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Abstract: In this paper, we introduce a new high order scheme for boundary points

when calculating the derivative of smooth functions by Compact Scheme. The primitive

function reconstruction method of ENO schemes is applied to obtain the conservative form

of the Compact Scheme. Equations for approximating the derivatives around the boundary

points 1 and N are determined for the Dirichlet boundary conditions. Numerical tests

are presented to demonstrate the capabilities of this new scheme, and a comparison to the

lower-order boundary scheme shows its advantages.

1 Introduction

Throughout the years, compact schemes have been extensively used in the simulation of
complex flow which requires high-order accurate numerical schemes with low dispersion
and dissipation errors [1, 2, 3]. Due to the properties of the compact scheme, it is necessary
to use high order equations also near the boundary. Most of the analyses of the order
of schemes were concentrated on the inner points’ equations, by either applying periodic
boundary conditions or by using examples where the values near the boundary are never
affected [4, 5, 7]. This kind of approach may not correctly define the global order of
the scheme when non-periodic boundary conditions, such as Dirichlet or Neumann, are
applied, or when the solution is dynamic near the boundary.

In this paper, a new high-order class of compact schemes for the boundary points is de-
veloped, namely sixth order (it will be called the “6-6-6” scheme throughout the paper).
Equations of the interior and boundary points for the conservative formulation are derived,
assuming Dirichlet boundary conditions are given. Their respective truncation errors are
also determined. The scheme is applied to numerical examples to demonstrate its capa-
bilities. Also, a comparison to the standard lower-order boundary compact scheme (called
the “3-4-6-4-3” scheme), which uses third order equations at the boundary, fourth order
equations near the boundary, and sixth order at the interior points, will be presented.
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2 Compact Scheme
2.1 Basic Formulation

A Padé-type compact scheme can be constructed based on the Hermite interpolation where
both function and derivative at grid points are involved, e.g. a fourth order finite difference
scheme can be constructed if both the function and first derivative are used at three grid
points. Given the values of a function on a set of nodes, the finite difference approximation
to the derivative of the function is expressed as a linear combination of the given function
values. For a function f , we may write a compact scheme by using five grid points [6]:
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where h is the mesh spacing.
Equation (1) can achieve up to 8th order of accuracy, depending on the values of the

constants.
If we assume a symmetric and tri-diagonal system, by setting β− = β+ = 0, we obtain a

one-parameter family of fourth-order compact schemes [6]:

αf ′

j−1 + f ′

j + αf ′

j+1 =

=
1

h

[

−
4α − 1

12
fj−2 −

α + 2

3
fj−1 +

α + 2

3
fj+1 +

4α − 1

12
fj+2

]

. (2)

With α = 1
3
, a sixth order compact scheme can be obtained:
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2.2 Conservative property

It is important to maintain the conservation property of the scheme for shock wave cap-
turing, as conservative numerical methods locate shocks correctly. Let us describe the
conservative formulation to be applied in our scheme.

For 1-D conservation laws

ut (x, t) + fx (u (x, t)) = 0, (4)

a semi-discrete conservative form of (4) can be determined when a conservative approxi-
mation to the spatial derivative fx is applied [5]:
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where fj = 1
h

∫ xj+
h
2

xj−
h
2

f̂(ξ)dξ. f̂ is the flux defined by the integration, which is an exact
expression of the flux, but it is different from f .
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If we define H as the primitive function of f̂ ,

H
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f i, (6)

then H is easy to be calculated.
The numerical flux f̂ at the cell interfaces is the derivative of its primitive function H ,

i.e.,
f̂j+ 1

2

= H ′

j+ 1

2

. (7)

All equations given above are exact without approximations. However, the primitive
function H is a discrete data set and we must use a numerical method to obtain the deriva-
tives of H , which will introduce numerical errors, or in other words, order of accuracy.

This procedure, f → H → f̂ → f ′, is called reconstruction, introduced by Shu & Osher
[8, 9], and the application of the numerical scheme to the primitive function instead of the
function itself ensures that the conservative property is attained.

There is only one problem left for the numerical method, which is how to determine (7),
or how to obtain accurate derivatives, for a discrete data set.

3 Obtaining the derivatives

Consider a uniformly spaced mesh where the nodes are indexed by i, and the independent
variable at the nodes is xi = a + h(i − 1) for 1 ≤ i ≤ N , with a ≤ xi ≤ b, then h = b−a

N−1

is the mesh spacing. The function values at the nodes, fi = f(xi), are given. To determine
the approximations to the derivatives f ′

i , i = 1, 2, . . . , N , where i = 1 and i = N are
respectively the left and right boundary points, we must first calculate the derivatives of
the primitive function Hj+1/2, H ′

j+1/2, for j = 0, 1, 2, . . . , N . For this, we define two sets
of points: the interior points j = 2, . . . , N − 2 and the boundary points j = 0, 1 and
j = N − 1, N .

3.1 Interior points

Let us determine the relationship between H and H ′ for the interior points j =

2, 3, . . . , N − 2, by using the compact scheme formulation.

�
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Figure 1: Compact Scheme formulation

Our objective is to obtain a sixth order compact scheme centered at j+1/2 (see Figure 1);
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then, by using 5 function values and 3 derivatives, we obtain
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The truncation error of equation (8) can be found by using a Taylor expansion around
j + 1/2,
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which shows that a sixth order of accuracy is obtained for the formula of the interior points.

3.2 Boundary points

In the previous subsection we have determined the formula to be applied for the interior
points j = 2, 3, . . . , N − 2. Now, let us determine the equations for the points near the
boundaries at j = 0, 1 and j = N − 1, N .

The equations for the boundary points will be different from the equations of the interior
points, since there are no left or right nodes which could be used next to the left boundary
or right boundary points, respectively. Depending on how many nodes we use, we can
derive different order schemes for the boundary points.

The Dirichlet boundary conditions given in this case are f (a) = A and f (b) = B.
In order to maintain the tri-diagonal nature of the schemes, we are using two point deriva-

tives instead of three for the first point j = 0 and last point j = N .
a) For j = 0, we can use two derivatives and six points to obtain a 6th order scheme
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The truncation error of equation (9) can be found by using Taylor expansion:
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b) Similarly, for j = N , we can also use two derivatives and six points to obtain a 6th

order scheme approximating the value of H ′
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The truncation error of equation (10) will be:
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c) For j = 1, three derivatives and five points are used to obtain the sixth order scheme
approximating the value of H ′
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The truncation error of (11) is given below:
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d) Similarly, for j = N − 1, we use three derivatives and five points to obtain the 6th
order scheme approximating the value of H ′
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The truncation error of (12) will be:
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The equations (8)-(12) are then used to create a symmetric tri-diagonal implicit system
of N + 1 equations that is solved to determine the derivatives H ′

j+1/2, j = 0, 1, 2, . . . , N .

4 Numerical Results

We will first demonstrate that the newly developed sixth order scheme (6-6-6) can actu-
ally achieve sixth order by using Dirichlet boundary conditions, for different smooth func-
tions, and then we compare the results of the Dirichlet boundary conditions to the previous
scheme with lower order equations at the boundaries (3-4-6-4-3).

4.1 6-6-6 Scheme for Dirichlet boundary conditions

We first test the functions f1 (x) = sin(x), f2 (x) = sin(8x) and f3 (x) = sin(3x)+cos(2x),
x ∈ [−π, π], with corresponding Dirichlet boundary conditions f1 (−π) = 0, f1 (π) = 0;
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f2 (−π) = 0, f2 (π) = 0;f3 (−π) = 1, f3 (π) = 1. All these test functions have analytic
derivatives, f ′

1 (x) = cos(x), f ′

2 (x) = 8 cos(8x), and f ′

3 (x) = 3 cos(3x) − 2 sin(2x).
(a) For the function f1(x) = sin(x), x ∈ [−π, π], we obtain the L1, L2, and L∞ errors

and their corresponding orders for various values of N (Table 1). Note that N includes the
right boundary point, and so the number of spatial subdivisions is N − 1. The comparison
of the exact and the numerical solution for the derivative, f ′

1(x) = cos(x), with N = 41,
is shown in Figure 2(a), and the numerical error at each point is shown in Figure 2(b). We
can observe that the largest absolute values of the errors appear near the boundary points.

N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

11 2.50E-02 - 1.39E-02 - 9.65E-03 -
21 4.86E-04 5.69 2.68E-04 5.70 1.86E-04 5.70
41 8.06E-06 5.91 4.40E-06 5.93 3.05E-06 5.93
81 1.30E-07 5.95 6.97E-08 5.98 4.83E-08 5.98

161 8.54E-09 5.93 1.09E-09 6.00 7.57E-10 6.00
321 1.41E-10 3.92 1.96E-11 5.80 1.19E-11 5.99

Table 1: Errors of the numerical solution for f1 (x) = sin (x)

(a) (b)

Figure 2: (a) Derivatives and (b) Numerical errors for f1 with N = 41

(b) We repeat the analysis for a different function, f2 (x) = sin(8x), x ∈ [−π, π]. The L1,
L2, and L∞ errors and their corresponding orders for various values of N were calculated
and are displayed in Table 2. The comparison of the exact and the numerical solution for the
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derivative, f ′

2 (x) = 8 cos(8x), with N = 161, is shown in Figure 3(a), and the numerical
error at each point is shown in Figure 3(b). We can observe that, with this function, the
largest absolute values of the errors are also located close to the boundary points.

N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

41 4.57 - 2.40 - 1.68 -
81 2.10E-01 4.44 1.11E-01 4.44 7.70E-02 4.45

161 4.22E-03 5.64 2.14E-03 5.69 1.49E-03 5.70
321 7.47E-05 5.82 3.52E-05 5.93 2.44E-05 5.93
641 1.36E-06 5.78 5.58E-07 5.98 3.86E-07 5.98

1281 2.69E-08 5.66 8.71E-09 6.00 6.03E-09 6.00

Table 2: Errors of the numerical solution for f2 (x) = sin (8x)

(a) (b)

Figure 3: (a) Derivatives and (b) Numerical errors for f2 with N = 161

(c) Once again, the analysis is repeated for the function f3 (x) = sin(3x) + cos(2x),
x ∈ [−π, π]. The L1, L2, and L∞ errors and their corresponding orders for various values
of N were calculated and are displayed in Table 3. The comparison of the exact and the
numerical solution for the derivative, f ′

3 (x) = 3 cos(3x) − 2 sin(2x), with N = 41, is
shown in Figure 4(a), and the numerical error at each point is shown in Figure 4(b). A
similar behavior for the numerical error can be observed for this function.

The investigation performed on the three functions shows that the scheme 6-6-6 is ca-
pable of achieving sixth-order accuracy for the whole interval when Dirichlet boundary
conditions are applied.
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N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

11 7.07 - 3.48 - 2.71 -
21 5.78E-01 3.61 3.20E-01 3.44 2.31E-01 3.56
41 1.54E-03 5.23 8.44E-03 5.25 6.38E-03 5.17
81 2.77E-04 5.80 1.50E-04 5.81 1.22E-04 5.70

161 4.63E-06 5.90 2.55E-06 5.88 2.30E-06 5.73
321 7.88E-08 5.87 4.78E-08 5.74 4.66E-08 5.63

Table 3: Errors of the numerical solution for f3 (x) = sin (3x) + cos (2x)

(a) (b)

Figure 4: (a) Derivatives and (b) Numerical errors for f3 with N = 41

4.2 Comparison of 6-6-6 Scheme with 3-4-6-4-3 Scheme

The results obtained in the previous subsection were obtained by using the new scheme
6-6-6, which guarantees that sixth global order of accuracy can be achieved for smooth
functions, as shown. Now, we compare the results from the scheme 6-6-6 with the results
obtained from the traditional scheme 3-4-6-4-3, with the function f (x) = sin (x), x ∈

[−π, π], and with Dirichlet boundary conditions f (−π) = 0 and f (π) = 0.
The 3-4-6-4-3 scheme, which combines 3rd order schemes for points j = 0, N , 4th order

schemes for j = 1, N −1, and sixth order schemes for the interior points j = 2, 3, . . . , N −

2, generates L1, L2, and L∞errors and respective orders shown in Table 4. We found that
the highest order achieved is second order, even though the lowest order formula used is of
3rd order. Comparing with the results from the 6-6-6 scheme (Table 1 is repeated in Table 5),
we note a great improvement obtained by the new scheme 6-6-6, with significantly smaller



High Order Compact Scheme for Dirichlet Boundary Points 281

errors. Figure 5(a) compares the derivatives calculated with N = 81 near the left boundary,
while Figure 5(b) shows the profiles for the absolute values of the numerical errors for both
schemes.

N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

11 2.57E-01 - 1.30E-01 - 8.74E-02 -
21 6.83E-02 1.91 3.43E-02 1.92 2.31E-02 1.92
41 1.73E-02 1.98 8.68E-03 1.98 5.84E-03 1.98
81 4.35E-03 1.99 2.18E-03 2.00 1.47E-03 2.00

161 1.09E-03 2.00 5.45E-04 2.00 3.67E-04 2.00
321 2.72E-04 2.00 1.36E-04 2.00 9.17E-05 2.00

Table 4: Errors of the numerical solution for f (x) = sin (x) - Scheme 3-4-6-4-3

N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

11 2.50E-02 - 1.39E-02 - 9.65E-03 -
21 4.86E-04 5.69 2.68E-04 5.70 1.86E-04 5.70
41 8.06E-06 5.91 4.40E-06 5.93 3.05E-06 5.93
81 1.30E-07 5.95 6.97E-08 5.98 4.83E-08 5.98

161 8.54E-09 5.93 1.09E-09 6.00 7.57E-10 6.00
321 1.41E-10 3.92 1.96E-11 5.80 1.19E-11 5.99

Table 5: Table 1 repeated - Errors of the numerical solution - Scheme 6-6-6

5 Conclusion

The traditional 3-4-6 order compact scheme can only obtain second order global accuracy
even for a smooth function. The new 6-6-6 order compact scheme we developed can get
sixth order global accuracy fully recovered for smooth functions. According to the analy-
sis above, we have derived a sixth order general algorithm for boundary points which can
be used for solving the derivative with Dirichlet boundary conditions. The conservative
Compact Scheme developed in this work has been successfully applied to several one di-
mensional functions. High order accuracy is achieved by using the new boundary point
scheme.
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(a) (b)

Figure 5: Comparison of (a) derivatives and (b) numerical errors for f with N = 81
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