to determine how good our proposed model is, we shall define several 

statistical criteria that we shall use to evaluate the subject forecasting model. The 

residuals of the model, , where  and  are the actual value and predicted 

value, respectively. Mean of the residuals, 
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3. DEVELOPMENT OF FORECASTING MODELS 

 

The historical temperature data for the continental United States that we shall use 

are shown by Figure 1 and 2. A visual inspection does not show any obvious trends being 

present. Thus, we let the seasonal period 12=s . Following the step-by-step procedure 

we described above, we found that the model best characterizes the average monthly 

temperature of the Continental United States for both Version 1 and 2 is a 

ARIMA(2,1,1) (1,1,1)12  process, analytical given by ×
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Simplify it, we get 
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Thus, the one-step ahead forecasting model for Version 1 data is given by 
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and the one-step ahead forecasting model for Version 2 data is given by 
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Note the closeness of the two forecasting models. 

 

4. EVALUATION OF THE PROPOSED MODELS 

 

We begin by forecasting for the last one hundred observations the monthly 

average temperature in the Continental United States for both Version 1 and 2, using the 

models given by expression 3.2 and 3.3. A graphical presentation of the results are 

presented below by Figure 4.1 and 4.2. 
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Figure 4.1 Monthly Temperature VS. Our Predicted Values for the Last 100 Observations 
(Version 1 Dataset) 
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Figure 4.2 Monthly Temperature VS. Our Predicted Values for the Last 100 Observations 
(Version 2 Dataset) 
 

As can be observed that both models are similar and the one-step ahead forecasting is 

quite good, except the temperature of January 2006 took an unexpected turn. We identify 

this inconsistency a possible outlier. 

We proceed to calculate the residuals estimates, , for both forecasting 

process given by (3.2) and (3.3). The results are graphically presented below by Figure 

4.3 and 4.4. 
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Figure 4.3 Residual Plot for Monthly Temperature on Continental United States 1895-
2007 (Version 1 Dataset) 
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Figure 4.4 Residual Plot for Monthly Temperature on Continental United States 1895-
2006 (Version 2 Dataset) 
 

We observe that the residuals are quite small and isolating around the zero axis as 

expected. It indicates that both models are good models in predicting the Version 1 and 

Version 2 of the time series. 

Next, we evaluate the mean of the residuals, r , the variance, , the standard 

deviation, , standard error, SE, and the mean square error, MSE. The results are 

presented below by Table 4.1 and 4.2, for Version 1 and Version 2 data, respectively.  

2
rS

rS

 

Table 4.1 Basic Evaluation Statistics (Version 1 Dataset) 

r  2
rS  rS  SE  MSE  

-0.008512476 4.331902 2.081322 0.05673052 4.328756 

 

Table 4.2 Basic Evaluation Statistics (Version 2 Dataset) 

r  2
rS  rS  SE  MSE  

-0.01310953 4.323726 2.079357 0.05667696 4.320685 

 

We observe that all evaluation criteria support the quality of the proposed forecasting 

model. We can also conclude the similarity of the two models. Thus, it raises the question 



is the effort to collect two data sets implement two different procedures by two agencies 

necessary?   

We have demonstrated that our proposed models are capable of representing the 

past monthly average temperature of the Continental United States, it is also essential to 

show that these models are also capable of forecasting the future values of the 

temperature. Therefore, we hide the last 12 months of the temperature, restructure the 

models (3.2) and (3.3) and try to predict the following months only using the previous 

information. For example, we used the first 1334 observations  to forecast 

. Then we use the observations  to forecast , and continue this 

process until we obtain the forecasting values of the last 12 observations, that is, 

. Table 4.3, gives the actual, forecasting and residual data for the 

subject 12 months. 
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Table 4.3 (Version 1 Dataset) 

 Original Values Forecast Values Residuals 

March 2006 43.31 44.0291 -0.7191 

April 2006 56.03 53.1361 2.89395 

May 2006 63.06 62.5318 0.52821 

June 2006 71.44 70.6153 0.82467 

July 2006 77.1 75.5855 1.51453 

August 2006 74.1 74.2054 -0.1054 

September 2006 63.69 66.6904 -3.0004 

October 2006 52.97 55.4991 -2.5291 

November 2006 44.68 43.2673 1.41275 

December 2006 36.64 34.6357 2.00433 

January 2007 31.39 32.58 -1.19 

February 2007 32.86 36.2024 -3.3424 
 

Figure 4.5 below gives a graphical presentation of the information presented in Table 4.3 

for Version 1 observed time series. 
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Figure 4.5. Monthly Temperature VS. Our Predicted Values for the Last 12 Observations 
(Version 1 Dataset) 
 

Similarly, for Version 2 of the data set, we have calculated the estimates 

presented by Table 4.4. 

 

Table 4.4 
 Original Values Forecast Values Residuals 

March 2006 43.45 44.1812 -0.7312 

April 2006 56.12 53.2506 2.86942 

May 2006 63.12 62.6351 0.48486 

June 2006 71.55 70.7152 0.83478 

July 2006 77.22 75.6947 1.52532 

August 2006 74.19 74.3167 -0.1267 

September 2006 63.86 66.8069 -2.9469 

October 2006 53.13 55.6137 -2.4837 

November 2006 44.58 43.3947 1.18529 

December 2006 36.79 34.7224 2.06761 

January 2007 31.46 32.6854 -1.2254 

February 2007 32.86 36.3025 -3.4425 
 

A graphical presentation of the results given in Table 4.4 are given below by Figure 4.6. 
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Figure 4.6. Monthly Temperature VS. Our Predicted Values for the Last 12 Observations 
(Version 2 Dataset) 
 

We remark the similarity of the results of both models and the good forecast values.  

 

5. CONCLUSION 

 

We have developed two seasonal autoregressive integrated moving average 

models to forecast the monthly average temperature in the Continental united States using 

historical data for 1895-2007. The two models are based on two different methods, 

USCD and USHCN, that are been used to create the two temperature basis. The two 

developed models were evaluated and it was shown that the processes give good forecast 

values. In addition we can conclude that both Version 1 and 2 give really similar results 

and thus, both methods are not necessary. 
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