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Quenching of the Solution for a Degenerate
Semilinear Parabolic Equation

W. Y. Chan

Department of Mathematics, Southeast Missouri State University
Cape Girardeau, MO 63701

Abstract: Let Λ ≤ ∞, q and b be nonnegative constants, and a and c be positive con-

stants. The existence and uniqueness of the solution of the following degenerate semilinear

parabolic problem are studied:

ξquτ = uξξ −
b

ξ2
u+ f (u) in (0, a) × (0,Λ) ,

u (ξ, 0) = 0 on [0, a] , u (0, τ) = 0 = u (a, τ) for 0 < τ < Λ,

where f (u) is a given function such that limu→c− f (u) = ∞. Furthermore, we prove that

u quenches in a finite time. Also, we investigate the critical length of u.
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1 Introduction

Let Λ ≤ ∞, q and b be nonnegative constants, and a and c be positive constants. We
study the existence and uniqueness of the solution of the following degenerate semilinear
parabolic problem:

ξquτ = uξξ −
b

ξ2
u+ f (u) in (0, a) × (0,Λ) , (1.1)

u (ξ, 0) = 0 on [0, a] , u (0, τ) = 0 = u (a, τ) for 0 < τ < Λ, (1.2)

where f ∈ C2 ([0, c)), f (0) > 0, f ′ (0) > 0, f ′′ (s) > 0 for s ∈ [0, c), and limu→c− f (u) =

∞. Furthermore, we prove that u quenches in a finite time. Also, we investigate the critical
length of u. Let ξ = ax, τ = aq+2t, Λ = aq+2T , D = (0, 1), Ω = D × (0, T ), D̄ = [0, 1],
Ω̄ = D̄× [0, T ), and Lu = xqut − uxx + bu/x2. The problem (1.1)-(1.2) is transformed to

Lu = a2f (u) in Ω, (1.3)

u (x, 0) = 0 on D̄, u (0, t) = 0 = u (1, t) for 0 < t < T. (1.4)

When T <∞, a solution u to the problem (1.3)-(1.4) is said to quench at time T if

max
{

u (x, t) : x ∈ D̄
}

→ c− when t→ T−.
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The length a∗ is called the critical length if there exists a global solution u for a < a∗, and
if u quenches for a > a∗.

When b = 0 and q = 1, the operator L is used to describe the temperature u of the
channel flow of a fluid with a temperature-dependent viscosity in the boundary layer (cf.
Ockendon [10]).

In the n-dimensional case and q = 0, Zhang [16] calculated the lower bound of the
fundamental solution of the problem Lu = 0 for b > 0. On the other hand, Baras and
Goldstein [2] studied the existence of the solution of the problem for b ≤ 0.

When q ≥ 0, b ≥ 0, and the forcing term is up where p > 1, Chan and Chan [4] studied
the blow-up for the problem (1.3)-(1.4). They showed that x = 0 is the only blow-up
point if 1 < p ≤ 1 + 2q/

(

1 +
√

1 + 4b
)

. If the forcing term is
∫ 1

0
F (u (ζ, t)) dζ where

F (s) ≥ sp with p > 1 for s ≥ 0, Chan [7] showed that u blows up for every x ∈ D̄.
In Section 2, we shall study the existence and uniqueness of the solution u. Under some

conditions, we shall prove that u quenches in a finite time. In Section 3, we shall determine
an upper bound of the critical length by constructing a lower solution. Also, we shall use a
numerical method to determine the approximated value of a∗. An example will be provided
when f (u) = 1/ (1 − u).

2 Existence and Uniqueness of the Solution

To establish the existence and uniqueness of u, we study the steady state solution v of the
problem (1.3)-(1.4) first. v satisfies the following boundary value problem:

v′′ − b

x2
v = −a2f (v) in D, v (0) = 0 = v (1) . (2.1)

As f (v) > 0, from (2.1)

v′′ − b

x2
v < 0 in D, v (0) = 0 = v (1) .

According to Theorem 1.3 of Protter and Weinberger [12, p. 6], v > 0 in D. Let Mv =

v′′ + (1 − b/x2) v. The general solution of Mv = 0 is given by (cf. Weisstein [15, p. 197])

y (x) = x1/2
(

AJ√1+4b/2 (x) +BY√
1+4b/2 (x)

)

,

where J√1+4b/2 (x) and Y√
1+4b/2 (x) are Bessel functions of the first and second kind with

degree
√

1 + 4b/2, and A and B are arbitrary constants. The solution y (x) satisfying
y (0) = 0 is denoted by

y1 (x) = x1/2J√1+4b/2 (x) .

The solution y (x) satisfying y (1) = 0 is given by

y2 (x) = x1/2

(

J√1+4b/2 (x) −
J√1+4b/2 (1)

Y√1+4b/2 (1)
Y√1+4b/2 (x)

)

.
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The Green’s function G (x, s) for the operator M is

G (x, s) =



































−Ãx1/2J√1+4b/2 (x) Âs1/2
(

J√1+4b/2 (s) − J√
1+4b/2(1)

Y√
1+4b/2(1)

Y√1+4b/2 (s)
)

if 0 ≤ x ≤ s,

−Ãs1/2J√1+4b/2 (s) Âx1/2
(

J√1+4b/2 (x) − J√
1+4b/2(1)

Y√
1+4b/2(1)

Y√1+4b/2 (x)
)

if s ≤ x ≤ 1,

where Ã and Â are constants. According to (9.1.16) of Abramowitz and Stegun [1, p. 360],

J√1+4b/2 (x)
d

dx
Y√1+4b/2 (x) − Y√1+4b/2 (x)

d

dx
J√1+4b/2 (x) = 2/ (πx) . (2.2)

We follow the method of Simmons and Krantz [13, pp. 143-144] and set

lim
s→x−

∂

∂x
G (x, s) − lim

s→x+

∂

∂x
G (x, s) = −1,

it gives

ÃÂ =
−π
2

Y√1+4b/2 (1)

J√1+4b/2 (1)
.

Hence, the Green’s function for the operator M and satisfying the boundary conditions of
(2.1) is

G (x, s)

=























−π
2
x1/2J√1+4b/2 (x) s1/2

(

Y√1+4b/2 (s) − Y√
1+4b/2(1)

J√
1+4b/2

(1)
J√1+4b/2 (s)

)

if 0 ≤ x ≤ s,

−π
2
s1/2J√1+4b/2 (s) x1/2

(

Y√1+4b/2 (x) − Y√
1+4b/2(1)

J√
1+4b/2

(1)
J√1+4b/2 (x)

)

if s ≤ x ≤ 1.

(2.3)

Follow the proof of Lemma 3 of Chan and Chen [5], G (x, s) > 0 for x and s in D.
Lemma 1. If R (x) is a nonpositive function in D and negative over an interval I where

I ⊂ D, then the solution to the boundary value problem,

Mv = R (x) in D, v (0) = 0 = v (1) , (2.4)

is positive in D.

Proof. The solution v of (2.4) satisfies the integral equation

v (x) =

∫ 1

0

G (x, s) (−R (s)) ds.

To each x ∈ D, G (x, s) > 0 for s ∈ D. By the assumption, v (x) > 0 in D. �

Lemma 2. If a2f ′ (0) ≥ 1, then the boundary value problem (2.1) has the minimal solution

V (< c).
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Proof. To establish the existence of the minimal solution, we construct a sequence {vn}
as follows: v0 = 0, and for n = 1, 2, . . . ,

d2vn

dx2
+

(

1 − b

x2

)

vn = vn−1 − a2f (vn−1) in D, vn (0) = 0 = vn (1) . (2.5)

When n = 1, (2.5) becomes
d2v1

dx2
+

(

1 − b

x2

)

v1 = −a2f (0) . (2.6)

It follows from f (0) > 0,
d2v1

dx2
+

(

1 − b

x2

)

v1 < 0.

By Lemma 1, v1 > v0 in D. Subtracting (2.6) from (2.1) and by the mean value theorem,
we obtain

d2 (v − v1)

dx2
+

(

1 − b

x2

)

(v − v1)

= v − a2f (v) + a2f (0)

=
(

1 − a2f ′ (ψ1)
)

v,

where ψ1 ∈ (0, v). Since f ′′ (s) > 0, it implies 1 − a2f ′ (ψ1) < 1 − a2f ′ (0). Then,

d2 (v − v1)

dx2
+

(

1 − b

x2

)

(v − v1) <
(

1 − a2f ′ (0)
)

v ≤ 0.

At x = 0 and x = 1, v1 = v. By Lemma 1, v1 < v in D. Suppose that v0 < vk < v in D
for some positive integer k. When n = k + 1, by the mean value theorem, there exists a
function ψ2 ∈ (0, vk) such that

d2vk+1

dx2
+

(

1 − b

x2

)

vk+1 =
(

1 − a2f ′ (ψ2)
)

vk − a2f (0) < 0.

By vk+1 (0) = 0 = vk+1 (1) and Lemma 1, vk+1 > v0 in D. We subtract (2.5) from (2.1)

d2 (v − vk+1)

dx2
+

(

1 − b

x2

)

(v − vk+1) =
(

1 − a2f ′ (ψ3)
)

(v − vk) < 0,

where ψ3 ∈ (vk, v). At x = 0 and x = 1, vk+1 = v. By Lemma 1, vk+1 < v in D. Hence,
by the mathematical induction, v0 < vn < v in D for n = 1, 2, . . .

Now, suppose that vk−1 < vk in D for some positive integer k. Substituting n = k + 1

and n = k respectively in (2.5), we obtain

d2vk+1

dx2
+

(

1 − b

x2

)

vk+1 = vk − a2f (vk) , (2.7)

d2vk

dx2
+

(

1 − b

x2

)

vk = vk−1 − a2f (vk−1) . (2.8)
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Subtract (2.8) from (2.7)
d2 (vk+1 − vk)

dx2
+

(

1 − b

x2

)

(vk+1 − vk)

= (vk − vk−1) − a2f (vk) + a2f (vk−1) ,

=
(

1 − a2f ′ (ψ4)
)

(vk − vk−1) < 0,

where ψ4 ∈ (vk−1, vk). At x = 0 and x = 1, vk+1 = vk. By Lemma 1, vk < vk+1 in D.
Hence, v0 < vk < vk+1 < v < c in D. By the mathematical induction, the sequence {vn}
is increasing and converges strictly monotonically. For n = 0, 1, 2, . . . , the sequence {vn}
satisfies the following integral equation

vn+1 (x) =

∫ 1

0

G (x, s)
(

a2f (vn (s)) − vn (s)
)

ds. (2.9)

Let limn→∞ vn+1 = V . By the construction, V (< c) is the minimal solution to the problem
(2.1). As the integrand of the above expression is increasing with respect to vn, by the
Monotone Convergence Theorem,

V (x) =

∫ 1

0

G (x, s)
(

a2f (V (s)) − V (s)
)

ds. (2.10)

�

In the sequel, let ki denote appropriate positive constants for i = 1, 2, . . . , 10. It is noted
that the term a2f (v) − bv/x2 in (2.1) is not a bounded function in x for x ∈ D, this term
does not satisfy the one-side Lipschitz condition (cf. Pao [11, p. 99]).
Lemma 3. V ∈ C

(

D̄
)

∩ C2 ((0, 1]), and V is the unique solution to (2.1).

Proof. From (2.10) and (2.3), we obtain

V (x)

= −π
2
x1/2

(

Y√1+4b/2 (x) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (x)

)

∫ x

0

s1/2J√1+4b/2 (s)

×
(

a2f (V ) − V
)

ds

− π

2
x1/2J√1+4b/2 (x)

∫ 1

x

s1/2

(

Y√1+4b/2 (s) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (s)

)

×
(

a2f (V ) − V
)

ds. (2.11)

Obviously, V (1) = 0. Since V < c and f ∈ C2 ([0, c)), there exists a positive constant k1

such that
∣

∣a2f (V ) − V
∣

∣ ≤ k1 (2.12)

for x ∈ D̄.
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For each fixed x ∈ (0, 1],

s1/2J√1+4b/2 (s)

is an integrable function over the interval [0, x], and

s1/2
(

Y√1+4b/2 (s) − Y√1+4b/2 (1)J√1+4b/2 (s)
/

J√1+4b/2 (1)
)

is integrable over [x, 1]. By the fundamental theorem of calculus,
∫ x

0

s1/2J√1+4b/2 (s)
(

a2f (V ) − V
)

ds,

∫ 1

x

s1/2

(

Y√1+4b/2 (s) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (s)

)

(

a2f (V ) − V
)

ds,

are continuous at x. Also, J√1+4b/2 (x) is continuous on D̄ and Y√1+4b/2 (x) is continuous
in (0, 1]. Thus, V (x) is continuous in (0, 1]. To show that V (x) is continuous at x = 0,
it necessary to prove that limx→0 V (x) = 0. Let ρ be a positive constant such that ρ � 1.
From (2.11) and (2.12),
∣

∣

∣
lim
x→0

V (x)
∣

∣

∣

≤ lim
x→0

π

2
k1x

1/2

(

∣

∣Y√1+4b/2 (x)
∣

∣+

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

∣

∣J√1+4b/2 (x)
∣

∣

)

∫ x

0

s1/2
∣

∣J√1+4b/2 (s)
∣

∣ ds

+ lim
x→0

π

2
k1x

1/2
∣

∣J√1+4b/2 (x)
∣

∣

∫ 1

x

s1/2

(

∣

∣Y√1+4b/2 (s)
∣

∣+

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

∣

∣J√1+4b/2 (s)
∣

∣

)

ds.

When x� 1, by (9.1.7) and (9.1.9) of Abramowitz and Stegun [1, p. 360],
∣

∣J√1+4b/2 (x)
∣

∣ ≤
k2x

√
1+4b/2 and

∣

∣Y√1+4b/2 (x)
∣

∣ ≤ k3x
−
√

1+4b/2. For x < ρ, we have
∣

∣

∣
lim
x→0

V (x)
∣

∣

∣

≤ lim
x→0

π

2
k1x

1/2

(

k3x
−
√

1+4b/2 +

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

k2x
√

1+4b/2

)

k2
2x(3+

√
1+4b)/2

3 +
√

1 + 4b

+ lim
x→0

π

2
k1k2x

(1+
√

1+4b)/2

∫ ρ

x

s1/2

(

k3s
−
√

1+4b/2 +

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

k2s
√

1+4b/2

)

ds

+ lim
x→0

π

2
k1k2x

(1+
√

1+4b)/2

∫ 1

ρ

s1/2

(

∣

∣Y√1+4b/2 (s)
∣

∣ +

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

∣

∣J√1+4b/2 (s)
∣

∣

)

ds.
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Simplify the right-hand side,
∣

∣

∣
lim
x→0

V (x)
∣

∣

∣

≤ πk1k2

3 +
√

1 + 4b
lim
x→0

x1/2

(

k3x
3/2 +

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

k2x
(3+2

√
1+4b)/2

)

+
π

2
k1k2 lim

x→0
x(1+

√
1+4b)/2

(

k3ρ
1/2x−

√
1+4b/2 +

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

k2ρ
(1+

√
1+4b)/2

)

(ρ− x)

+
π

2
k1k2 lim

x→0
x(1+

√
1+4b)/2

∫ 1

ρ

s1/2

(

∣

∣Y√1+4b/2 (s)
∣

∣+

∣

∣

∣

∣

∣

Y√1+4b/2 (1)

J√1+4b/2 (1)

∣

∣

∣

∣

∣

∣

∣J√1+4b/2 (s)
∣

∣

)

ds.

Then, the right-hand side tends to zero when x → 0. Thus, limx→0 V (x) = 0. Hence,
V (x) is continuous on D̄.

From (2.11), the derivative of V (x) is

V ′ (x)

= −π
2

d

dx

[

x1/2

(

Y√1+4b/2 (x) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (x)

)]

∫ x

0

s1/2J√1+4b/2 (s)

×
(

a2f (V ) − V
)

ds

− π

2

d

dx

(

x1/2J√1+4b/2 (x)
)

∫ 1

x

s1/2

(

Y√1+4b/2 (s) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (s)

)

×
(

a2f (V ) − V
)

ds.

Then, the second derivative of V (x) is given by

V ′′ (x)

= −π
2

d2

dx2

[

x1/2

(

Y√1+4b/2 (x) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (x)

)]

∫ x

0

s1/2J√1+4b/2 (s)

×
(

a2f (V ) − V
)

ds

− π

2

d2

dx2

(

x1/2J√1+4b/2 (x)
)

∫ 1

x

s1/2

(

Y√1+4b/2 (s) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (s)

)

×
(

a2f (V ) − V
)

ds

− π

2

d

dx

(

x1/2Y√1+4b/2 (x)
)

x1/2J√1+4b/2 (x)
(

a2f (V (x)) − V (x)
)

+
π

2

d

dx

(

x1/2J√1+4b/2 (x)
)

x1/2Y√1+4b/2 (x)
(

a2f (V (x)) − V (x)
)

. (2.13)

Since the second derivative of x1/2, J√1+4b/2 (x), and Y√
1+4b/2 (x) are continuous in (0, 1],

the right-hand side of the above equation is continuous in (0, 1]. Hence, V ∈ C
(

D̄
)

∩
C2 ((0, 1]).
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From (2.11), (2.13), My1 = 0, My2 = 0, and (2.2), it yields
MV = −π

2
x
(

a2f (V (x)) − V (x)
)

×
(

J√1+4b/2 (x)
d

dx
Y√1+4b/2 (x) − Y√1+4b/2 (x)

d

dx
J√1+4b/2 (x)

)

= −π
2
x
(

a2f (V (x)) − V (x)
) 2

πx

= V (x) − a2f (V (x)) .

By Lemma 1, V is the unique solution to (2.1). �

Let ε be a positive number less than 1, Dε = (ε, 1), D̄ε = [ε, 1], Ωε = Dε × (0, T ),
Ω̄ε = D̄ε × [0, T ), and w be the solution of the following semilinear parabolic problem:

Lw = a2f (w) in Ωε, (2.14)
w (x, 0) = 0 on D̄ε, w (ε, t) = 0 = w (1, t) for 0 < t < T. (2.15)

Now, we prove the existence of the solution of the problem (1.3)-(1.4).
Theorem 4. The problem (1.3)-(1.4) has a solution u ∈ C

(

Ω̄
)

∩ C2,1 ((0, 1] × [0, T )).

Proof. Since 0 and V are the lower and upper solutions to the problem (2.14)-(2.15) and
V ∈ C2

(

D̄ε

)

, by Theorem 4.2.2 of Ladde, Lakshmikantham, and Vatsala [8, p. 143], there
exists a solution w ∈ C2+α,1+α/2

(

Ω̄ε

)

of the problem (2.14)-(2.15) such that 0 ≤ w ≤ V

on Ω̄ε for some α ∈ (0, 1). By the maximum principle (cf. Protter and Weinberger [12,
p. 175]), w > 0 in Ωε and is unique. Let ε1 and ε2 be positive real numbers such that
ε1 < ε2 < 1. We want to show that ŵ ≥ w̃ on Ω̄ε2 , where ŵ and w̃ are solutions to the
problem (2.14)-(2.15) with ε = ε1 and ε = ε2 respectively. By the mean value theorem,

xq (ŵ − w̃)t − (ŵ − w̃)xx =

[

a2f ′ (ψ5) −
b

x2

]

(ŵ − w̃) ,

where ψ5 is between ŵ and w̃. ŵ (1, t) = w̃ (1, t) = 0 and ŵ (ε2, t) > w̃ (ε2, t) = 0 for
t ∈ (0, T ). Also, ŵ (x, 0) = w̃ (x, 0) on D̄ε2 . By the maximum principle, ŵ ≥ w̃ on Ω̄ε2 .
Since {w} is a bounded monotone nonincreasing sequence in ε, let u = limε→0w (x, t).
We claim that u is a solution to the problem (1.3)-(1.4). For any (x, t) ∈ Ω, there exists a
set E = [b1, b2] ×

[

0, ť
]

such that (x, t) ∈ E ⊂ Ω̄ (where b1 > 0, b2 ≤ 1, and ť < T ). Let
q̃ be a positive constant greater than 1.

i. ||w||Lq̃(E) ≤ ||V ||Lq̃(E) ≤ k4,

ii.
(

∫ t+t̂

t

(
∫ b2

b1

∣

∣

∣

∣

b

xq+2

∣

∣

∣

∣

r

dx

)

dt

)1/r

=
b

[r (q + 2) − 1]1/r

[

b
−r(q+2)+1
1 − b

−r(q+2)+1
2

]1/r

t̂1/r.
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The right hand side tends to zero as t̂→ 0.

iii. ||x−qa2f (w)||Lq̃(E) ≤ b−q
1 a2 ||f (V )||Lq̃(E).

If we choose q̃ > 3/ (2 − α), by Theorem 4.9.1 of Ladyženskaja, Solonnikov, and
Ural′ceva [9, pp. 341-342] w ∈ W 2,1

q̃ (E). By Theorem 2.3.3 there [9, p. 80], W 2,1
q̃ (E) ↪→

Hα,α/2 (E). Thus, ||w||Hα,α/2(E) ≤ k5. By the triangular inequality,
∣

∣

∣

∣bx−(q+2)w
∣

∣

∣

∣

Hα,α/2(E)

≤ b

bq+2
1

||V ||∞ +
b

bq+2
1

sup
(x,t)∈E
(x̃,t)∈E

|w (x, t) − w (x̃, t)|
|x− x̃|α

+ b ||V ||∞ sup
(x,t)∈E
(x̃,t)∈E

∣

∣x−(q+2) − x̃−(q+2)
∣

∣

|x− x̃|α +
b

bq+2
1

sup
(x,t)∈E

(x,t̃)∈E

∣

∣w (x, t) − w
(

x, t̃
)
∣

∣

∣

∣t− t̃
∣

∣

α/2

=
b

bq+2
1

||V ||∞ +
b

bq+2
1

||w||Hα,α/2(E) + b ||V ||∞
∣

∣

∣

∣x−(q+2)
∣

∣

∣

∣

Hα,α/2(E)

≤ k6.

Similarly, by the mean value theorem,
∣

∣

∣

∣a2x−qf (w)
∣

∣

∣

∣

Hα,α/2(E)

≤ a2

bq1
||f (V )||∞ +

a2

bq1
sup

(x,t)∈E
(x̃,t)∈E

|f ′ (ψ6)| |w (x, t) − w (x̃, t)|
|x− x̃|α

+ a2 ||f (V )||∞ sup
(x,t)∈E
(x̃,t)∈E

|x−q − x̃−q|
|x− x̃|α +

a2

bq1
sup

(x,t)∈E

(x,t̃)∈E

|f ′ (ψ7)|
∣

∣w (x, t) − w
(

x, t̃
)
∣

∣

∣

∣t− t̃
∣

∣

α/2
,

where ψ6 is between w (x, t) and w (x̃, t), and ψ7 is between w (x, t) and w
(

x, t̃
)

. As
w ≤ V and f ′′ (s) > 0 for s > 0, the following inequality is obtained

∣

∣

∣

∣a2x−qf (w)
∣

∣

∣

∣

Hα,α/2(E)
≤ a2

bq1
||f (V )||∞ +

a2

bq1
||f ′ (V )||∞ ||w||Hα,α/2(E)

+ a2 ||f (V )||∞
∣

∣

∣

∣x−q
∣

∣

∣

∣

Hα,α/2(E)

≤ k7

for some positive constant k7 which is independent of ε. By Theorem 4.10.1 of
Ladyženskaja, Solonnikov, and Ural′ceva [9, pp. 351-352], there exists some positive con-
stant k8 independent of ε such that

||w||H2+α,1+α/2(E) ≤ k8.

This implies that w, wt, wx, and wxx are equicontinuous in E. By the Ascoli-Arzela theo-
rem, we obtain

||u||H2+α,1+α/2(E) ≤ k8,
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and the partial derivatives of u are the limits of the corresponding derivatives of w. Since
0 and V are equal to 0 at x = 0 and x = 1, u (0, t) = 0 = u (1, t) for t ∈ [0, T ) by the
sandwich theorem. Hence, u ∈ C

(

Ω̄
)

∩ C2,1 ((0, 1] × [0, T )). �

Theorem 5. The problem (1.3)-(1.4) has at most one solution.
Proof. Suppose that the problem (1.3)-(1.4) has two different solutions u (x, t) and z (x, t).
Without loss of generality, let us assume that z > u somewhere, say, (x̄, t̄) in Ω. Since
z (x, 0) − u (x, 0) = 0 on D̄, z (0, t) − u (0, t) = 0, and z (1, t) − u (1, t) = 0, there exists
some nonnegative constants a1, a2, a3, and a4 such that x̄ ∈ (a3, a4) ⊂ (a1, a2) ⊂ D̄,
and z (a1, t) = u (a1, t) and z (a2, t) = u (a2, t) for 0 ≤ t ≤ t̄. Also, z (x, t̄) > u (x, t̄) for
x ∈ (a3, a4), and z ≥ u on [a1, a2]× [0, t̄]. Let ϕ and γ denote respectively the fundamental
eigenfunction and eigenvalue of the problem,

ϕ′′ + γϕ = 0 for a1 < x < a2, ϕ (a1) = 0 = ϕ (a2) .

Then, ϕ = sin [π (x− a1) / (a2 − a1)] which is positive in (a1, a2), and γ =

[π/ (a2 − a1)]
2. We have

0 ≤
∫ t̄

0

∫ a2

a1

(z − u) γϕdxdt = −
∫ t̄

0

∫ a2

a1

(z − u)ϕ′′dxdt

= −
∫ t̄

0

∫ a2

a1

(z − u)xx ϕdxdt

From (1.3), the above inequality becomes

0 ≤ −
∫ t̄

0

∫ a2

a1

[

xq (z − u)t +
b

x2
(z − u) − a2 (f (z) − f (u))

]

ϕdxdt.

Since z (x, 0) = u (x, 0) on D̄,

0 ≤ −
∫ a2

a1

xq (z (x, t̄) − u (x, t̄))ϕdx−
∫ t̄

0

∫ a2

a1

b

x2
(z − u)ϕdxdt

+ a2

∫ t̄

0

∫ a2

a1

(f (z) − f (u))ϕdxdt.

As z ≥ u on [a1, a2] × [0, t̄], ϕ (x) > 0 in (a1, a2), and b ≥ 0, it gives

0 ≤ −
∫ a2

a1

xq (z (x, t̄) − u (x, t̄))ϕdx+ a2

∫ t̄

0

∫ a2

a1

(f (z) − f (u))ϕdxdt. (2.16)

It follows from the mean value theorem for integrals [3, p. 5] that there exists some ψ8 ∈
(a1, a2) such that

∫ a2

a1

xqϕ (z (x, t̄) − u (x, t̄)) dx = ψq
8

∫ a2

a1

ϕ (z (x, t̄) − u (x, t̄)) dx.

By the mean value theorem, there exists some ψ9 between z and u such that
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f (z) − f (u) = f ′ (ψ9) (z − u) ≤ k9 (z − u) .

Then, (2.16) becomes
∫ a2

a1

ϕ (z (x, t̄) − u (x, t̄)) dx ≤ a2k9

ψq
8

∫ t̄

0

∫ a2

a1

ϕ (z − u) dxdt.

By the Gronwall inequality [14, pp. 14-15],
∫ a2

a1

ϕ (z (x, t̄) − u (x, t̄)) dx ≤ 0.

On the other hand, ϕ (z (x, t̄) − u (x, t̄)) > 0 for x ∈ (a3, a4) implies
∫ a2

a1

ϕ (z (x, t̄) − u (x, t̄)) dx > 0.

This contradiction shows that the problem (1.3)-(1.4) has at most one solution. �

Lemma 6. u > 0 in Ω, and u (x, t) is a nondecreasing function of t for each x ∈ D.

Proof. By Theorem 4, w > 0 in Ωε. When ε → 0, this implies u ≥ 0 in Ω. Suppose
that u (x0, t0) = 0 for some (x0, t0) ∈ Ω. Since u (x, 0) = 0 on D̄, we have u (x0, t) = 0

for t ∈ [0, t0]. This implies that ut (x0, t1) = 0 for some t1 ∈ (0, t0). At t1, u attains its
minimum at x0, it follows that uxx (x0, t1) ≥ 0. Therefore, at (x0, t1)

Lu (x0, t1) − a2f (u (x0, t1))

= xqut (x0, t1) − uxx (x0, t1) +
b

x2
0

u (x0, t1) − a2f (u (x0, t1)) < 0.

This contradicts (1.3). Hence, u > 0 in Ω. Let h be a positive number less than T . At t+h,
(2.14) becomes

xqwt (x, t+ h) − wxx (x, t+ h) +
b

x2
w (x, t + h) = a2f (w (x, t + h)) in Ωε.

Subtract (2.14) from the above equation, it yields

xq (w (x, t+ h) − w (x, t))t − (w (x, t+ h) − w (x, t))xx

=

(

a2f ′ (ψ10) −
b

x2

)

(w (x, t + h) − w (x, t)) ,

where ψ10 is between w (x, t+ h) and w (x, t). Also, w (x, h) > w (x, 0) in Dε, and
w (x, t+ h) = w (x, t) at x = ε and x = 1 for t ∈ [0, T ). By the maximum principle,
w (x, t+ h) ≥ w (x, t) on Ω̄ε. Taking ε→ 0, it leads to u (x, t+ h) ≥ u (x, t) on Ω̄. �

Let φ and λ be the fundamental eigenfunction and eigenvalue respectively of the follow-
ing Sturm-Liouville eigenvalue problem:

φ′′ − b

x2
φ = −λxqφ in D, φ (0) = 0 = φ (1) . (2.17)
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From Chan and Chan [4], φ is given by

φ (x) = k10x
1/2J√1+4b/(q+2)

(

2
√
λx(q+2)/2

q + 2

)

,

which is positive in D, and λ =
(

j√1+4b/(q+2) (q + 2) /2
)2 where j√1+4b/(q+2) is the first

positive zero of J√1+4b/(q+2) (x).
Theorem 7. If f (u) ≥ 1/ (1 − u)β for u < 1 where β is a positive constant such that

β ∈ (0, 1] and a2β ≥ λ, then u quenches in a finite time.

Proof. Choose k10 such that
∫ 1

0
xqφ (x) dx = 1. Multiply φ (x) on both sides of (1.3)

xqφut = φuxx −
b

x2
φu+ a2φf (u) .

Using integration by parts, (2.17), and f (u) ≥ 1/ (1 − u)β, we have
(
∫ 1

0

xqφudx

)

t

=

∫ 1

0

(

φ′′u− b

x2
φu

)

dx+ a2

∫ 1

0

φf (u) dx

≥ −λ
∫ 1

0

xqφudx+ a2

∫ 1

0

φ

(1 − u)β
dx.

If follows from 1/ (1 − u)β ≥ 1 + βu + β (β + 1)u2/2 for u < 1, the above equation
becomes

(
∫ 1

0

xqφudx

)

t

≥ −λ
∫ 1

0

xqφudx+ a2

∫ 1

0

φ

[

1 + βu+
β (β + 1)

2
u2

]

dx

≥ −λ
∫ 1

0

xqφudx+ a2

∫ 1

0

xqφdx+ a2β

∫ 1

0

xqφudx+ a2β (β + 1)

2

∫ 1

0

xqφu2dx.

By the Jensen’s inequality,
(
∫ 1

0

xqφudx

)

t

≥ −λ
∫ 1

0

xqφudx+a2+a2β

∫ 1

0

xqφudx+a2β (β + 1)

2

(
∫ 1

0

xqφudx

)2

.

Let U (t) =
∫ 1

0
xqφudx which is less than 1 before the quenching time, we get

Ut ≥ a2 +
(

a2β − λ
)

U + a2β (β + 1)

2
U2.

Since a2β ≥ λ,
Ut ≥ a2 + a2β (β + 1)

2
U2.

Then, integrate the above expression from 0 to t
∫ U

0

dU

1 + β(β+1)
2

U2
≥
∫ t

0

a2dt

√

2

β (β + 1)
tan−1

√

β (β + 1)U√
2

≥ a2t.
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As β ∈ (0, 1] and U (t) < 1,
√

β (β + 1)U (t)
/√

2 < 1. If u exists globally, then t

tends to ∞. This implies that
√

β (β + 1)U (t)
/√

2 approaches π/2 (> 1). It leads to a
contradiction. Hence, u quenches in a finite time. �

3 Critical Length

In this section, we follow the method of Chan and Chen [5] and Chan and Kaper [6] to
determine an approximated value of the critical length of u. Firstly, we find an upper
bound of the critical length. We look for a lower solution û (x, t) which satisfies

Lû ≤ a2f (û) in Ω, (3.1)

subject to the initial and boundary conditions (1.4). Let us construct û in the form of

û (x, t) = x1/2J√1+4b/(q+2)

(

2
√
λx(q+2)/2

q + 2

)

g (t) ,

where g (t) is a nondecreasing function in t. Clearly, û (0, t) = 0 = û (1, t). Substitute û
into (3.1), then by (2.17) and 0 < x < 1, it gives

g′ (t)+λg (t) ≤ a2

x1/2J√1+4b/(q+2)

(

2
√

λx(q+2)/2

q+2

)f

(

x1/2J√1+4b/(q+2)

(

2
√
λx(q+2)/2

q + 2

)

g (t)

)

.

Let z = x(q+2)/2,

g′ (t) + λg (t) ≤ a2

z1/(q+2)J√1+4b/(q+2)

(

2
√

λ
q+2

z
)f

(

z1/(q+2)J√1+4b/(q+2)

(

2
√
λ

q + 2
z

)

g (t)

)

.

(3.2)
For each t, the minimum value of the right hand side of (3.2) is independent of z. We take
the infimum of the expression of the right-hand side with respect to z. Let K (g (t)) be a
positive function such that

K (g (t)) = inf

{

a2

z1/(q+2)J√1+4b/(q+2)

(

2
√

λ
q+2

z
)f

(

z1/(q+2)J√1+4b/(q+2)

(

2
√
λ

q + 2
z

)

g (t)

)

:

z ∈ D̄

}

.

Then, g (t) can be determined by solving the following initial value problem:

g′ (t) + λg (t) = K (g (t)) for t > 0, g (0) = 0. (3.3)

Example. Let f (u) = 1/ (1 − u). The derivative of the right-hand side of (3.2) with
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respect to z is

− a2

q + 2

[

2
√
λzJ[

√
1+4b/(q+2)−1]

(

2
√
λ

q + 2
z

)

−
(√

1 + 4b− 1
)

J√1+4b/(q+2)

(

2
√
λ

q + 2
z

)]

×

[

1 − 2z1/(q+2)J√1+4b/(q+2)

(

2
√

λ
q+2

z
)

g (t)
]

z(q+3)/(q+2)J2√
1+4b/(q+2)

(

2
√

λ
q+2

z
) [

1 − z1/(q+2)J√1+4b/(q+2)

(

2
√

λ
q+2

z
)

g (t)
]2 .

the right-hand side of (3.3) has an infimum at z = ς where ς is the first positive root of the
equation

2
√
λzJ[

√
1+4b/(q+2)−1]

(

2
√
λ

q + 2
z

)

=
(√

1 + 4b− 1
)

J√1+4b/(q+2)

(

2
√
λ

q + 2
z

)

,

for g (t) ∈
(

0, (2m)−1] where

m = ς1/(q+2)J√1+4b/(q+2)

(

2
√
λ

q + 2
ς

)

.

Since the infimum of the quantity [Z (1 − Z)]−1 is 4, we have

g′ (t)

g (t)
+ λ =











a2/ [mg (t) (1 −mg (t))] for 0 < g (t) ≤ (2m)−1 ,

4a2 for (2m)−1 < g (t) ≤ m−1,

where g (0) = 0. Let t2 and t3 denote the times when g (t2) = 1/ (2m) and g (t3) = 1/m.
Integrate the second equation from t2 to t3, it gives

∫ 1/m

1/(2m)

1

g (t)
dg =

∫ t3

t2

(

4a2 − λ
)

dt.

From which we have
ln 2

(4a2 − λ)
= t3 − t2.

As t3 > t2, 4a2 − λ > 0. This implies that u quenches when

j√1+4b/(q+2) (q + 2)

4
< a.

Thus, the critical length a∗ of u is bounded by

a∗ ≤
j√1+4b/(q+2) (q + 2)

4
.

The procedure of finding the critical length is as follows:

Step 1. Divide the interval D̄ into 20 subintervals. Let x0 = 0, x1 = 0.05, . . . , x20 = 1.
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Step 2. Use Maple R©1 version 9.03 to compute

x
1/2
i J√1+4b/2 (xi) ,

x
1/2
i

(

Y√1+4b/2 (xi) −
Y√1+4b/2 (1)

J√1+4b/2 (1)
J√1+4b/2 (xi)

)

,

for i = 1, 2, ..., 19. Set vn+1 (x0) = 0 = vn+1 (x20). Let a = j√1+4b/(q+2) (q + 2) /4 and
v0 (x) = 0 for x ∈ D̄. From (2.9), we use the numerical integration built in Maple to
evaluate vn+1 (xi) for i = 1, ..., 19.

Step 3. Use the cubic spline in Maple to interpolate vn+1 (x) for x ∈ D̄. Then, calculate
∣

∣

∣

∣

max
x∈D̄

vn+1 (x) − max
x∈D̄

vn (x)

∣

∣

∣

∣

= εn.

If εn+1 is greater than or equal to εn, or maxx∈D̄ vn+1 (x) ≥ 1 for some n, then a is not
the critical length. If εn < 1 × 10−5, we say that u exists globally.

Step 4. If a is not the critical length, decrease the value to obtain a new estimate a for a∗,
and repeat Steps 2 and 3 until we find that u exists globally. The method of bisection is
used to determine a value of a∗∗ such that u exists globally for a ≤ a∗∗, and u quenches
for a > a∗∗. a∗∗ is an approximation of a∗.

The following table contains the numerical results (in 4 decimal places) of a∗ for various
b when q = 0.

b Upper bound of a a∗

0.0000 1.5708 1.5303

0.5000 1.8250 1.7752

1.0000 1.9950 1.9389

2.0000 2.2467 2.1820
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