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Abstract: Our main purpose is to construct one standard and three nonstandard finite

difference schemes for the cube–root differential equation. After an analysis of the general

qualitative features of the solutions to this equation and a calculation of the exact period,

we study the stability of the numerical solutions for the four discretization schemes. Our

general conclusion is that the standard forward–Euler method gives unstable numerical

solutions, while the three nonstandard schemes provide suitable integration procedures.
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1 Introduction

The cube–root differential equation (CRDE) is [1]

ẍ + x
1

3 = 0, (1.1)

where the ‘dot’ notation is used to indicate the derivative, i.e., ẋ ≡ dx/dt, etc. The mathe-
matical properties of solutions to this equation has been investigated by Mickens [1, 2] and
a summary of these results will be presented in Section 2. Our purpose here is to construct
finite difference schemes for the CRDE and check, using numerical simulations, if they
reproduce the periodic solutions known to exist for Eq. (1.1) [1, 2]. The discretizations for-
mulated consist of a standard forward–Euler scheme and three nonstandard schemes based
on the methodology of Mickens [3, 4, 5]. Thus, our interest is not in determining the over-
all accuracy of these schemes, but rather the evaluation of which can provide numerical
solutions having the same qualitative properties of the solutions to the CRDE.

In Section 2, we provide a brief summary of the general properties of the solutions to
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Eq. (1.1). The four finite difference schemes are given in Section 3 with short discussions
on their derivations. Section 4 provides a summary of our numerical experiments on the
four finite difference schemes. Finally, in Section 5, we discuss our results and come to sev-
eral conclusions regarding the construction of discrete models such as given by Eq. (1.1).

It should be noted that, for purposes of the implementation of the various finite differ-
ence schemes, care must be taken with regard to the evaluation of x1/3. Certain computer
software give ambiguous or no numerical evaluations for negative x–values, e.g. MATLAB
returns using x1/3 a complex valued root; for the needed real valued cubic root one has to
use the MATLAB function nthroot(x,3). However, we have overcome this weakness
by replacing x1/3 by the following equivalent expression

x1/3 = [sign(x)] (|x|) 1

3 , (1.2)

where

sign(x) =



















1, if x > 0;

0, if x = 0;

−1, if x < 0.

In the remainder of the paper, it should be assumed that whenever x
1/3

k appears, the corre-
sponding form given in Eq. (1.2) was used for the actual numerical simulations.

To avoid the repetition of writing certain expressions over several times, the following
abbreviations are used in this paper:

CRDE : cube–root differential equation
NSFD : nonstandard finite difference
NSFE : nonstandard forward–Euler
ODE : ordinary differential equation
SFE : standard forward–Euler

2 The Cubic–Root Differential Equation

The initial value problem for the CRDE is [6]

ẍ + x
1

3 = 0, x(0) = A, ẋ(0) = 0. (2.1)

The more general set of initial conditions, x(0) = A, and ẋ(0) = B, is not required since
it can be easily shown that the analysis of the special case, in Eq. (2.1), gives the same
relevant results as the general situation for A 6= 0 and B 6= 0 [7].

The CRDE can be written as a system of two coupled first–order ODEs
dx

dt
= y,

dy

dt
= −x

1

3 , x(0) = A, y(0) = 0. (2.2)
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The variables, x and y, constituent a two dimensional phase–space [7]. Note that the fixed–
point or constant solution for this system is (x̄, ȳ) = (0, 0). Further, in the (x, y) phase–
space, the trajectories, y = y(x), are solutions to the first–order ODE [7]

dy

dx
= −x

1

3

y
. (2.3)

Since this equation is separable, the following first integral results from integrating
Eq. (2.3)

y2

2
+

(3

4

)

x
4

3 =
(3

4

)

A
4

3 . (2.4)
The integration constant on the right–side was evaluated by use of the initial conditions in
Eq. (2.2). Since all of the terms in the first integral are non–negative for all values of x and
y, Eq. (2.4) represents a closed curve in the phase–space. This results implies that all of the
solutions of the CRDE are periodic except for the fixed–point located at the origin [1, 6, 7].

The ODE for the trajectories in phase–space, Eq. (2.3), is invariant under the following
three transformations

T1 : x → −x, y → y;

T2 : x → x, y → −y;

T3 : x → −x, y → −y.

They correspond, respectively, to reflection through the y–axis, reflection through the x–
axis and inversion through the origin. These symmetries can also be used to show directly
that all the trajectories in phase–space are closed curves and hence all solutions to the
CRDE are periodic [1, 7].

Since Eq. (2.1) has (all) periodic solutions, it is of interest to determine the period T of
these solutions, i.e.,

x(t + T ) = x(t). (2.5)
The following expression gives the period [2]

T (A) =

√

32

2

∫ A

0

dx
√

A
4

3 − x
4

3

. (2.6)

After a rather involved set of calculations, we obtain

T (A) = (2
√

6)φA
1

3 , (2.7)

where
φ =

∫

1

0

√

w

(1 + w)(1 − w)
dw (2.8)

has a known numerical value represented in terms of complete elliptic integrals of the first
and second kinds [8]. Putting all this together gives

T (A) = (5.86966)A
1

3 . (2.9)
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From a physical point of view, the CRDE represents a nonlinear conservative oscillator
for which the elastic force term is x1/3. This fact will be useful for the construction of one
of our NSFD schemes.

In summary, the CRDE corresponds to a nonlinear conservative oscillator. Except for
the fixed–point or equilibrium solution, all other solutions are periodic with constant am-
plitudes.

3 Discretizations of the CRDE

The first finite difference scheme for the CRDE is the standard forward–Euler representa-
tion [9, 10] for the system equations; see Eq. (2.2). For this case, we have

xk+1 − xk

h
= yk,

yk+1 − yk

h
= −x

1

3

k , (3.1)

where

t → tk = hk, h = ∆t; k = 0, 1, 2, . . . ,

x(t) → x(tk) = xk.

Solving for xk+1 and yk+1 gives

xk+1 = xk + hyk, yk+1 = yk − hx
1

3

k . (3.2)

We call this the SFE scheme for the CRDE.
The second scheme is

xk+1 − xk

h
= yk,

yk+1 − yk

h
= −x

1

3

k+1
. (3.3)

Solving these expressions for xk+1 and yk+1 gives the following expressions

xk+1 = xk + hyk, yk+1 = yk − h(xk + hyk)
1

3 . (3.4)

Note that for this scheme, the x1/3 term is evaluated at tk+1 rather than tk, as was the case
for the SFE discretization. We denote the scheme, Eq. (3.4), by the notation NSFE–1.

For the third scheme we use the discrete construction
xk+1 − xk

h
= yk+1,

yk+1 − yk

h
= −x

1

3

k , (3.5)

and these equations can be rewritten to the forms

xk+1 = xk + hyk − h2x
1

3

k , yk+1 = yk − hy
1

3

k . (3.6)

This is scheme NSFE–2.
The fourth scheme is derived from formulations derived by Mickens [11], and Anguelov

and Lubuma [12]. While the derivations appear to be completely different, for the CRDE
the same NSFD scheme is obtained. The basic idea is to construct a discrete form for the
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first integral of the CRDE; see Eq. (2.4). Denoting this by Hk = H(xk, xk−1), we have
[11]

Hk =
1

2

(xk − xk−1

h

)2

+
3

4
x

2

3

k x
2

3

k−1
= const. (3.7)

Since Hk is constant, then
Hk+1 = Hk. (3.8)

After some algebraic work, Eq. (3.8) can be rewritten to the form

xk+1 − 2xk + xk−1

h2
+





3x
2

3

k

x
2

3

k+1
+ x

1

3

k+1
x

1

3

k−1
+ x

2

3

k−1









x
1

3

k+1
+ x

1

3

k−1

2



 = 0 (3.9)

Observe that the second–order derivative d2x/dt2 is represented by a (standard) central
difference scheme, while the x1/3 term has a very complex algebraic structure. It is very
clear that the scheme of Eq. (3.9) would not be formulated within the context of standard
numerical methods for ODEs [11, 12]. We denote the scheme of Eq. (3.9) by NSFE–3.

4 Numerical Results

Numerical simulations were carried out for the four finite difference schemes constructed
for the CRDE using the step size h = 0.01 until the final time T = 100 (i.e. 10,000 steps).
For all of the simulations, the initial values were selected to be

x(0) = 1, ẋ(0) = y(0) = 0; (4.1)

consequently, x0 = 1 and y0 = 0. The NSFE–3 scheme is a second order difference
equation and therefore both x0 and x1 are needed. The value for x1 was calculated by the
following evaluation:

x1 = x(h) = x(0) + h ẋ(0) +
h2

2
ẍ(0) + O(h3)

= x0 + hy(0) +
h2

2

[

−(x0)
1

3

]

+ O(h3)

= 1 − h2

2
+ O(h3).

(4.2)

The first two terms on the right–side of Eq. (4.2) were then used to calculate x1.
Figure 1 presents the results for the standard forward–Euler scheme; see Eq. (3.2). Ob-

serve that this scheme produces numerical solutions that oscillate with increasing ampli-
tude. This behaviour is clearly inconsistent with the known properties of the CRDE: all its
solutions oscillate with constant amplitude, i.e., the general solution (except for the fixed–
point) is periodic. Therefore, we conclude that the SFE scheme is unstable and should not
be used to calculate numerical solutions for the CRDE.

It should be indicated, for dynamic systems having either a linear or nonlinear center
fixed–point, the use of forward–Euler discretizations, in general, transforms the center into
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Cube−Root problem: SFES

Figure 1: Numerical solution to the CRDE using the SFE scheme.

an unstable node for the corresponding difference scheme [13]. In addition to the paper of
Wang et al. [13], further work on this issue has been carried out by Mickens [14], Sanz–
Serna [15], Mickens [16], and Roeger [17].
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Cube−Root problem: nonstandard scheme

Figure 2: Numerical solution to the CRDE using one of the nonstandard schemes.

Of both interest and importance, the three nonstandard finite difference schemes gave
essentially identical numerical results for the integration of the CRDE; the correspond-
ing three schemes are given in Eqs. (3.4), (3.6), and (3.9). Observe, from Figure 2, that
for all three nonstandard schemes the amplitudes of the oscillations are constant and that
computationally the solutions are periodic. Clearly the NSFE schemes produce numerical
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solutions having all of the essential mathematical features of the solutions of the CRDE.
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Cube−Root problem: ODE45

Figure 3: Numerical solution to the CRDE using the MATLAB solver ode45.

Finally, we tried for a comparison, the standard MATLAB one–step ODE solver ode45
that is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair [18]. We
prescribed a relative error tolerance of 10−4 and computed the solution until the extended
final time T = 300. In Figure 3, one clearly observes that the amplitude of the oscillations
is decaying in time. Thus, this solution behaviour is another motivation to use nonstandard
schemes like Eqs. (3.4), (3.6), and (3.9) to solve the CRDE numerically.

5 Discussion

Our work has demonstrated that the use of nonstandard finite difference schemes allows the
construction of dynamic consistent [19] discretizations for the CRDE. However, it would
be of value to gain insight as to why the SFE scheme did not work, i.e., why it produced an
unstable solution. To gain this insight into a possible mechanism, we will analyze a much
simpler system, namely, the linear harmonic oscillator [4]

ẍ + x = 0, (5.1)
which can be written in the system form

dx

dt
= y,

dy

dt
= −x. (5.2)

The SFE scheme for these equations are
xk+1 − xk

h
= yk,

yk+1 − yk

h
= −xk. (5.3)

Eliminating yk and shifting the index k down by one gives the following second–order
difference equation

xk+1 − 2xk + xk−1

h2
+ xk−1 = 0. (5.4)
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To find the approximating differential equation [4] make an expansion of xk−1,

xk−1 = x(tk − h)

= x(tk) − hẋ(tk) + O(h2),
(5.5)

substitute this expression into Eq. (5.4), and keep terms to order h. Carrying out this
procedure gives the ODE

ẍ − hẋ + x = 0. (5.6)

Note that the solutions to this modified harmonic oscillator equation oscillate with increas-
ing amplitude [4]. Thus, the conclusion is that the SFE scheme for the harmonic oscillator
equation changes the center fixed–point, for the ODE, into an unstable node for the differ-
ence scheme.

We believe that the same mechanism is at work when the SFE scheme is applied to the
CRDE. This clearly is indicated by the elimination of yk in Eq. (3.1) to obtain

xk+1 − 2xk + xk−1

h2
+ x

1

3

k−1
= 0, (5.7)

and this second–order nonlinear difference equation has a structure similar to Eq. (5.4).
In summary, we have constructed four finite difference schemes to numerically integrate

the CRDE
ẍ + x

1

3 = 0. (5.8)

All of the NSFD schemes produced numerical solutions that were dynamically consistent
with the actual solutions of the original differential equation. However, the SFE scheme
solutions were unstable and this fits in with previous experiences with this scheme [13]–
[17]. The conclusion is that NSFD schemes can provide valid discretizations for the CRDE.
A future research problem is to carry out a mathematical and discretization analysis of the
related nonlinear ODE

ẍ +
1

x
1

3

= 0. (5.9)

Phase space analysis and the existence of a first–integral shows that all solutions to Eq. (5.9)
are periodic.
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