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Abstract: In this article we study the stability of an overlapping operator-splitting meth-

ods based on iterative methods. We discuss the overlapping iterative Operator Splitting

method in the context of decoupling the stiff and non-stiff operators. In the context of sta-

bilisation the stiff operators, we present the overlapping ideas as extension to the standard

iterative operator splitting method. The efficiency of considering the overlapping method

instead of the standard method whole domain in the is discussed. We apply our theoretical

results on model problems in stiff parabolic partial differential equations.
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1 Introduction

Overlapping Schwarz waveform relaxation is the name for a combination of two standard
algorithms, Schwarz alternating method and wave form relaxation algorithm to solve evo-
lution problems in parallel. The method is defined by partitioning the spatial domain into
overlapping sub-domains, as in the classical Schwarz method.

The combined time-space iterative operator-splitting method combines the Schwarz-
wave formrelaxation and the iterative operator-splitting method.

The outline of the paper is as follows. For our mathematical model we describe the
convection-diffusion-reaction equation in section 2. The Fractional Splitting is introduced
in section 3. For the overlapping Schwarz waveform-relaxation method we derive the error-
analysis for the scalar and systems (coupled or decoupled systems) and presented the results
in section 3. In section 7 we present the numerical results from the solution of selective
model problems. We end the article in section 6 with conclusion and comments.

Received January 15, 2008 1061-5369 c© Dynamic Publishers, Inc.



190 Geiser & Kravvaritis

2 Mathematical Model and Methods
2.1 Model-Problem

The motivation for the study presented below is coming from a computational simulation
of heat-transfer [12] and convection-diffusion-reaction-equations [10], [17], [18] and [16].

In our paper we concentrate us to a one dimensional convection-diffusion-reaction equa-
tion as our model problem and given by

ut − D uxx + ν ux = −λ u , in Ω × (0, T ) , (1)

u(x, 0) = u0 , (Initial-Condition) , (2)

u(x, t) = u1 , on ∂Ω × (0, T ) , (Dirichlet-Boundary-Condition) . (3)

The unknown u = u(x, t) is considered in Ω × (0, T ) ⊂ IR × IR, where Ω = [0, L].
The parameters u0, u1 ∈ IR+ are constants and used as initial- and boundary-parameter
respectively. The parameter λ is a constant factor, for example a decay-rate of a chemical
reaction. D is constant factor, for example the diffusion factor of a transport-process and v

is a constant factor, for example the velocity-rate of a transport-process.
The aim of this paper is to present a new method based on a mixed discretization

method with Fractional-Splitting and Domain decomposition methods for an effective
solver-methods of strong coupled parabolic differential equations.

In the next subsection we discuss the decoupling of the time-scale with a first order
fractional splitting-method.

3 Overlapping Schwarz wave form relaxation for the solution of convection reaction
diffusion equation

In this section we shall present the necessary conditions for the convergence of the over-
lapping Schwarz wave form relaxation method for the solution of the convection-reaction
diffusion equation with constant coefficients. We will utilize the convergence analysis for
the solution of the decoupled and coupled system of convection reaction diffusion equa-
tion to elaborate the impact of the coupling on the convergence of the overlapping Schwarz
wave form relaxation.

Given the following model problem

ut + Lu = f , in Ω × (0, T ) , Ω × (0, T ) := Ω1 × (0, T ) ∪ Ω2 × (0, T ) , (4)

u(x, 0) = u0 , (Initial-Condition) , (5)

u = g , on ∂Ω × (0, T ) , (6)

where L denotes for each time t a second-order partial differential operator Lu =

−∇D∇u + v∇u + cu for the given coeffients D ∈ IR+, v ∈ IRn, c ∈ IR+, and n is
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the dimension of the space. Iteration step consists of two half steps, associated with the
two subdomains and we solve 2 subproblems

u1t + Lun
1 = f , in Ω1 × (0, T ) , (7)

u1(x, 0) = u10 , (Initial-Condition) , (8)

un
1 = g , on L0 = ∂Ω × (0, T ) ∩ ∂Ω1 × (0, T ) , (9)

un
1 = un−1

2 , on L2 = ∂Ω1 × (0, T )\∂Ω × (0, T ) , (10)

u2t + Lun
2 = f , in Ω2 × (0, T ) , (11)

u2(x, 0) = u20 , (Initial-Condition) , (12)

un
2 = g , on L3 = ∂Ω × (0, T ) ∩ ∂Ω2 × (0, T ) , (13)

un
2 = un

1 , on L1 = ∂Ω2 × (0, T )\∂Ω × (0, T ); , (14)

4 The iterative splitting method

Because of improved The following algorithm is based on the iteration with fixed split-
ting discretization step-size τ . On the time interval [tn, tn+1] we solve the following sub-
problems consecutively for i = 0, 2, . . . , 2m.

Initial idea:
∂ci(x, t)

∂t
= Aci(x, t) + Bci−1(x, t), with ci(t

n) = cn (15)

and c0(t
n) = cn , c−1 = 0.0,

and ci(x, t) = ci−1(x, t) = c1 , on ∂Ω × (0, T ) ,

∂ci+1(x, t)

∂t
= Aci(x, t) + Bci+1(x, t), (16)

with ci+1(t
n) = cn ,

and ci(x, t) = ci−1(x, t) = c1 , on ∂Ω × (0, T ) ,

where cn is the known split approximation at the time level t = tn, cf. [8].

5 The overlapping iterative operator splitting method

The idea behind the overlapping iterative operator splitting method is balancing of the
eigenvalues of the different operators by weighting.

∂ci(x, t)

∂t
= (1 − ω1)Aci(x, t) + ω1(A + B)ci(x, t) + (1 − ω1)Bci−1(x, t), (17)

with ci(t
n) = cnand c0(t

n) = cn , c−1 = cn, (18)
∂ci+1(x, t)

∂t
= (1 − ω1)Aci(x, t) + ω1(A + B)ci(x, t) + (1 − ω1)Bci+1(x, t), (19)

with ci+1(t
n) = cn , (20)

where cn is the known split approximation at the time level t = tn, cf. [8].
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6 Consistency and stability analysis of the combined method

Theorem 1 Let us consider the nonlinear operator-equation in a Banach space X

∂tc(t) = A1(c(t)) + A2(c(t)) + B1(c(t)) + B2(c(t)), 0 < t ≤ T ,

c(0) = c0 ,
(21)

where A1, A2, B1, B2, A1 + A2 + B1 + B2 : X → X are given linear operators being

generators of the C0-semigroup and c0 ∈ X is a given element. Then the iteration process

(17)–(20) is convergent and the rate of the convergence is of second order.

We obtain the iterative result :

Proof. Let us consider the iteration (17)–(20) on the sub-interval [tn, tn+1]. For the error
function ei(t) = c(t) − ci(t) we have the relations

∂tei,j(t) = A1(ei,j(t)) + A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (tn, tn+1], ei,j(t
n) = 0 , (22)

and

∂tei+1,j(t) = A1(ei,j(t)) + A2(ei,j−1(t)) + B1(ei+1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (tn, tn+1], ei+1,j(t
n) = 0 , (23)

and

∂tei,j+1(t) = A1(ei,j(t)) + A2(ei,j+1(t)) + B1(ei+1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (tn, tn+1], ei,j+1(t
n) = 0 , (24)

and

∂tei,j(t) = A1(ei,j(t)) + A2(ei,j+1(t)) + B1(ei+1,j(t)) + B2(ei+1,j+1(t)),

t ∈ (tn, tn+1], ei,j(t
n) = 0 , (25)

for i, j = 0, 2, 4, . . . , with e0,0(0) = 0 and e−1,0 = e0,−1 = e−1,−1(t) = c(t).
In the following we derive the linear system of equations. We use the notations X

2 for the
product space X × X enabled with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖} (u, v ∈ X). The
elements Ei(t), Fi(t) ∈ X

2 and the linear operator A : X2 → X
2 are defined as follows

Ei,j(t) =













ei,j(t)

ei+1,j(t)

ei,j+1(t)

ei+1,j+1(t)













; A =













A1 0 0 0

A1 A2 0 0

A1 A2 B1 0

A1 A2 B1 B2













, (26)

Fi,j(t) =













A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1)

B1(ei−1,j(t)) + B2(ei−1,j−1)

B2(ei−1,j−1)

0













. (27)
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Then, using the notations (27), the relations (22)–(25) can be written in the form
∂tEi,j(t) = AEi,j(t) + Fi,j(t), t ∈ (tn, tn+1],

Ei,j(t
n) = 0.

(28)

Due to our assumptions, A is a generator of the one-parameter C0 semigroup (A(t))t≥0.
We also assume the estimation of our term Fi(t) with the growth conditions.

We could estimate the right hand side Fi(t) in the following lemma :

Lemma 1 Let us consider the the bounded Jacobian of A(u) and B(u)

We could then estimate the Fi(t) as

||Fi,j(t)|| ≤ C||ei−1,j−1|| . (29)

Proof. We have the following norm
||Fi,j(t)|| = max{Fi,j,1(t),Fi,j,2(t),Fi,j,3(t),Fi,j,4(t)}.

We have to estimate each term :

||Fi,j,1(t)|| ≤ ||A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1)|| ≤ C1||(ei−1,j−1)||
||Fi,j,2(t)|| ≤ ||B1(ei−1,j(t)) + B2(ei−1,j−1)|| ≤ C2||(ei−1,j−1)||
||Fi,j,3(t)|| ≤ ||B2(ei−1,j−1)|| ≤ C3||(ei−1,j−1)||

So we obtain the estimation :
||Fi,j(t)|| ≤ C̃||ei−1,j−1(t)||

where C̃ is the maximum value of C1, C2 and C3. �

Hence using the variations of constants formula, the solution of the abstract Cauchy
problem (28) with homogeneous initial condition can be written as

Ei,j(t) =

∫ t

tn
exp(A(t − s))Fi,j(s)ds, t ∈ [tn, tn+1]. (30)

(See, e.g. [5].) Hence, using the denotation

‖Ei,j‖∞ = supt∈[tn,tn+1] ‖Ei,j(t)‖ , (31)

we have
‖Ei,j‖(t) ≤ ‖Fi,j‖∞

∫ t

tn
‖exp(A(t − s))‖ds =

= C ‖ei−1,j−1‖
∫ t

tn
‖exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(32)

We have estimate ||Fi,j|| ≤ C||ei−1,j−1||, where C is a constant that bounds the nonlinear
terms of Fi,j(t).

Since (A(t))t≥0 is a semigroup therefore the so called growth estimation

‖ exp(At)‖ ≤ K exp(ωt); t ≥ 0 , (33)

holds with some numbers K ≥ 0 and ω ∈ IR, see [5].
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• Assume that (A(t))t≥0 is a bounded or exponentially stable semigroup, i.e. (33) holds
with some ω ≤ 0. Then obviously the estimate

‖ exp(At)‖ ≤ K; t ≥ 0 , (34)

holds, and, hence on base of (32), we have the relation

‖Ei,j‖(t) ≤ Kτn‖ei−1,j−1‖, t ∈ (0, τn). (35)

• Assume that (A(t))t≥0 has an exponential growth with some ω > 0. Using (32) we have
∫ tn+1

tn
‖exp(A(t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (36)

where
Kω(t) =

K

ω
(exp(ω(t − tn)) − 1) , t ∈ [tn, tn+1] , (37)

and hence
Kω(t) ≤ K

ω
(exp(ωτn) − 1) = Kτn + O(τ 2

n) , (38)

so the estimations (35) and (38) result in

‖Ei,j‖∞ = Kτn‖ei−1,j−1‖ + O(τ 2
n). (39)

Taking into the account the definition of Ei and the norm ‖ · ‖∞, we obtain

‖ei,j‖ = Kτn‖ei−1,j−1‖ + O(τ 2
n), (40)

and hence
‖ei+1,j+1‖ = K1τ

2
n‖ei−1,j−1‖ + O(τ 3

n), (41)

which proves our statement. �

7 Numerical Results

In this section we will present the numerical results from the solution of the Convection-
diffusion-reaction equation using several variations of the proposed methods in comparison
with already known classical methods.

7.1 First numerical example

We consider the one-dimensional convection-reaction-diffusion equation

∂tu + v∂xu − ∂xD∂xu = −λu , in Ω × (T0, Tf ) , (42)

u(x, 0) = uex(x, 0) , (Initial-Condition) , (43)

u(x, t) = uex(x, t) , on ∂Ω × (T0, Tf) , (44)

where Ω × [T0, Tf ] = [0, 150] × [100, 105].
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The exact solution is given as

uex(x, t) =
u0

2
√

Dπt
exp(−(x − vt)2

4Dt
) exp(−λt) . (45)

The initial condition and the Dirichlet boundary conditions are defined using the exact
solution (57) at starting time T0 = 100 and with u0 = 1.0. We have λ = 10−5, v = 0.001

and D = 0.0001.

7.2 Solution using classical methods

7.2.1 A-B splitting combined with Schwarz wave form relaxation method In order to solve
the model problem using overlapping Schwarz wave form relaxation method, we divide the
domain Ω in two overlapping sub-domains Ω1 = [0, L2] and Ω2 = [L1, L], where L1 < L2,
and Ω1

⋂

Ω2 = [L1, L2] is the overlapping region for Ω1 and Ω2.

To start the wave form relaxation algorithm we consider first the solution of the model
problem (54) over Ω1 and Ω2 as follows

vt = Dvxx − νvx − λv over Ω1 , t ∈ [T0, Tf ]

v(0, t) = f1(t) , t ∈ [T0, Tf ]

v(L2, t) = w(L2, t) , t ∈ [T0, Tf ]

v(x, T0) = u0 x ∈ Ω1,

(46)

wt = Dwxx − νwx − λw over Ω2 , t ∈ [T0, Tf ]

w(L1, t) = v(L1, t) , t ∈ [T0, Tf ]

w(L, t) = f2(t) , t ∈ [T0, Tf ]

w(x, T0) = u0 x ∈ Ω2,

(47)

where v(x, t) = u(x, t)|Ω1
and w(x, t) = u(x, t)|Ω2

.
Then the Schwarz wave form relaxation is given by

vk+1
t = Dvk+1

xx − νvk+1
x − λvk+1 over Ω1 , t ∈ [T0, Tf ]

vk+1(0, t) = f1(t) , t ∈ [T0, Tf ]

vk+1(L2, t) = wk(L2, t) , t ∈ [T0, Tf ]

vk+1(x, T0) = u0 x ∈ Ω1,

(48)

wk+1
t = Dwk+1

xx − νwk+1
x − λwk+1 over Ω2 , t ∈ [T0, Tf ]

wk+1(L1, t) = vk(L1, t) , t ∈ [T0, Tf ]

wk+1(L, t) = f2(t) , t ∈ [T0, Tf ]

wk+1(x, T0) = u0 x ∈ Ω2.

(49)

For the solution of (48) and (49) we will apply the sequential operator splitting method
(A-B splitting). For this purpose we divide each of these two equations in terms of the
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operators A = D ∂2

∂x2 − ν ∂
∂x

and B = −λ. The splitting scheme for each of them is given
in the following form:

∂u∗(x, t)

∂t
= D u∗

xx − ν u∗
x , with u∗(x, tn) = u0 , (50)

∂u∗∗(x, t)

∂t
= −λu∗∗(t) , with u∗∗(x, tn) = u∗(x, tn+1) , (51)

where u∗(x, t) = u∗∗(x, t) = u1 , on ∂Ω × (0, T ), are the Dirichlet-Boundary-Conditions
for the equations. The solution is given as u(x, tn+1) = u∗∗(x, tn+1). We obtain an exact
method because of commuting operators.

For the discretization of equation (50) we apply the finite-difference method for the spa-
tial discretization and the implicite Euler method for the time discretization. The discretiza-
tion is given as

1

tn+1 − tn
(u∗(xi, t

n+1) − u∗(xi, t
n)) (52)

= D
1

h2
i

(−u∗(xi+1, t
n+1) + 2u∗(xi, t

n+1) − u∗(xi−1, t
n+1))

− ν
1

hi

(u∗(xi, t
n+1) − u∗(xi−1, t

n+1)) ,

with u∗(x1, t
n) = u∗(x2, t

n) = u0 and u∗(x0, t
n) = u∗(xm, tn) = 0

u∗∗(x, t) = exp(−λ(t − tn) u∗(x, tn+1) , (53)

where hi = xi+1 − xi and we assume a partition with m-nodes.

We are interested in specifying the error between the solution obtained with the above
described algorithm and the exact solution. We provide a variety of results for several sizes
of space- and time-partition, and also for various overlap sizes. Precisely, we treat the
cases h = 1, 0.5, 0.25 as spatial step-size, ∆t = 5, 10, 20 as time step. The considered
subdomains are Ω1 = [0, 80] and Ω2 = [70, 150], Ω1 = [0, 60] and Ω2 = [30, 150] and
Ω1 = [0, 100] and Ω2 = [30, 150], with overlap sizes 10, 30 and 70, respectively. Both
the approximated and the exact solution are evaluated at the end-time t = 105. The errors
given in Table 1 are the maximum errors that occurred over the whole space domain, i.e.
they are calculated using the ∞−norm for vectors.

time-step err err err err err err err err err

∆t = 5 2.85e − 3 2.24e − 3 1.28e − 3 2.66e − 4 2.21e − 4 2.20e − 4 2.09e − 5 1.99e − 5 1.97e − 5

∆t = 10 3.94e − 3 2.61e − 3 2.56e − 3 3.03e − 4 3.02e − 4 3.01e − 4 4.55e − 5 4.34e − 5 4.29e − 5

∆t = 20 5.03e − 3 2.81e − 3 2.73e − 3 8.51e − 4 5.22e − 4 5.14e − 4 8.10e − 4 5.66e − 4 4.88e − 4

overlap 10 30 70 10 30 70 10 30 70
space-step h = 1 h = 0.5 h = 0.25

Table 1: Error for the scalar convection diffusion reaction-equation using the Schwarz
waveform relaxation method for three different sizes of overlapping 10, 30 and 70.
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7.3 Solution using the proposed method

For the solution of (54) with the combined time-space iterative splitting method we divide
again the equation in terms of the operators A = D ∂2

∂x2 − ν ∂
∂x

and B = −λ. We will utilize
the proposed scheme (52)–(53).

The index k = 0, 1, . . . , p is associated with the subdomains, i.e. for k = 0, . . . , p/2 we
are working on Ω1 and for k = p/2 + 1, . . . , p on Ω2. For the first set of values for k we
have actually only the effect of the restrictions of the operators A and B on Ω1. Similarly,
the second set of values for k indicates the action of the restrictions of both operators on
Ω2. The outline of the method in Section 3, which is also adopted here, is given without
loss of generality for a subdomain-determining value k = p/2, just for an overview. This
crucial value is determined appropriately according to the three cases of the overlapping
subdomains, which we examine in our experiments.

The indices i and j are related to the time- and space-discretization, respectively. For
every k = 0, . . . , p/2 and for every interval of the space-discretization we solve the
appropriate problems on Ω1, for every interval of the time-discretization. Similarly for
k = p/2 + 1, . . . , p on Ω2.

From a software development point of view, the above described numerical scheme can
be realized with three “for” loops. The first, outer loop is for all values of k. After this loop
there exists a control for k, which discriminates two cases for k < p/2 and for k ≥ p/2+1,
and sets up the data of the algorithm appropriately for Ω1 or Ω2, respectively. The second,
middle loop is running for all values of i and the third, inner loop is for all values of j.

By a closer examination of the scheme (52)–(53), taking into account the definitions
(50)–(51), we observe that the problems to be solved in the innermost loop are of the form
∂tc = Ac + Bc, c(x, tn) = cn, where c appears with appropriate indices i and j. These
problems are solved with suitable modification and implementation of the iterative operator
splitting scheme (15)–(18). The notion of the iterative process takes place in both time- and
space-dimensions.

We are interested again in specifying the error between the solution obtained with the
above described algorithm and the exact solution. We provide the same variety of results
as in the previous subsection, so that a comparison between the proposed and classical
methods can be established. Both the approximated and the exact solution are evaluated
at the end-time t = 105. The errors given in the following tables are the maximum errors
that occurred over the whole space domain, i.e. they are calculated using the ∞−norm for
vectors. The results are given in Table 2.
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time-step err err err err err err err err err

∆t = 5 4.38e − 2 1.47e − 2 3.49e − 3 2.59e − 4 2.13e − 4 1.54e − 4 7.23e − 6 6.49e − 6 8.29e − 6

∆t = 10 5.12e − 2 2.26e − 2 7.46e − 3 2.45e − 4 2.22e − 4 2.15e − 4 3.49e − 5 3.47e − 5 3.37e − 5

∆t = 20 6.14e − 2 4.39e − 2 1.20e − 2 7.43e − 4 5.21e − 4 4.53e − 4 5.23e − 4 5.42e − 4 3.21e − 4

overlap 10 30 70 10 30 70 10 30 70
space-step h = 1 h = 0.5 h = 0.25

Table 2: Error for the scalar convection diffusion reaction-equation using the Schwarz
waveform relaxation method for three different sizes of overlapping 10,30 and 70.

7.4 Second numerical example

We consider the one-dimensional convection-reaction-diffusion equation

∂tu + v∂xu − ∂xDx∂xu − ∂yDy∂yu = −λu , in Ω × (T0, Tf) , (54)

u(x, y, 0) = uex(x, y, 0) , (Initial-Condition) , (55)

u(x, y, t) = uex(x, y, t) , on ∂Ω × (T0, Tf) , (56)

where Ω × [T0, Tf ] = [0, 150] × [0, 150] × [100, 105].
The exact solution is given as

uex(x, y, t) =
u0

4
√

Dxπt
√

Dyπt
exp(−(x − vt)2

4Dxt
) exp(− y2

4Dyt
) exp(−λt) . (57)

The initial condition and the Dirichlet boundary conditions are defined using the exact
solution (57) at starting time T0 = 100 and with u0 = 1.0. We have λ = 10−5, v = 0.001

and Dx = 0.0001, Dy = 0.0005.
Please do the computations to the 2 dim problem. The decoupling is the same as in

the 1 d case.

8 Conclusions and Discussions

We present decomposition methods for complex equations based on the one hand with to
classical methods, overlapping Schwarz wave form relaxation method for the space and
A-B splitting for time and on the other hand with a combined space-time iterative oper-
ator splitting method. The combined method allows more accurate results and improved
convergence results.
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