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Quenching of the Solution for a Degenerate
Semilinear Parabolic Equation

W. Y. Chan
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Abstract: Let A < oo, ¢ and b be nonnegative constants, and a and ¢ be positive con-
stants. The existence and uniqueness of the solution of the following degenerate semilinear
parabolic problem are studied:

Elur = uge — §%u + f(u) in (0,a) x (0,A),

u(&,0)=00n [0,a],u(0,7) =0=wu(a,7) for0 <7 <A,

where f (u) is a given function such that lim,_..- f (u) = oo. Furthermore, we prove that
u quenches in a finite time. Also, we investigate the critical length of w.
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1 Introduction

Let A < oo, ¢ and b be nonnegative constants, and a and ¢ be positive constants. We
study the existence and uniqueness of the solution of the following degenerate semilinear

parabolic problem:

My = uge — §—b2u+f(u) in (0,a) x (0,A), (1.1)
u(€,0)=0o0n [0,a],u(0,7) =0=1u(a,7) for0 <7 <A, (1.2)

where f € C?([0,¢)), f(0) > 0, f(0) >0, f”(s) > 0fors € [0,¢), and lim, .- f (u) =
oo. Furthermore, we prove that u quenches in a finite time. Also, we investigate the critical
length of u. Let £ = az, 7 = a®?, A = a9™*T, D = (0,1), Q = D x (0,T), D = [0, 1],
Q=D x|0,T),and Lu = 29%u; — Uy, + bu/x?. The problem (1.1)-(1.2) is transformed to

Lu = a*f (u) in Q, (1.3)
u(z,0) =00n D, u(0,t) =0=u(1,t) for0 <t <T. (1.4)
When 7' < oo, a solution u to the problem (1.3)-(1.4) is said to quench at time 7" if

max {u (z,t):x € D} — ¢~ whent — 1.
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The length a* is called the critical length if there exists a global solution u for a < a*, and
if u quenches for a > a*.

When b = 0 and ¢ = 1, the operator L is used to describe the temperature u of the
channel flow of a fluid with a temperature-dependent viscosity in the boundary layer (cf.
Ockendon [10]).

In the n-dimensional case and ¢ = 0, Zhang [16] calculated the lower bound of the
fundamental solution of the problem Lu = 0 for b > 0. On the other hand, Baras and
Goldstein [2] studied the existence of the solution of the problem for b < 0.

When ¢ > 0, b > 0, and the forcing term is u? where p > 1, Chan and Chan [4] studied
the blow-up for the problem (1.3)-(1.4). They showed that x = 0 is the only blow-up
pointif 1 < p <1+ 2¢/(1+ 1+ 4b). If the forcing term is fol F(u(¢,t))d¢ where
F (s) > s? with p > 1 for s > 0, Chan [7] showed that u blows up for every z € D.

In Section 2, we shall study the existence and uniqueness of the solution u. Under some
conditions, we shall prove that « quenches in a finite time. In Section 3, we shall determine
an upper bound of the critical length by constructing a lower solution. Also, we shall use a
numerical method to determine the approximated value of ¢*. An example will be provided
when f (u) =1/ (1 — u).

2 Existence and Uniqueness of the Solution
To establish the existence and uniqueness of u, we study the steady state solution v of the
problem (1.3)-(1.4) first. v satisfies the following boundary value problem:
b .

v”—ﬁv:—azf(v) inD,v(0)=0=uv(1). 2.1

As f(v) > 0, from (2.1)
b
U//—?U<OinD,U<O) =0=v(1).

According to Theorem 1.3 of Protter and Weinberger [12, p. 6], v > 0in D. Let Mv =
v” + (1 — b/x?) v. The general solution of Mv = 0 is given by (cf. Weisstein [15, p. 197])

y(z) =2/ (AJM/Q (z) + BY 5152 (z)),
where J 7752 (2) and Y 1775/, () are Bessel functions of the first and second kind with
degree /1 +4b/2, and A and B are arbitrary constants. The solution y () satisfying
y (0) = 0 is denoted by

yi (x) = 22T gy ().
The solution y (x) satisfying y (1) = 0 is given by

J iz (1)
Y2 () = '/ J\/1+_4b/2 (z) — % /e 1 Y\/1+4b/2 (z) | -
\/1+4b/2( )
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The Green’s function G (z, s) for the operator M is

( ~ a J aras/2(1)
_Axl/zj\/mn (z) As!/? (J\/MQ (s) — Y\/%Z(I)Y\/I—Mbﬂ (5))

fo<x<s,

G(x,s) =

~ 1/ 5 179 J g2 (1)
—As'2T ey (s) Azt (hmm (%) = ¥ o Vi (x))

ifs<x <1,

\

where A and A are constants. According to (9.1.16) of Abramowitz and Stegun [1, p. 360],

d d
Tyreanye (@) Y rzaye (€) = Yyrza (2) iz (2) = 2/ (m2) (2.2)

We follow the method of Simmons and Krantz [13, pp. 143-144] and set
0 0
lim —G (x,s) — lim —G (z,s) = —1,
s—x— OF s—zt 0T
it gives
2 Jyrzmy2 (1) .
Hence, the Green’s function for the operator M and satisfying the boundary conditions of

(2.1)1s

AA = i Y\/M/z (1)

G (x,s)
7,.1/2 1/2 Y a2 (1) .
—52' 2 e () 8V (y a2 (5) — 7 :Z’/z(l)J\/le/z (s)) if0 <z <s,

i Y s 1o (1) .
_ESI/QJ\/1+4b/2 OFs (Y\/l+4b/2 () — 5 i::;z(l) J i) (x)) ifs<zx<1
(2.3)

Follow the proof of Lemma 3 of Chan and Chen [5], G (x, s) > 0 for x and s in D.
Lemma 1. If R (x) is a nonpositive function in D and negative over an interval / where
I C D, then the solution to the boundary value problem,

Mv=R(z)inD,v(0)=0=wv(1), (2.4)
is positive in D.
Proof. The solution v of (2.4) satisfies the integral equation
v(z) = /1 G (z,s) (—R(s))ds.
Toeachx € D, G (x,s) > 0fors € l;. By the assumption, v () > 0 in D. O

Lemma 2. If a®f’ (0) > 1, then the boundary value problem (2.1) has the minimal solution
V(<o)



240 Chan

Proof. To establish the existence of the minimal solution, we construct a sequence {v,, }

as follows: vy = 0,and forn =1,2,...,

dzvn b 2 .
T2 +(1- o Uy =Vp_1 —a” f(vp,—1) in D, v, (0) =0=1v,(1). (2.5)
When n = 1, (2.5) becomes
w_'_(l_ﬁ) V1 = —a f(O) (26)

It follows from f (0) > 0,

d2U1 b
W+<1—;)'H1<0.
By Lemma 1, v; > vy in D. Subtracting (2.6) from (2.1) and by the mean value theorem,

=v—a’f(v)+a’f(0)
= (1 - (1/2.]0/ (1/}1)) v,
where ¥, € (0,v). Since f” (s) > 0, it implies 1 — a®f’ (¢1) < 1 — a®f' (0). Then,

we obtain

dx? 2

M+(1_£) (U_Ul)<(1_a2f/(0))1)§0.

Atz =0and z = 1,v; = v. By Lemma 1, v; < v in D. Suppose that vy < vy < v in D
for some positive integer k. When n = k + 1, by the mean value theorem, there exists a
function ¢, € (0, vy) such that
dzUkJrl
dx?
By vk11 (0) = 0 = vgyq (1) and Lemma 1, v41 > vg in D. We subtract (2.5) from (2.1)
= ven) | (1 . %) (0= vper) = (1— a2 (15)) (v — vy) <0,

dx?

+ <1 - %) Opr1 = (1= a®f (¢2)) vy, — a® £ (0) < 0.

where ¥3 € (vg,v). Atz =0and x = 1, vg4; = v. By Lemma 1, vy < vin D. Hence,
by the mathematical induction, vy < v, <vin D forn =1,2,...
Now, suppose that v;_; < v in D for some positive integer k. Substitutingn = k + 1

and n = k respectively in (2.5), we obtain

d*v b
dxk;l + (1 - p) Upg1 = vp — @’ f (0p), (2.7)

d2’Uk
dx?

b
+ (1 — ?) Vg = vp_1 — @’ f (vp_1). (2.8)
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Subtract (2.8) from (2.7)

W + <1 - %) (Vkg1 — Vi)

= (vk — ve—1) — @2 () + @ f (ve—1)

= (1 —a*f (¢4)) (g —vg—1) <0,
where 1y € (vp_1,v). Atz = 0and z = 1, vp1; = v,. By Lemma 1, vy < vgyq in D.
Hence, vy < v < vgp11 < v < cin D. By the mathematical induction, the sequence {v,, }

is increasing and converges strictly monotonically. For n = 0,1, 2, .. ., the sequence {v,, }

satisfies the following integral equation

vnsn () = /0 G (2,5) (@f (v (5)) — vn (5)) ds. 2.9)

Let lim,, .., v,+1 = V. By the construction, V' (< ¢) is the minimal solution to the problem
(2.1). As the integrand of the above expression is increasing with respect to v,,, by the

Monotone Convergence Theorem,

1
V() = / G (z,5) (®F (V (s)) = V (s)) ds. (2.10)
0
O
In the sequel, let k; denote appropriate positive constants for ¢ = 1,2, ..., 10. It is noted

that the term a?f (v) — bv/2z? in (2.1) is not a bounded function in x for x € D, this term
does not satisfy the one-side Lipschitz condition (cf. Pao [11, p. 99]).

Lemma3.V € C (D) N C?((0,1]), and V is the unique solution to (2.1).

Proof. From (2.10) and (2.3), we obtain

V(z)

™

YM/z (1)
= —5171/2 <Y\/l+4b/2 (z)

- JM/z (1)

Jyiva)2 (93)> /0 51/2JM/2 (s)

x (a®f(V)—V)ds

_ 1 Y im0 (1)
- —$1/2J\/1+4b/2 (x) / st/? Y\/mm (s) — VI J\/1+4b/2 (s)
2 " J\/m/z (1)

x (a®f (V) =V)ds. (2.11)

Obviously, V (1) = 0. Since V < cand f € C?* ([0, ¢)), there exists a positive constant k;
such that

@’ f (V) =V| <k (2.12)

forxz € D.
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For each fixed x € (0, 1],

s'/? J\/1+4b/2 (s)
is an integrable function over the interval [0, x], and

s (Y s () = Yoarae (D) Jyrrme () Jyirmye (1)

is integrable over [z, 1]. By the fundamental theorem of calculus,

/0 sl/sz/Q (s) (a®f (V) = V) ds,

: Voisina (1)
-
[ (Ym” ) T e ) <8)> ey

are continuous at x. Also, .J, 755/, () is continuous on Dand Y g /2 () is continuous
n (0,1]. Thus, V (x) is continuous in (0, 1]. To show that V' (z) is continuous at x = 0,
it necessary to prove that lim, .oV () = 0. Let p be a positive constant such that p < 1.
From (2.11) and (2.12),

hr%V(g:))
o Y azm2 (1)
< glclir(l) El{,‘lxl/2 (‘Y\/m/z ()| + —

JM/z (1)

“]\/1+4b/2 (@‘) /0 s'/? ‘J\/MQ (5)‘ ds

YM/z (1)
JM/z (1)

. !
o+ lim ka2 [ (33)}/ 572 (\Ymm (s)] + BNz (S)}> ds.

When z < 1, by (9.1.7) and (9.1.9) of Abramowitz and Stegun [1, p. 360], T (x)} <
ko2 and |Y gy (2)] < ks ™VIH2 For z < p, we have
lim (g:)‘
LT i e | Yvmae W] e, 2eCHED)
< lim —kx ksx 4+ | ————| ko kg————
x—>02 JM/Q (1) 3+ \/1+4b

Y (1)

)
+ lim Eklkzx(“”/m)/z/ §Y2 [ fegs™VIFD/2 4
o2 Jizam2 (1)

T

k M/2> dS

. v/ ! \/1 4b/2 (1
+ 111’% 5]{71]{72$(1+ 1+4b)/2/ 81/2 }YM/2 (S)‘ + 7 a6/ 1 ‘J\/1+4b/2 (S)‘ ds.
= p V1+4b /2(
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Simplify the right-hand side,

lim (x))
< TRk mkiko lim /2 k3x3/2 + Y\/1+4b/2 (1) ]{721’(3+2m)/2
3+V1+4b QHO Jzm)2 (1)

YM/z (1)

+ = ]{71]{7 11II1:L’(1+'1+4> k p —V1+4b /2+
J\/M/z (1)

. k2p(1+\/1+4b)/2> (o — )

v (1)
Y 1+4b/2

J (s)| | ds.
J\/1+4b/2 (1) ‘ VI ‘)

Then, the right-hand side tends to zero when x — 0. Thus, lim, oV (z) = 0. Hence,

1

T .

+ §/<:1/<:2 ili%x(l_'—m)/z/ st? (‘Y\/1+4b/2 (5)‘ +
p

V (z) is continuous on D.
From (2.11), the derivative of V' (z) is

V' ()

T d Y sy (1) ’
- " 2dx [x1/2 (Ym/z (@)= J /T+4b/2 (1)J\/l+4b/2 (z) /0 81/2JM/2 (s)

X (a2f (V) — V) ds
m d ! Y )2 (1)
§d_( 1/2J\/1+4b'/2 (93))/ s'/? Y i) (s) — 7 ek 1 J v (s)
. viFa2 (1)

x (a’f (V) = V) ds.

Then, the second derivative of V' () is given by

T d? 1 V1+4b (1) v
__ra /2 Y irae / 1/2
= x Y T) — J T s S

2 dr2 [ ( \/1+4b/2( ) 7 T2 (1) \/1+4b/2( ) 0 \/1+4b/2( )

x (a*f (V) = V) ds

! Y g2 (1)
T 12 (v _ Yyirm)e
2 dr2 ( J\/1+4'/2( ))/m S ( V1+4b/2 (s) 7 1+4b/2(1>‘]\/1+4b/2 (5)>

x (a®f (V) =V)ds

- gdi (@Y sy () 22 s (2) (a2 F (V (2) =V (2)
" g% (2] 2 (1) 22V g (2) (@F (V (@) = V() (2.13)

Since the second derivative of =/2, J /5 (), and Y, 11455 () are continuous in (0, 1],
the right-hand side of the above equation is continuous in (0,1]. Hence, V € C (D) N

C?((0,1]).
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From (2.11), (2.13), My, = 0, My, = 0, and (2.2), it yields
MV = —gx (@®f (V () =V (2))

d d
X (JM/Q (@) = Yorga2 (2) = Yyrpase (€) o Jyizay (93))

£ (af (V ()~ V (2)) —

T
=V (x) - a*f(V(2)).
By Lemma 1, V' is the unique solution to (2.1). 0

o

Let € be a positive number less than 1, D, = (¢,1), D. = [¢,1], Q. = D. x (0,7,
Q. = D. x [0,T), and w be the solution of the following semilinear parabolic problem:
Lw = af (w) in €, (2.14)
w(x,0)=00n D, w(e,t) =0=w(l,t) for0 <t <T. (2.15)
Now, we prove the existence of the solution of the problem (1.3)-(1.4).
Theorem 4. The problem (1.3)-(1.4) has a solution u € C' (Q2) N C*! ((0,1] x [0,T)).
Proof. Since 0 and V' are the lower and upper solutions to the problem (2.14)-(2.15) and
V € C? (D.), by Theorem 4.2.2 of Ladde, Lakshmikantham, and Vatsala [8, p. 143], there
exists a solution w € C*T*1+2/2 (Q).) of the problem (2.14)-(2.15) such that 0 < w <V
on Q. for some a € (0,1). By the maximum principle (cf. Protter and Weinberger [12,
p- 175]), w > 0 in €2, and is unique. Let £; and €, be positive real numbers such that
g1 < g9 < 1. We want to show that w > @ on 952, where w and @ are solutions to the

problem (2.14)-(2.15) with € = 7 and € = ¢, respectively. By the mean value theorem,
b

(0= ), (= ), = @2 () - 2] (0= 0),

where 15 is between w and w. w (1,t) = w (1,t) = 0 and W (g9,t) > W (2,t) = 0 for
t € (0,T). Also, @ (x,0) = @ (x,0) on D.,. By the maximum principle, @ > @ on {).,.
Since {w} is a bounded monotone nonincreasing sequence in ¢, let u = lim._ow (z,1).
We claim that u is a solution to the problem (1.3)-(1.4). For any (z,t) € (), there exists a
set £ = [by, bo] x [0,7] such that (z,t) € E C Q (where by > 0, by < 1,and £ < T). Let
¢ be a positive constant greater than 1.

i wllpagey <Vl Lagg) < Fas

11.

t+t by b r 1/r
[, ] )
— b o [bl—r(q+2)+1 _ b2—r(q+2)+1 Y v
[r(g+2) 1"
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The right hand side tends to zero as ¢ — 0.

ifi. [Jo~%a*f (w)l|a(g) < b1 "a? [1f (V)lzacs)-
If we choose ¢ > 3/(2— ), by Theorem 4.9.1 of LadyZenskaja, Solonnikov, and
Ural'ceva [9, pp. 341-342] w € W' (E). By Theorem 2.3.3 there [9, p. 80], W' (E) —
H*2 (E). Thus, |[w]| ja.e/2g < ks. By the triangular inequality,

182720 oo

(B)
b |w (z,t) —w (Z,1)]
< —5 IVl + 755 sup G
e W o, s
(z,t)eE
P TI  clhikchid SN A UA G0 B 200
o0 ~ | 2 ~l
@oer 17 0™ per -1
(z,t)eFE (:c,f)EE
= WVl + s [0l sy + BV L |22
- b(1]+2 00 b(1]+2 w He a/2 S X HQ’Q/Z(E)
< ke.

Similarly, by the mean value theorem,

Ha 1 f (w HHMM(E)
a’ a? | (We)| [w (z,t) —w (2,1)]
< S lfVv ""_ sup —a :
b({H ( )H b1 (z,t)EE |z — 2|
(Z,t)eE
179 @ / ) —w (1
P W)l sup T 0 @I Sl )
00 pe ~la/2
@per |z — 2" 1 (at)eE |t — 1|
(2 (ci)eE

where 1) is between w (z,t) and w (Z,t), and v7 is between w (z,¢) and w (z,7). As
w < Vand f”(s) > 0fors > 0, the following inequality is obtained

2
— a !/
|a*2™0f ()] oo o bq Lr v )Iloo+b—z 1 Vo [l o2y

+a® I1f(V >||oo Hx_qHHa,a/z(E)

< k7
for some positive constant k; which is independent of €. By Theorem 4.10.1 of
LadyZenskaja, Solonnikov, and Ural’ceva [9, pp. 351-352], there exists some positive con-
stant kg independent of ¢ such that

||w||H2+av1+a/2(E) < ks.
This implies that w, w;, w,, and w,, are equicontinuous in £. By the Ascoli-Arzela theo-
rem, we obtain

||u||H2+a,1+a/2(E) < kg,
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and the partial derivatives of u are the limits of the corresponding derivatives of w. Since
Oand V areequaltoOatz = Oand z = 1, u (0,¢t) = 0 = u(1,¢) fort € [0,T) by the
sandwich theorem. Hence, u € C' () N C*! ((0,1] x [0,T)). O

Theorem 5. The problem (1.3)-(1.4) has at most one solution.

Proof. Suppose that the problem (1.3)-(1.4) has two different solutions u (x,t) and z (x, t).
Without loss of generality, let us assume that z > u somewhere, say, (7, t) in €. Since
2(2,0) —u(z,0) =0o0n D, 2(0,t) —u(0,¢) = 0,and 2z (1,¢) — u (1,¢) = 0, there exists
some nonnegative constants a;, as, as, and a4 such that Z € (as,a4) C (a1,a2) C D,
and z (a1,t) = u (a1,t) and z (ag, t) = u (ag,t) for 0 < ¢t < t. Also, z (x,t) > u(x,t) for
x € (as,ay), and z > won [ay, as] X [0, #]. Let ¢ and ~y denote respectively the fundamental

eigenfunction and eigenvalue of the problem,
¢ +yp=0fora; <x <ayp(a)=0=¢(a).

Then, ¢ = sin[r(x —a;)/(as —ay)] which is positive in (aj,az), and v =
[7/ (az — a1)]*. We have

t a t az
0< / / (z — u) ypdxdt = —/ / (z — u) " dxdt
0 ai 0 ail
t pras
— / / (z —u),, pdxdt
0 al

From (1.3), the above inequality becomes

og—/ot/: [:)jq(z—u)t—l—%(z—u)—az(f(z)—f(u))} odudt.

Since z (x,0) = u (z,0) on D,
0<—/ 29 (z(x,t) —u(x,t)) goc&—// (z — u) pdadt
+ a? / (u)) pdxdt.

As z > won [ay, as] X [0,t], ¢ (x) > 0in (a1, az), and b > 0, it gives

0< —/a2 24 (z (z,t) — u (z,t)) pdx +a2/0 /a2 (f(2) = f(u)pdxdt.  (2.16)

It follows from the mean value theorem for integrals [3, p. 5] that there exists some g €
(a1, ay) such that

az

[ aeten—u@nd =t [ pwn - u@n)ds

al al

By the mean value theorem, there exists some )9 between z and u such that
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f(z2) = fw)=f () (2 —u) < kg (2 — ).
Then, (2.16) becomes

/a2g0(z(x,f)—u(x,f))dx§ a;lgg /Ot/:2<p(z—u)dxdt.

al

By the Gronwall inequality [14, pp. 14-15],
a2
/ o (z(z,t) —u(z,t))dr <0.

al

On the other hand, ¢ (z (z,t) — u (z,t)) > 0 for x € (a3, ay) implies

/a2<p(z(x,f)—u(x,f))dx>0.

al

This contradiction shows that the problem (1.3)-(1.4) has at most one solution. O

Lemma6. u > 01in €, and u (x, t) is @ nondecreasing function of ¢ for each x € D.

Proof. By Theorem 4, w > 0 in €2.. When ¢ — 0, this implies v > 0 in €2. Suppose
that u (o, ty) = 0 for some (xg,ty) € €. Since u (z,0) = 0 on D, we have u (x9,t) = 0
for t € [0,%]. This implies that u; (x¢,t;) = 0 for some t; € (0,%). At ¢y, u attains its

minimum at z, it follows that u,, (zo,t1) > 0. Therefore, at (x¢, t;)
Lu (o, t1) — a* f (u (w0, 1))
b
= 2w (w0, 11) = g (T0, 1) + —5t (w0, 11) — @ f (u (o, 1)) < 0.

0
This contradicts (1.3). Hence, v > 0 in {2. Let h be a positive number less than 7". Att—+ h,

(2.14) becomes
2wy (x,t + h) — wee (2, + h) + %w(m,t—i—h) =a*f (w(x,t+h)) in Q..
Subtract (2.14) from the above equation, it yields
o (w(z,t+h) —w(xt)), — (w(z,t+h) —w(z,t)),,
_ (a2f' ($10) — ~ ) (w (@t + h) — w (1,1)),

a2
where 1o is between w (x,t + h) and w (z,t). Also, w(z,h) > w(x,0) in D, and
w(x,t+h) = w(z,t)atz = cand z = 1fort € [0,7). By the maximum principle,
w(x,t+h) > w(x,t)on Q.. Taking e — 0, itleads tou (z,t +h) > u(z,t)on Q. O

Let ¢ and A be the fundamental eigenfunction and eigenvalue respectively of the follow-

ing Sturm-Liouville eigenvalue problem:

¢ — x%gﬁ = —A\2%in D, ¢(0) =0=¢(1). (2.17)
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From Chan and Chan [4], ¢ is given by

q+2

2/ \p(a+2)/2
¢ (z) = k’loxl/QJM/(quz) <7 ’

which is positive in D, and A = (j,/1745/(g12) (¢ + 2) /2)2 where j /15 (412) i the first

positive zero of J. /75, (412) ()
Theorem 7. If f(u) > 1/ (1 —u)” for u < 1 where 3 is a positive constant such that

B € (0,1] and a8 > A, then u quenches in a finite time.
Proof. Choose ki, such that fol x9¢ (r) dr = 1. Multiply ¢ (x) on both sides of (1.3)
b
xq¢ut = (bumc - ?¢u + a2¢f (u) :
Using integration by parts, (2.17), and f (u) > 1/ (1 — u)”, we have

1q - v b , [
(/0 xgbudx)t—/o (qﬁu—pqﬁu)dx%—a /0 of (u)dz

1 1 ¢
> —/\/ xlpudr + a2/ ﬁdx.
0 o (1

— )
If follows from 1/ (1 —u)® > 1+ Bu+ B(8+ 1)u?/2 for u < 1, the above equation

becomes

</01 xngudx)t

1 1
2—)\/ xq¢udx+a2/ gb{l%—ﬁu%—
0 0

1 1 1 1) !
> —)\/ rlpudr + a* / xlodr + azﬁ/ xloudr + azw / zlpuide.
0 0 0 0

By the Jensen’s inequality,

1 1 1 B(8+1) ( 1 )2
q _ q 2 2 q 2\ T q
(/0 X ¢udx)t > )\/0 rloudr+a”+a 6/0 ripudr+a 5 /0 xipudr | .

Let U (t) = fol x?¢udx which is less than 1 before the quenching time, we get

U2 a + (028~ N U+ a2 D

Since a?3 > )\,
U, > a®+ aZWUZ.

Then, integrate the above expression from 0 to ¢

U ¢
U / ,
_ > a“dt
/o 1—1——5(62+1)U2 0

2 L VBEB+1)U 2
7ﬂ(ﬁ+1>tan —\/§ > a“t.



Quenching of the Solution for a Degenerate Semilinear Parabolic Equation 249

As B € (0,1] and U (t) < 1, /B(B+ 1)U (¢ /f < 1. If u exists globally, then ¢
tends to co. This implies that \/3 (3 + 1)U (t) //2 approaches 7/2 (> 1). It leads to a

contradiction. Hence, u quenches in a finite time. O

3 Critical Length

In this section, we follow the method of Chan and Chen [5] and Chan and Kaper [6] to
determine an approximated value of the critical length of u. Firstly, we find an upper

bound of the critical length. We look for a lower solution u (x, t) which satisfies
Li < a®f (@) in Q, (3.1)

subject to the initial and boundary conditions (1.4). Let us construct % in the form of

2\/Xx(q+2)/2>
— V5 |9

() = 2 e s < P (1),

where g (t) is a nondecreasing function in ¢. Clearly, @ (0,¢) = 0 = @ (1,t). Substitute @
into (3.1), then by (2.17) and 0 < = < 1, it gives

2/ \p(a+2)/2
1/2 2V ATHTHE
2ﬁx<q+2)/2)f <x Jyiras/(g+2) < s g(t)|.

T2 e (2255

a2

g (H)+Ag (t) <

Let z = 2(02)/2,

a? 2\/X
g () +Ag(t) < - A (Z” D J i) <mz> 9(0) :
z J\/1+4 b/(q+2) (q+2 )

(3.2)
For each ¢, the minimum value of the right hand side of (3.2) is independent of z. We take
the infimum of the expression of the right-hand side with respect to z. Let K (g (t)) be a
positive function such that

a2

. 2\/X
K(g() = 1nf{ . 2/ f <Zl/(q+2)J,/1+4b/(q+2) <—q n 22) g (t)) :
DT sy (232)

ZGD}.

Then, g (¢) can be determined by solving the following initial value problem:

g @) +Ag(t)=K(g(t)) fort >0,g(0)=0. (3.3)

Example. Let f(u) = 1/(1 —u). The derivative of the right-hand side of (3.2) with
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respect to z is

a2

q+2

2V 2v/A
2&21][\/@/((14_2)_1] (mZ) — (\/ 1 + 4b — 1) J\/1+4b/((1+2) (q_‘_—22>

[1 = 22V g (i%% 9 (t)}
2a+3)/(a+2) J2

VAN |1 = 21/(a+2) ] 2VA NE
VIFD/(g+2) a2 ” 2 VITH/(+2) \ 3557 ) 9 (1)

the right-hand side of (3.3) has an infimum at z = ¢ where ¢ is the first positive root of the

equation

2\/X 2\/X
2\/XZJ[M/((1+2)—1] (mZ) = (\/ 1 + 4b — 1) J1/1+4b/(q+2) (q n 2Z> )

for g () € (0, (2m)™"] where

2ﬁ>

_ Mat2) g
m=s VITb/(q+2) <q+2<

Since the infimum of the quantity [Z (1 — Z)] " is 4, we have

a*/ [mg (t) (1 —mg (t))] for 0 < g (t) < (2m) ",

4a? for (2m)~" < g(t) <m™,

where ¢ (0) = 0. Let ¢, and ¢3 denote the times when g (t2) = 1/ (2m) and g (t3) = 1/m.

Integrate the second equation from ¢, to t3, it gives

l/m 1 t3 )
—dg:/ 4a” — \) dt.
/1/(2m) g(t) t2 ( )

In 2
(4a® — \)
As ts3 > ty, 4a®> — X > 0. This implies that u quenches when

From which we have

:tg—tg.

JyiFm/e+2) (4 +2)
1 <a

Thus, the critical length a* of u is bounded by

o < jM/(qf) (g + 2).

The procedure of finding the critical length is as follows:

Step 1. Divide the interval D into 20 subintervals. Let 2o = 0, x; = 0.05, ..., x5 = 1.
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Step 2. Use Mapl e®! version 9.03 to compute

1/2
932-/ J iy (%)

Y a2 (1)
1+4b/2
%w (Yf1+_4b/2 (i) — T 1;{);2 (1)J\/1+4b/2 ($2)> )

fori=1,2,..,19. Set vn41 (20) = 0 = vpy1 (T20). Let a = j 1715/(g+2) (¢ +2) /4 and
vo (z) = 0forz € D. From (2.9), we use the numerical integration built in Mapl e to

evaluate v, 41 (x;) fori =1, ..., 19.

Step 3. Use the cubic spline in Mapl e to interpolate v, (x) for € D. Then, calculate

max v,+1 () — max v, (x)
z€D xzeD

= €,.

If €, is greater than or equal to €, Or max,¢p U1 () > 1 for some n, then a is not

the critical length. If ¢, < 1 x 107>, we say that u exists globally.

Step 4. If a is not the critical length, decrease the value to obtain a new estimate a for a*,
and repeat Steps 2 and 3 until we find that u exists globally. The method of bisection is
used to determine a value of a** such that u exists globally for a < a**, and u quenches

for a > a**. @™ is an approximation of a*.

The following table contains the numerical results (in 4 decimal places) of a* for various

b when g = 0.
b Upper bound of a a*
0.0000 1.5708 1.5303
0.5000 1.8250 1.7752
1.0000 1.9950 1.9389
2.0000 2.2467 2.1820
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