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Adaptive Control in the Nabla Setting

Billy J. Jackson

Department of Mathematics and Statistics, Georgia State University
Atlanta, GA 30302 USA
matbjj@langate.gsu.edu

Abstract: In this paper, we develop notions of Lyapunov stability for the nabla time scale
exponential function. We begin by reviewing some of the necessary prerequisite definitions
and theorems for nabla differential equations. We then proceed to discuss the stability of the
ordinary dynamic equation (ODE) that defines the nabla exponential function. We conclude
with a state feedback result showing that the arbitrary linear ODE can be stabilized by
using the controllability Gramian.
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1 Introduction

The theory of time scales originated in Stefan Hilger’s dissertation [12] that evolved into
his seminal paper on the subject [11]. Originally intended to unify continuous and discrete
analysis, the theory has gone well beyond this aspect into extension of familiar properties
of dynamic equations on arbitrary domains. Recently, time scales analysis has received a
considerable amount of attention in the context of engineering applications, particularly in
systems theory and control (see [8, 9, 10]). These results on stability and control have dealt
almost solely with the delta (forward) derivative.

Here, we wish to establish analogous results for the nabla (backward) derivative. The
utility of such an analysis becomes evident when one considers that the time scales analysis
could also have important implications for numerical analysts, who often use backward
differences rather than forward differences to handle their computations.

With this in mind, we begin with a review of the appropriate time scale definitions and
theorems in the nabla setting. The interested reader is urged to examine the works of
Bohner and Peterson in [1, 2].

2 Background
We first review several definitions and theorems about the nabla derivative.

Definition 2.1. Let T be a nonempty closed subset of the reals, callécha scale For
eachT andf : T — R, the following are defined:
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(i) The backward jump operator p : T — T is given by
p(t) :==sup{s € T : s < t}.

If p(t) = t, thent is left dense otherwisef is left scattered
(i) The backward graininessy : T — R is defined by

v(t) =1t — p(t).
(iii) The nabla derivative fV(t) of f : T — R is the quantity (provided it exists)

vy 4 = fp(t))
In this definition, ifv(t) = 0 (i.e. if t is left dense) then this quantity is interpreted in the
limit sense ag — 0.

(iv) f: T — Ris said to bdeft dense continuougabbreviated Id-continuous) jf(¢) exists
forallt € T andf is continuous from the left at left dense pointslof

(v) For f(t) a ld-continuous function, suppose there exists a functiét) with £V (t) =
f(t). Then thenabla integral of f(¢) is given by

[ swi=ri v

Theorem 2.1. Assumef, g : T — R are nabla differentiable at € T,.. Then:
(i) The sumf + ¢g : T — R is nabla differentiable at with

(f+9)V () = FY(1) + g7 (®).
(i) The productfg : T — R is nabla differentiable at , and we get the product rules

(f9)¥ () = fY(£)g(t) + F(p(1)g (t) = f(£)g" () + ¥ (£)g(p(1)).
(iii) If g(t)g(p(t)) # 0, thenf /g is nabla differentiable at, and we get the quotient rule
I Y @0g) = f(0)g (1)
(5) o=
(iv) If fand fV(t) are continuous, then

(/:f@,sws) — f(o /fvf (t,5)

Definition 2.2. The functionp : T — R is v-regressive if

1—v(t)p(t)#0 forall teT,.
Thev-regressive groupR,, @, ©,) is the set

R, ={p: T — R: pisld-continuous and-regressive,
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together with the operations
PDOvqg=p+q—rpg

and
p

1—vp

ez/p = -
p is positivelyv-regressive if
1—vp>0.

Definition 2.3. Forp € R, the unique solution to the equation

y¥(t) = p(t)y(t), ylto) =1,

is called thenabla time scale exponential functiand is denoted by(t) = ¢é,(¢, ). The
nabla exponential function has closed form

étuto) = exp / e Algr).

Theorem 2.2 (Properties of the Nabla Exponential)Letp, ¢ € R, ands,t,r € T. Then
(i) éo(t,s) =1andé,(t,t) = 1;
(ii) éx(p(t),s) = (1 —v(t)p(t))ép(t, s);

(i) s = eounlt,s);

(iv) éy(t,s) = ep(lsﬂg) = Co,p(5,1);
(V) é5(t,m)ép(r, s) = ep(t, s);
(VI) ép(tvr)étI(t7r> = APGBuq(tvr)’

>

(vil) 26 = Epe,q (1, 9);
(viii) (%)V = 2
(ix) If p is positivelyv-regressive, thea, (¢, t,) > 0.
3 Stability of the Nabla Exponential
A natural question is the following: For whate C does it follow that
lim é.(t,t9) = 07

If we examine the closed form of the nabla exponential, then a sufficient collection of such
1
Z —_— —

z € C would be the set
1
(0|~ W}

(For the corresponding result in the delta case, see [3, 4, 7].) We will call the set

_ b
()

zeC:

1

]HL,::{ZGC: z—m
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thev-Hilger circle due to its importance in determining exponential stability.

We would like a geometric interpretation and connection of the set of exponential stability
akin to the one known for the delta case (see [1]). To do this, we will need to define the
v-Hilger complex plane.

Definition 3.1 (v-Hilger Complex Plane). For v > 0 we define thes-Hilger complex
numbersthev-Hilger real axis thev-Hilger alternating axis and thev-Hilger imaginary

circle as
1
C, = {ZEC:Z#—},
1%

R, = {zeCyzzeRandz<l},

v
1
A, = {ZECVZZGRandZ>—},
v
1 1
I, := {ZE(CVZZ——:—}:HV,
v v

respectively. Foh = 0, letCy := C, Ry := R, I := iR, andA, := 0.

Definition 3.2 (The v-Hilger Complex plane). Let v > 0 andz € C,. We define the
v-Hilger real part ofz by

and thev-Hilger imaginary part ot by
Im, () = _M7
1%

where Argz) denotes the principal argument ofi.e., —7 < Arg(z) < 7). For -7 <
w < 7, we define the-Hilger purely imaginary numbetu by
. 1— 67iwzx

W =
14

Note that Re(z) and Im,(z) satisfy
™

1
-0 <Reg(z) < - and - T <Im,(z) < —,
v 1% 1%

respectively. In particular, Réz) € R,. Also, forz € C,, we have thaflml,(z) c H,.
Thewv-Hilger complex plane can be seen in Figure 1.

Theorem 3.1.For z € C, we have

z=Re(z) ®, im,(2).
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Figure 1: Thev-Hilger Complex Plane. Points interior to theHilger circle H, have

positive v-Hilger real part, while points exterior to the circle have negativdilger real

part. Points on the circle therefore have zefHilger real part. The shading indicates that

points exterior to the largest-Hilger circle (i.e. the one corresponding ip) lie in the

stability region.

Proof. Letz € C,. Then

Re,(2) ®, ilm,(z)

v

1—11—zy o E(—Arg(l - zy))

v v
1—|1—zy - 1 — exp(iArg(1 — zv))
v Y %
1—|1—zy N 1 —exp(iArg(1 — zv))
v v
—1/1 — |1 —zv|1 —exp(iArg(l — zv))
v v
1 .
;{1 — |1 — zv| exp(iArg(1 — ZI/))}
1—(1-
(1—2zv) .

v
0

Notice that as we stated before, the stability region is cast in terrig .oPoints in the
stability region that we have chosen always have negatiédger real part. (Note that we
often abuse the notation and say that points in the stability region lie in-Hiéger circle

when actually they are exterior to the largedtlilger circle corresponding to,,;, = v..)

We could extend our stability region by considering points for whichutthéilger real part

is negative on average a®tBche, Siegmund, and Wirth do for the delta case in [16], but
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for our purposes the Hilger circle will suffice for stability.
It is also worth noting that for points = iw on thev-Hilger circle, we have

é: (t,to)| = 1.

Further, thev-Hilger real axis is so named because for points 5 on this axis, we have
é.(t,to) > 0, while for points on thes-Hilger alternating axis, we have that the nabla
exponential is real valued and changes sign at every point. The nabla exponential is never
zero for any regressive subscript. Finally, the positively regressive constants for the nabla
exponential are simply the negative real axis.

As v — 0, we see that the-Hilger circle tends to the open left-half plane as we would
expect since foif’ = R (wherer = 0), the time scale exponential function is the continuous
exponential (i.e.e.(t,0) = e*). Asv — 1, we see that the stability region tends to the
exterior of a circle of unit radius centeredzat= 1. This should also make sense because
for T = Z, we havee,(t,0) = (1 — z)'. However, notice in general that theHilger circle
is dynamig varying as varies ovefT. Thus, in some sense, exponential stability becomes
a “moving target”.

4 Gronwall’'s Inequality For the Nabla Integral

We shall need Gronwall’s inequality for later results, so we state and prove it here. (Ac-
tually, the proofs that follow mirror their delta counterparts given in [1], but we give them
here for the sake of completeness.)

Theorem 4.1.Lety, f € Cy andp € R;}. Then
yV(t) < pt)y(t)+ f(t) forall teT
implies

y(t) < y(to)é,(t to) + / tép(t,p(T))f(T)VT forall teT.

Proof. We use the product rule and Theorem 2.2 (ii) to calculate
[Yeo,p(t)]” (8) = y¥ (£)ea,p(p(t);to) + y(t)(Oup)(H)és,p(t, to)
(O6enp(0)t0) 4 YO T T (p(e) )
(

1— V(t)(@up) (t
y¥ (1) = (©u(©up) (W)Y (t)] éo,p(p(t), to)
y¥ (t) = p(t)y(1)] éa,p(p(t). to).

Sincep € R}, ©,p € R} since the positively-regressive functions are a subgroup of the
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v-regressive functions. Thu&;,, > 0 by Theorem 2.2 (ix). Now

y(t)eo,p(t to) —ylto) = /t [y (1) = p(7)y(7)] Ec.p(p(T) to) VT

< | f0en(p(r) o)V

= [ e ptm)ie)vr
and hence the assertion follows by applying Theorem 2.2. O
Theorem 4.2 (Bernoulli's Inequality.). Leta € R with o € R Then
éal(t,s) > 14+ a(t—s) forall t>s.

Proof. Sincea € R}, we have?,(¢,s) > 0 forall t,s € T. Suppose, s € T with ¢ > s.
Lety(t) = a(t — s). Then

ay(t) +a=a*(t—s)+a>a=y"(t).
Sincey(s) = 0, we have by Theorem 4.1 (with{t) = f(t) = «)
y(t) < /t éa(t, p(T))aVT = é,(t,s) — 1.
Hencegé,(t,s) > 1+ y(t) =1+ a(t — s) follows. O

Theorem 4.3 (Gronwall’s Inequality.). Lety, f € Cjyandp € R}, p > 0. Then

y(t) < f(t) + /ty<7'>p(7')VT forall teT
implies
y(t) < f(t) —I—/t ép(t,p(r))f(r)p(r)VT forall teT.

Proof. Define
Thenz(ty) = 0 and
By Theorem 4.1,

A() < / u(t, p(7) F()p(r) V.

and hence the claim follows because)0f) < f(t) + z(¢). O
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Corollary 4.1. Lety € Cig andp € R, withp > 0. Then
t
y(t) < / y(m)p(r)Vr forall teT
to
implies

y(t) <0 forall t¢teT.

Proof. This is Theorem 4.3 witlf(¢) = 0.

Corollary 4.2. Lety € Ciq,p € R}, p > 0, anda € R. Then
t
y(t) <« —i—/ y()p(r)Vr forall teT
to
implies

y(t) < aey(t,ty) forall teT.

Proof. In Theorem 4.3, lef (t) = «. Then by Theorem 4.3,

u(t) < a+t / 6, (t, p(r))op(r) V7

to

- [1+/t:p(7)ép(t7p(7))w

= a[l +é,(t,tg) — é,(t, t)]
= Ozép(t, to).

Thus, the claim follows.

Corollary 4.3. Lety € Ciqg anda, 3,v € Rwithy > 0. Then
t
y(t) < a+ Bt —to) +’y/ y(r)Vr forall teT
to
implies

y(t) < (a + g) é(t, to) — g forall ¢teT.

Proof. In Theorem 4.3, lef (t) = a+ ((t—to) andp(t) = ~. Note that forw(7) =

Jackson

é(t,7)
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we havew" (1) = —vé,(t, p(7)). By Theorem 4.3,

W) < 50+ [ et

to

~
o

Hence, the claim follows. O]

5 The Systems Case

We now wish to turn our attention to the systems case. As with the scalar case, we begin
by reviewing some of the pertinent definitions and results that we will need later.

Definition 5.1. Let A be ann x n-matrix-valued function off. A is ld-continuous if every
entry of A is Id-continuous. The class of all Id-continuous matrices is denoted by

Cla = Cy(T) = Cig(T, R™*™).
Ais nabla differentiable offi if every entry ofA is nabla differentiable offi, in which case
AV (t) = (a3 (t))1<i<n1<j<n.
We sayA is v-regressive if
I —v(t)A(t) isinvertible forall ¢ e T,,
and the class of all suahregressive and Id-continuous matrix functions is denoted by
R, = R, (T) = R, (T,R™™).

The system
a2V (t) = A()xz(t), z(ty) = o,
is calledv-regressive ifA is v-regressive.

Theorem 5.1. Supposed and B are nabla differentiable: x n-matrix-valued functions.
Then

(i) (A+ B)V(t)=AV(t) + BY(t);
(i) (aA)V(t) = aAV(t)if o is constant;
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(i) (AB)Y(t) = AV(t)B(p(t)) + A(t) BY (t) = A(p(t)) B (t) + AV () B(1);
(iv) (AT)Y = =(A(p(t))) AV () AT (E) = —AT () AV () (A(p(t))) 1 If A()A(p(t)) is
invertible.
(V) (ABTH)Y(t) = (AV(t) — A() B~ (t) BY (1)) (B(p(t))) " =
(AV(t) — A(p(t)) B~ (p(t))BY (t))B~1(t) if B(t)B(p(t)) is invertible.
Definition 5.2. Thev-regressive groupR, (T, R"*"), @, ©,) is the set
R,(T,R*™"™) ={A € R"™" : A is regressive and Id-continucgus
together with the operatios, defined by
A®, B:=A+ B—vAB,
and inverse operatiop, given by
C,A=—-A(l —vA)™"
We are interested in solutions to nabla dynamic equations. We shall denote the solution
of
YV(t) = AWY(t), Y(to) =1
asY (t) = ¢alt, to)-
Theorem 5.2 (Variation of Parameters.).Let A € R, (T,R"*") and suppose thaf :
T — R™is Id-continuous. Lety € T andy, € R". Then the initial value problem
yV(t) = Ay (t) + f(1),  y(to) = o,
has a unique solutiop : T — R”™ given by

y(t) = dalt,to)yo + /t dalt, p(r)) f(T)VT.

6 Exponential Stability and Lyapunov Criteria
We seek conditions that guarantee that solutions of
eV (t) = A)z(t), x(ty) = x0
tend to zero ag — oo. That is, we wish to establish a notion a$ymptotic stabilityfor

this equation. For our purposesjiform exponential stabilitwill suffice, so we define this
notion here. For the reader interested in the analogous results for the delta case, see [3, 4].

Definition 6.1. The time varying/-regressive linear nabla dynamic equation

2V (t) = At)x(t), a(to) =
is said to beuniformly exponentially stablé there exist constants, A > 0 such that for
anyt, andz(t,), the corresponding solution satisfies

e (@[] < llz(to)|vé-x(t,to), T = to.
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We make the blanket assumption tfiais unbounded above. We associate with the state
equation the scalar function
lz(t)]|* = 2" (t)=(t)
that acts as the system’s associated energy function. We want conditions on our system that
guarantee thatz(¢)||> — 0 ast — oo. We begin by noting that the energy function has
time nabla derivative

(lz@IMY = (@ ()™
= 2T ()x(t) + 2T ()2 ()
= o (AT (O)x(t) + 2" ()T — v(t) AT (8) A(t)z(t)
= 2" (O[AT(t) + At) — v()AT () A(t)](t).
Thus, if the quadratic form we obtain from the derivative is negative definite, then we will

have||z(t)||> — 0 ast — oo, as desired. From this discussion, we see that if we can
establish the existence of a symmetric ma@i¢) € C;(T, R"*") such that

LMY = 2 ()QE)x(®) + 2" (H)(QY (1)2"(t) + Q(1)xT (1))
= 2 ()ATOQ) + (I — v(HAT(1)QY (1) (I — v(t)A(t))
+H(I = (AT () Q) A1)z (t)
is negative definite, then we get asymptotic decay. We shall need other versions of the
derivative of the quadratic functional given above, so we present them here. Note that

T ORMx(M)]Y = (" (HQ) 2 () + 2" ()Q()zY (1)
= 2 (AT (OQ ()] — v(t)A(t))
+QY (1)(I — v(t)A(t) + Q1) A1) (t),

and also

ot [0 A OO - OAD)] )

Theorem 6.1 (Lyapunov Stability Criterion I). The time varying regressive nabla linear
dynamic system

eV (t) = A)z(t), x(ty) = x0
is uniformly exponentially stable if there exists a symmetric mai® < C (T, R™*")
such that for allt € T
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() nI < Q) <k,
(i) AT(1)Q(H) + (I - v()AT(1))QV (1) — v(H)A(t) + (I — v() AT()) QD A(t) < —1,
wheren, k,v > 0.

Proof. For any initial conditiont, andz(ty) = x, with corresponding solution(t) of the
state equation, we see that forab- ¢y, (ii) gives

[ )W)z (t)]Y < —llx(t)]|*.
Also, for allt > tq, (i) implies
2" (H)Q(t)z(t) < llz(t)].
Thus,
O] < —LaT QM (H)
forallt > t,. Since—1 € R;f, we can employ Theorem 4.1 to obtain
" (0)Q()x(t) < " (to)Q(to)x(to)é—ryu(t, to), t > to. (6.1)

By (i), nI < Q(t) so thaty||z(t)||*> < 2T (t)Q(t)x(t), and thus an application of (6.1)
yields

lz(®)]]* < 1ﬂfT(f)Q(t)ﬂC(?f) =< %xT(to)Q(to)x(to)éw/n(tvto% t = to.

3

Now, z(to)Q(to)x(to) < kl|z(to)]|* implies
eI < k(o) Pyt o),
which yields
2@ < [l (to)l| %é—v/fe(tte)? t >t
Since this is true for arbitrarg andz(t,), uniform exponential stability is established.]
If we use the other two representations of the derivative given above, then we see the

proofs of the following two theorems are the same as the same as the previous one.

Theorem 6.2 (Lyapunov Stability Criterion 1). The time varying regressive nabla linear
dynamic system
eV (t) = A)z(t), x(ty) = x0
is uniformly exponentially stable if there exists a symmetric mais € C (T, R"*")
such that for allt € T
() nI <Q(t) <&l
(i) AT(H)Q(t)(I — v(H)A®) + Q¥ (NI — v()A(L) + Q)A(t) < —1,
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wheren, k,v > 0.

Theorem 6.3 (Lyapunov Stability Criterion Ill). The time varying regressive nabla lin-
ear dynamic system

eV (t) = A)z(t), x(ty) = x0

is uniformly exponentially stable if there exists a symmetric mai® < C (T, R™*")
such that for allt € T

(i) nI <Q(t) < wl,

(i) (Q(t) — (I —v(t)AT(£)Q"(t)(I — v(t)A(t))) [v(t) < =1,
wheren, k,y > 0.
7 Control and State Feedback

We desire an analogue of the feedback result obtained in [13] for the nabla dynamic equa-
tion. To do that, we first need to discuss controllability. The reader can see [6, 13] for the
control results concerning the delta derivative, and [5, 14, 15, 17, 18] for the control and
feedback theorems stated and proved for the special Tase® andT = Z.

Definition 7.1. Thev-regressive linear nabla dynamic state equation

zV(t) = A(t)x(t) + B(t)u(t), z(to) = o,
y(t) = Ct)x(t) + D(t)u(t) (7.1)

is calledcontrollableon [¢y, /|7 if given any initial stater, there exists a ld-continuous
input signalu(t) such that the corresponding solution of the system satisftg$ = ;.

Theorem 7.1. Thev-regressive nabla linear state equation (7.1) is controllablét@ry ¢ |1
if and only if then x n controllability Gramian matrix

Goltorty) = / " dalto, p(3))B() BT () (1o, p(5)) Vs

is invertible.

Proof. Suppos@c(to,tf) is invertible. Then, giverr, andx;, we can choose the input
signalu(t) as

u(t) = =BT (t)dalto, p(t))Gc" (to, tr) (w0 — dalto,tp)zs), € (to 1],

and extend:(t) continuously for all other values @f The corresponding solution of the
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system at = ¢, can be written as

£(ty) = dalty. to)ro + / " Dalts, p()) B(s)u(s) Vs

= Galty,to)ro — [ dalty, p(s))B(s)B" (s)dh(ts. p(s)

X gAal<t07 tf)(l’o - Q§A<t07 tf)l'f)vs,

= galty,to)zo
~daltsita) [ dalto,p(5) BB ()6t p(5)) Vs
X G61<t07 tf)(]f[] - éA(tOJ tf)xf)

= dalty,to)zo — (dalty,to)ro — )

= xy,

so that the state equation is controllable[nt ¢|.

Conversely, suppose that the state equation is controllable, but for the sake of a contra-
diction, assume the matridio(to, tf) is not invertible. 1fGo(to,t;) is not invertible, then
there exists a vectar, # 0 such that

= TG (to, t )20 = / " T a(to. p() B(s) BT ()05 (t0, p(s))2aVs.  (7.2)

to
But, the function in this expression is the nonnegative continuous function
12T d4(to, p(s))B(s)|[2, and so it follows that

zh palto, p(s))B(s) =0, t € (to,1y]- (7.3)

However, the state equation is controllable @f ¢¢]r, and so choosing, = z, +
dalto, tr)x s, there exists an input signal,(t) such that

. b
oy = daltyta)aat [ daltsop(s) Bls)ua(s) Vs,
to
which is equivalent to the equation
ty
ra= = [ dalto, o) Bls)ul(5) Vs
to

Multiplying through byz! and using (7.2) and (7.3) yieldsz, = 0, a contradiction.
Thus, the matrixGc (to, t ) is invertible. O

Before producing our feedback theorem, we need a couple of lemmas.

Lemma 7.1. Thev-Hilger circle H,, is closed under the operatian,,.
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Proof. Leta € C be such thafa| > 1. Thena = =2 € H, since|=-2 — 1| = |-2| > L,

Similarly, let3 € C be such that3| > 1, so thath = % € H,. We set
c:=a®,b=a+b— vab.

Now, ¢ € H, if there exists ay € C such thafy| > 1 with ¢ = =2, We claim that the
choicey = af will suffice, from which the claim follows immediately. Indeed, with this
choice ofy, we have that

1— 1— 1— l—al—
v @, &} JL-a B

v v v v v’

and sincdy| = |a| - |8] > 1, the claim follows. O

Lemma 7.2 (Stability Under Change of State Variables).Thev-regressive nabla linear
state equation

(1) = AWe(t) + B(twu(t),  (to) = o,
y(t) = C((t),

is v-uniformly exponentially stable with rate\ + «)/(1 — v.«), where,a > 0 and
«a € R}, if the linear state equation

V() = [(1—v(t)a)A(t) + al)z(t), =z(to) = xo

is v-uniformly exponentially stable with rate

Proof. By direct calculationg(t) satisfies

if and only if z(t) = é,(t, to)z(t) satisfies
2V(t) = [(1—v(t)a)A(t) + al]z(t), z(to) = 0. (7.4)
Now assume there existsya> 0 such that for any, andt,, the solution of (7.4) satisfies
2] < ve-a(t,to)[[zoll, T = to.
Then substituting for(¢) yields
[|ea(t, to)x(t)[| = éa(t, to)| |z ()] < vé-x(t,to)l|2oll,
so that

|z < ve-xevalts to)l[zol| < 7e-(rta)/(-vaay (t; To) 20l
where we note that (A + «) /(1 — v.a) € R}}. O
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We defined the controllability Gramiagy (¢, C(t)) earlier as

. tro, R
Golto,ty) = / balto. p(s))B(s)BT (5)0% (to, p(s)) Vs. (7.5)
to
To obtain the feedback result, we need to use the following shifted version of this matrix.
Fora > 0 € R, define the matrix

G (fos 1) = / (@alto, ) dalto. p()) B(s) BT ()8 (to. p(s)Vs.  (7.6)

to
Theorem 7.2 (Gramian Exponential Stability Criterion). Let T be a time scale with
bounded graininess. For theregressive nabla linear state equation

(1) = AWe(t) + B(tu(t),  (t) = o,
y(t) = C(a(t),

suppose there exist positive constants, and a strictly increasing functio@ : T — T
such that) < C(t) —t < M < oo with

e1] < Ge(t,C(t)) < ey, (7.7)
for all £. Then given a positively regressive constant 0, the state feedback gain
K(t) = =B"()(I = v(t) A" (1)) 'G5 (¢, C (1)), (7.8)

is such that the resulting closed-loop state equation is uniformly exponentially stable with
rate .

of log(1 — v(t)a)

Proof. We first note that forV =
teT v(t)

, we have—oo < N < 0 sinceT has

bounded graininess. Thus,

€® Jog(1 — v(7)ax
éa(t,C(t)) = exp (/t ! g(ly(T)( ) )VT>

c()
> exp NVT
t
6 )

N(C(t)—t

> MV (since N < 0).

Comparing the quadratic formg G, (¢,C(t))z andz" G (t,C(t))x using their respective
definitions (7.5) and (7.6) gives

eMNGo(t,C(t)) < G (t,C(1) < Go(t,C(1)),
forall t. Thus, (7.7) gives
e eMNT < ga(t,C(t)) < e (7.9)
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for all t, and so the existence ng(t,C(t)) is immediate. Now, we show that the linear
state equation

V() = [(1 — v(t)a)A(t) + ad]z(t), (7.10)

where A(t) — B(t) BT (t)(I — v(t)AT(t)) "G (t,C(t)), is v-uniformly exponentially by
Theorem 6.3 with the choice

Q(t) = Gl (t,c(1)). (7.11)

Lemma 7.2 then yields the result. To apply the theorem, we first not&thats symmetric
and continuously nabla differentiable. Thus, (7.9) gives

6_4MN

Ly <Qt) <

€2 €1

I, (7.12)

for all . Hence, it only remains to show that there exists 0 such that
Q) — (I - V(t)AT(t)gt?(p(t))(f —v(t)A(1))
We begin with the second term, writing
1= (01 = v(O))A®) + al)| Q(p(t)) [T = v(1)[(1 = v(t)a) A(t) + ]|
= (1= v(t)a)’ [[I — () AT(H)] + G (t,CO)T ~ V(t)A(t)]*V(t)B(t)BT(t)}
“Gen(p(1), C(p(1)) [[I —v()AD)] + v BO)BT (1) — v(t)AT(1)] ' Ga (¢, C(t))} :

We pause to establish an important identity. Notice that

< =1

[T — v()A(1)]Ge, (t, CNIT — v(t) AT (1)]
- m%a(p(t),c (t)) — v(t)B(t)B (). (7.13)

This leads to
I+ v —v(t)A@)] ' B)B ()1 — v(t)A" (1) 7'G5 (t.C(t)
1 —15 _ T /-1
WU —v(t)A®)] Ge. (p(t), C())I — v(t) A (¢)]
Gl (t.C(t)), (7.14)

which in turn yields

I+ v()Ge) (t.CONIT — v AWM BB (O — v(H) AT (1)

— TSt LT ~ HOAR)] e (). )

[T —v(t)AT ()] (7.15)
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The second term can now be rewritten as
(1= v(t)a)? [T = v() AT (1)) + G5 (1, CNIT — v AR v(H) B B (1)
- Gan(p(1), Cp(1))) [[1 —v()AD)] +v(O)B(H)BT (1) — v(t)AT(8)] "Gl (¢, C(t))}
= (1 =v(t)a)* [I + Gol (8. CO)I — v(t) AW w()B(t) BT (D] — V(t)AT(t)]*l]
L= v AT]GEL (p(1), Clp())I — v(t)A(D)]
- [I + [ = v(O)AWD] v(t) BOB (1)1 — v() A" ()] Ge (¢, C(t))] :
Using (7.14) and (7.15), we can now write
1= v = v(e)A) + aI]”| Qp(1)) [T = v = v(H)a)A(t) + o]
= (1= v()a)°G5l (1, C()[I — v(t) A(1)] "G (p(1), C(1) G (p(t), C(p(1)))
G (p(t), CNIL = v(t) AT (D] TGl (t.C(1)). (7.16)
On the other hand, from the definition 6§, (¢,C(t)), we have

Ge. (p(1), C(p(1))) < Ge, (p(t), C(1)),
which in turn implies

Gel(p(t), Cp(1))) = Gl (p(1),C (1))
Combining this with (7.16) gives

1= v®[(1 = v()a) AT (t) + o) Qo) [T = v(H(1 = ¥(t)a) A1) + o]
> (1= v(t)a) Ga!(1,C) |1 = v()A] ™ Ge, (p(1), CONIT — v(t) A7 (1)
-+ Ge, (t,C(1)).
Applying (7.13) again yields
1= v(®)[(1 = (D) AT () + al)| Q(p(t)) [T = w(®)[(1 - v(t)a) A(t) + al]]
> (1= v(t)a) G (¢, C(1))
(= vlt)a) e, (1.C0) + () (1 = v(B)a) [T = v AD] BB (O - v AT(1)] ]
el (t.cw)
> (1= v(t)a)’Gol (t,C(1)).
Thus,
Qt) = [T = v(®)[(1 = () AT (8) + al)| Q(p(t) [T = w(t)[(1 = v(t)a) A(t) + al]]
20

(- vher,
AB(1 vy e )
t
)

t))

1— _ 2
(1—-v(t)o I
t 2

() (1 —v(t)a)?e

)
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Now, the quantity(1 — (1 — v(t)a)?)/(v(t)(1 — v(t)a)?e,) is certainly not constant, but it
can be bounded by a quantity that is (here= v,,;,):
1—(1—-v(t)a)? 2a0 — v(t)a? 200 — v,

vit)(1—v(t)a)e (1—v(t)a)2e — (1 —vaa)e

Thus, if we sety = (2"‘—““22 then

1-via)2e

Q) — [T = v()[(1 = () AT (1) + )] QUo(t)) [T~ (B)[(1 = w(t)) A1) + ]
70

< —l.
O

At this point, it is worth discussing possible choices for the funcflor) which we term
the compactification operator. If T is purely discrete (i.e. has no points witf¢) = 0),
then one possible choice fdi(t) is C(t) = o*(t) for somek € N. ForT = R, itis
well known that the choic€(t) = ¢ + ¢, for somes > 0 will suffice. If T = P,; (a
disjoint union of closed intervals of lengthand gaps between intervals of leng)hthen
the choiceC(t) = t + a + b is a possibility. These examples show that the choice of the
compactification operator can vary widely with the time scale involved, and so this is why
we cast the theorem in terms of a general operator.
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