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ABSTRACT. Numerical experiments performed with an exponential finite difference method in

equally-spaced and piecewise-uniform meshes for both the inner and the outer layers and with

an implicit Runge-Kutta-Radau IIA method for the outer layer of singularly-perturbed Volterra

integro-differential equations are reported. The exponential finite difference technique is based on

piecewise linear approximations and its linear stability has been analyzed. It is shown that the

exponential method presented in this paper provides first-order accurate solutions for small values

of the perturbation parameter, whereas the same technique in a piecewise-uniform mesh is almost

second-order uniformly convergent because it does resolve the inner layer and, most importantly,

because the finite difference equations are independent of the perturbation parameter in the inner

layer. The implicit Runge-Kutta method for the outer layer yields errors that only depend on the

step size if the number of stages is small or the step size is large, but depend on both the small

perturbation parameter and the step size, otherwise.

Key Words Singularly-perturbed Volterra integro-differential equations; exponentially finite differ-

ence methods; piecewise-uniform meshes; implicit Runge-Kutta methods.

1. PRELIMINARIES

Volterra’s integro-differential equations arise in many fields such as, for exam-

ple, mathematics, physics, engineering, etc. For example, initial-value problems of

ordinary differential equations can be written as Volterra’s integro-differential equa-

tions of the second kind and these equations are used to determine the existence and

uniqueness of such equations by employing Picard’s theorem [24]. Volterra’s integro-

differential equations also arise in models of population dynamics [10], epidemics [33],

diffusion with nonlinear surface dissipation [26], synchronous control systems and non-

linear renewal processes [18], filament stretching [1], polymer rheology [25], nonlinear

radiation heat transfer [23], etc.

Singularly-perturbed Volterra’s integro-differential equations are characterized by

the presence of a small, positive parameter that multiplies the first-order derivative of

the dependent variable, and its singular character is due to the fact that the properties
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of the solution for ǫ 6= 0 are not compatible with those for ǫ = 0, where ǫ denotes

the small parameter. This incompatibility gives rise to the formation of an initial (or

inner) layer where the solution adapts itself from the initial condition to the outer

solution corresponding to ǫ = 0, and has been the subject of several asymptotic

analysis [2, 3, 27, 4, 5, 6].

Angell and Olmstead [2, 3] considered singularly-perturbed Volterra integral and

integro-differential equations, respectively, with kernels which are sufficiently well-

behaved or have an integrable singularity, respectively, by means of an asymptotic

analysis of the inner and outer layers. For singularly-perturbed linear Volterra integral

equations, Bijura [4] has shown that a discontinuity of the kernel causes layer solutions

to decay algebraically rather than exponentially within the initial layer and that these

solutions are similar to the Mittag-Leffler function.

Numerical methods for the solution of Volterra integro-differential equations

include spectral techniques [12], spline collocation methods [20, 19, 7, 8], Petrov-

Galerkin methods [28], implicit Runge-Kutta techniques [22], and exponential finite

difference techniques [35, 29]. In particular, Salama and Bakr [35] developed an

exponentially-fitted method [11] and determined the (fitting) coefficients of the fi-

nite difference discretization of the first-order derivative as suggested by Carroll [9],

whereas those arising from the discretization of the integral term were determined

from the analysis of the truncation errors. On the other hand, the author [29] em-

ployed a piecewise formulation based on the local linearization of the Volterra integro-

differential equation which results in an exponential method and is exact for first-order

linear ordinary differential with constant coefficients and linear right-hand sides [30].

He also considered a similar method but freezing the nonlinearities and solving the

resulting nonlinear algebraic equations iteratively. Such an iterative (quasilinear)

technique has been applied with great success for the analysis of singular initial– [31]

and boundary-value [32] problems arising in classical and quantum mechanics.

In this paper, we first present a piecewise-quasilinearization method for Volterra

integro-differential equations which result in exponential finite difference schemes,

analyze its linear stability and show that some inconsistencies may arise between the

leading-order outer analytical solution and the finite difference discretization as the

small perturbation parameter tends to zero. We also show how to get consistency,

even though, for the examples considered in the paper, no inconsistency arises. The

exponential method is then combined with a Shishkin piecewise-uniform mesh [14, 34]

and shown to result in a finite difference method that is independent of the small

perturbation parameter in the inner layer. Finally, an implicit Runge-Kutta method

is developed and applied to determine the solution in the outer layer using as initial

conditions either those corresponding to the exact solution (when available) or those

of the exponential method in piecewise-uniform meshes presented in this paper.
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The paper has been organized as follows. In Section 2, the problem is formulated

in its standard integro-differential form as well as a system of first-order ordinary

differential equations, while, in Section 3, we present a piecewise quasilinear method

and analyze its linear stability. Such a method is an extension of the quasilinear

techniques developed by the author [29] where a detailed analysis of the discretiza-

tion of the advection operator and the numerical treatment of integrals appearing in

Volterra integro-differential equations and comparisons with the exponentially-fitted

techniques of Salama and Bakr [35] are reported. In the same section, an exponen-

tial technique in piecewise-uniform meshes and an implicit Runge-Kutta technique

are presented, whereas, in Section 4, the three techniques presented in the paper are

applied to two examples which have analytical solutions and the results are compared

with those obtained by means of the backward Euler and trapezoidal methods as well

as with the most accurate technique reported by Salama and Bakr [35]. Finally, a

brief summary of the main findings of the paper conclude the manuscript.

2. EXISTENCE OF EXTREMAL SOLUTIONS

Consider the following singularly-perturbed Volterra integro-differential equation

(2.1) ǫy′(t) + a(t)y(t) = f(t, y(t)) +

∫ t

0

K(t, s, y(s))ds, t > 0,

where the prime denotes differentiation with respect to t, 0 < ǫ ≪ 1, a(t) > 0 and

y(0) = y0, which can be written in autonomous form as

(2.2) ǫy′(t) + a(t)y(t) = g (y(t), u(t, t)) ,

upon introducing t′ = 1 and replacing (t, y(t)) by y(t), where

(2.3) u(t, τ) =

∫ t

0

K(τ, y(s))ds,

and, therefore, u(0, τ) = 0.

We assume that a, f , K and, therefore, g are sufficiently smooth functions of

its arguments, and that y0, f and K may depend smoothly on ǫ although such a

dependence is omitted here. Therefore, the existence and uniqueness of the solution

of Eq. (2.1) follows from fixed-point theory.

Equation (2.1) can be written as a system of first-order ordinary differential

equations in an infinite-dimensional Banach space upon differentiation of Eq. (2.3)

with respect to t as

ǫy′(t) + a(t)y(t) = g (y(t), u(t, t)) , y(0) = y0,

∂u

∂t
= K(τ, y(t)), u(0, τ) = 0,(2.4)
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to which one can apply the results obtained by Hairer et al. [15, 16, 17] and thus

obtain the corresponding results for Eq. (2.1). In particular, under the conditions

stated above and for 0 ≤ t ≤ T , Eq. (2.1) has a unique solution for sufficiently small

ǫ which can be written as

(2.5) y(t) =

N
∑

n=0

ǫnyn(t) +

N
∑

n=0

ǫnYn

(

t

ǫ

)

+O(ǫN+1),

where the first and second terms correspond to the outer and inner expansions, re-

spectively. For example,

y0(t) =
1

a(t)

(

f(t, y0(t)) +

∫ t

0

K(t, s, y0(s))ds

)

,

y1(t) =
1

a(t)

(

−y′0(t) + gy(t, y0(t))y1(t) + gu(t, y0(t))

∫ t

0

Ky(t, s, y0(s))y1(s)ds

)

,

(2.6)

where the subscripts denote partial differentiation, the functions Yn
(

t
ǫ

)

decay ex-

ponentially in the variable
(

t
ǫ

)

, and the initial-layer thickness is O(ǫ). Note that

Eq. (2.4) is a stiff system of ordinary differential equations.

3. NUMERICAL METHODS

As indicated in the Introduction, three different methods have been followed

for solving Eq. (2.1). The first method is of exponential type, the second one uses

the first method in a piecewise-uniform mesh, and the third one employs an implicit

Runge-Kutta method for the outer layer; these methods are described in the following

subsections.

Although not reported here, the second method was also applied to determine the

solution in the inner layer whereas the solution in the outer layer was calculated from

Eq. (2.1) with ǫ = 0, i.e., with the leading-order term of the outer solution, and the

differences between the results thus obtained and those corresponding to the second

method were found to be very small for ǫ ≤ 2−6 for the two examples described in

Section 3, provided that the transition point between the inner and outer layers is

sufficiently far away so that the initial layer behavior is over.

3.1. Exponential methods. Equation (2.1) can be written as

(3.1) ǫy′(t) + a(t)y(t) = G(t),

where

(3.2) G(t) ≡ f(t, y(t)) +

∫ t

0

K(t, s, y(s))ds.
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In the interval [tn, tn+1], Eq. (3.1) can be integrated analytically to yield

(3.3) y(t) = yn exp

(

−
∫ t

tn

a(s)

ǫ
ds

)

+
1

ǫ

∫ t

tn

exp

(

−
∫ t

s

a(τ)

ǫ
dτ

)

G(s)ds.

If, in that interval, a(t) is approximated by its Taylor series expansion, i.e., a(t) =

a(t∗)+b(t∗)(t−t∗)+O((t−t∗)2), where t∗ is the expansion point, it is an easy exercise

to show that the selection t∗ = 1
2
(tn + tn+1) eliminates the contribution of the b = a′

term to the integral
∫ tn+1

tn

a(s)
ǫ
ds. We, therefore, hereon assume that t∗ has been

selected as explained above, neglect the linear term in the Taylor series expansion of

a(t) about t∗ and approximate G(t) in [tn, tn+1] with second-order accuracy by

(3.4) G(t) = Gn +
1

hn
(Gn+1 −Gn)(t− tn),

where hn = tn+1 − tn is the local step size and Gn = G(tn).

Upon using these approximations, it is an easy matter to show that Eq. (3.3)

yields

(3.5) yn+1 = yn exp

(

−a
∗
nhn
ǫ

)

+
1

a∗n

(

1 − exp

(

−a
∗
nhn
ǫ

))

(Gn + φn(Gn+1 −Gn)) ,

where

(3.6) φn =
1

1 − exp
(

−a∗nhn

ǫ

) − ǫ

a∗nhn
,

a∗n = a
(

1
2
(tn + tn+1)

)

, and Gn can be determined from a second-order accurate trape-

zoidal rule as, cf. Eq. (3.2),

(3.7) Gn = f(tn, yn) +
1

2

n−1
∑

i=0

(K(tn, ti, yi) +K(tn, ti+1, yi+1)hi,

where t0 = 0.

Substitution of Eq. (3.7) into Eq. (3.5) results in an algebraic equation for yn+1

which is nonlinear if either f or K are nonlinear functions of y(t). Such nonlinear

systems may be solved iteratively by means of the Newton-Raphson method.

It must be note that, as a∗nhn

ǫ
→ ∞, Eq. (3.5) implies that yn+1 → Gn+1

a∗n
, whereas,

in the limit ǫ→ 0, Eq. (3.1) implies that y(t) → G(t)
a(t)

which does not coincide with the

expression obtained above at tn+1 unless a∗n = an+1. If this value is considered, then

Eq. (3.5) is still valid, but
∫ tn+1

tn
a(s)ds = an+1hn + O(h2

n), whereas
∫ tn+1

tn
a(s)ds =

a(t∗n)hn +O(h3
n) for t∗n = 1

2
(tn + tn+1).

Remark 1. Consistency between the exponential method presented above and the

leading-order analytical outer solution can be achieved by replacing Gn + φn(Gn+1 −
Gn) in Eq. (3.5) by βGn + γGn+1 where β = a∗n

an
(1 − φn) and γ = a∗n

an+1
φn, since

lima∗nhn

ǫ
→∞

φn = 1, and this amounts to replacing Gn and Gn+1 in Eq. (3.5) by a∗n
an
Gn

and a∗n
an+1

Gn+1. Such an approximation has been followed by Il’in [21], Farrell [13]
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and Carroll [9] for singularly-perturbed first-order ordinary differential equations and

result in exponentially-fitted methods which are second-order uniformly convergent.

Remark 2. If G(t) is approximated with first-order accuracy by Gn in [tn, tn+1],

Eq. (3.5) is valid provided that φn in that equation is set to zero. On the other hand,

if G(t) is approximated by Gn+1 in [tn, tn+1], Eq. (3.5) is valid provided that φn in that

equation is set to unity. In either case, there is no consistency between the leading-

order analytical outer solution and that of the exponential method considered above.

Such a consistency can be achieved by approximating G(t) by Gn+1 and evaluating

a(t) at tn+1; however, such an evaluation has a larger error than the evaluation of a(t)

at t∗n = 1
2
(tn+tn+1), as discussed in Remark 1. Furthermore, the evaluation of G(t) at

either tn or tn+1 corresponds to simple right-end and left-end rectangular quadrature

rules for the integral in Eq. (2.1) both of which are less accurate than the trapezoidal

rule considered in Eq. (3.7).

Remark 3. If the following approximations a∗n = an and G(t) ≈ Gn are made in

Eq. (3.3), then the resulting method coincides with those proposed by Doolan et

al. [11] and Eq. (24) of Farrell [13] for first-order ordinary differential equations. On

the other hand, if a∗n = an+1 and G(t) ≈ Gn+1, one obtains the method proposed

by Doolan et al. [11] and Eq. (29) of Farrell [13] for first-order ordinary differential

equations. In both cases, the resulting finite difference methods do not satisfy the

optimality condition |yhn − y(tn)| ≤ Cmin(max0≤j≤n(h
p
j , ǫ)), although they are uni-

formly convergent of order O(h2) [13] for singularly-perturbed first-order ordinary

differential equations.

The first numerical method considered in this study for the solution of Eq. (2.1)

employs Eqs. (3.5) and (3.7) in 0 ≤ t ≤ T where T denotes the (total) integration

interval, i.e., Eqs. (3.5) and (3.7) are used in both the inner and the outer layers, and

is here referred to as EIEO which may employ fixed or variable step sizes.

3.2. Linear stability of EIEO. The linear stability of the EIEO formulation pre-

sented above can be readily analyzed in equally-spaced grids by considering the fol-

lowing linear, homogeneous Volterra integro-differential equation

(3.8) ǫy′ + λ1y + λ2

∫ t

0

y(s)ds = 0, t > 0,

where λ1 and λ2 are constants and, according to the definitions introduced above,

a∗n = λ1, G = −λ2

∫ t

0
y(s)ds, and (cf. Eq. (3.5))

(3.9) exp(ρλ1)yn+1 − yn =
1

λ1

(exp(ρλ1) − 1)(Gn + φ(Gn+1 −Gn)),
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where φ is now a constant (cf. Eq. (3.6)) and ρ = h
ǫ
, so that

(3.10) λ1yn+1 − λ1 exp(−ρλ1)yn = −1

2
λ2h(1 − exp(−ρλ1))

n
∑

j=1

(yn + yn+1),

and

(3.11) λ1yn − λ1 exp(−ρλ1)yn−1 = −1

2
λ2h(1 − exp(−ρλ1))

n−1
∑

j=1

(yn + yn+1).

Subtraction of Eqs. (3.10) and (3.11) yields

(3.12) (λ1+
1

2
λ2h(1−exp(−ρλ1))yn+1−λ1(1+exp(−ρλ1))yn+λ1 exp(−ρλ1)yn−1 = 0,

which is a linear difference equation with constant coefficients. Its solutions are of

the form ui = Cµi where C is a constant and µ obeys a quadratic equation whose

roots are

(3.13) µ1,2 =
1

2(λ1 + 1
2
λ2h(1 − exp(−ρλ1)))

(λ1(1 + exp(−ρλ1)) ±
√
R),

where

R = λ2
1(1 + exp(−ρλ1))

2 − 4λ1 exp(−ρλ1)(λ1 +
1

2
λ2h(1 − exp(−ρλ1)))

= λ1(1 − exp(−ρλ1))(λ1(1 − exp(−ρλ1)) − 2λ2h exp(−ρλ1)).(3.14)

If R > 0 and λ1 > 0, it is an easy exercise to show that

(3.15) 0 < µ1 =
λ1

λ1 + 1
2
λ2h(1 − exp(−ρλ1))

< 1,

and 0 < µ2 < 1 provided that λ2 > 0.

If R < 0 so that µ1,2 are complex conjugate, it is easy to show that

(3.16) |µ1,2|2 =
λ1 exp(−ρλ1)

λ1 + λ2h(1 − exp(−ρλ1))
< 1,

provided that λ1 and λ2 are positive.

R = 0 implies that λ2h = λ1

2
(exp(ρλ1) − 1) which, in turn, implies that µ1 =

µ2 = 2
cosh(ρλ1)

< 1. Therefore, the EIEO formulation presented in this paper is linearly

stable.

Remark 4. It is readily shown that when the integral in Eq. (3.2) is approximated

by a right-end rectangular quadrature rule, a linear stability analysis analogous to

the one reported above shows that the resulting method is linearly stable and the

roots of its characteristic polynomial can be simply obtained by replacing λ2/2 by λ2

in Eq. (3.12).
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3.3. Exponential methods in piecewise-uniform meshes. As stated above, when

Eq. (3.1) is a linear ordinary differential equation with a(t) constant and G(t) a linear

function of t, then Eq. (3.5) provides the exact solution of that equation. However,

for equally-spaced grids in both the inner and the outer layers and ǫ < h, where

h denotes the constant step size, Eq. (3.5) does not resolve the inner layer and its

accuracy drops from second to first order for time-dependent a(t) and G(t).

In this section, we present an implementation of the exponential finite difference

method presented above in a piecewise-uniform mesh. Such a mesh employs NI and

NO equally-spaced intervals in the inner and outer layers, respectively, which result

in grid spacings equal to hI and hO, respectively, as follows. A simple dominant

balance argument in Eq. (3.1) indicates that the inner layer thickness TI = O( ǫ
ā
)

where ā = min(a(t)) in [0, T ], where T is the total integration time which is assumed

to be larger than TI and, therefore, lies in the outer layer.

The total integration interval [0, T ] is divided into two non-overlapping inter-

vals as [0, T ] = [0, TI ]
⋃

[TI , T ], where TI can be set to α ǫ
ā

where α > 1; therefore,

hI = TI

NI
= αǫ

NI ā
, limNI→∞ hI = 0, and the exponents that appear in Eq. (3.3) are

independent of ǫ, i.e., Eq. (3.3) is independent of ǫ for the inner layer. The coordi-

nates of the grid points in the inner and outer layers are 0 + nhI , n = 0, 1, . . . , NI ,

and TI +mhO, m = 0, 1, . . . , NO, respectively, and the grid spacing changes abruptly

at t = TI from hI to hO for small ǫ, where hO = T−TI

NO
. Furthermore, the coordi-

nates of the points in the outer layer can be expressed as xm = NO−m

NO

TI + m
NO

T for

m = 0, 1, . . . , NO where the two summands are non-negative.

For constant a(t) and G(t), i.e., ā = a(t), the solution of Eq. (3.1) is u(t) = G
a

+
(

U − G
a

)

exp
(

−at
ǫ

)

, where U = u(0), and, therefore, in the inner layer, aI tn
ǫ

= αann
NI ā

>

0 which is independent of ǫ, whereas, in the outer layer aOtn
ǫ

= αan(NO−m)
NINO ā

+ αanmT
NO

> 0

and the ratio of the two summands is a monotonically increasing function of m which

is equal to zero for m = 0 and ∞ for m = NO. Furthermore, the first summand does

not depend on ǫ, whereas the second one is very large except for m = 0 on account

that ǫ is small and appears in the denominator and T >> ǫ
ā
; in fact, the dependence

of the second summand on ǫ is exponentially small.

The exponential method in piecewise-uniform meshes described in the previous

paragraphs depends on three parameters α, NI and NO. The selection of α must

be made so that the inner layer lies in [0, TI ] and α > 1, whereas that of NI should

be made so that the inner layer is resolved and limNI→∞ hI = O and that of NO is

based on accuracy considerations. Furthermore, α could be a function ψ(NI), e.g.,

α = βψ(NI), provided that limNI→∞
ψ(NI

NI
= O so that limNI→∞ hI = O.

Remark 5. It is interesting to point out that the piecewise-uniform mesh is re-

lated to Shishkin’s piecewise-uniform grids for the numerical solution of two-point
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boundary-value advection-diffusion equations [14] which are usually employed with

upwind difference operators for the discretization of the advection terms [14]. In a

Shishkin mesh, the interval [0, T ] is first mapped into [0, 1], and the latter is then

divided into two equally-spaced subintervals [0, σ]
⋃

[σ, 1], and, in each subinterval,

an equal number of grid points, N
2
, is used, where σ = min

(

1
2
, 1
α
ǫ lnN

)

, a(t) ≥ α > 0,

N +1 is the number of grid points, and the grid spacing in the inner and outer layers

are hI = 2σ
N

and h0 = 2(1−σ)
N

, respectively. Note that, if 1
2
< 1

α
ǫ lnN , then hI = h0 = 1

N

and the mesh is equally-spaced throughout the whole integration interval. On the

other hand, if 1
2
> 1

α
ǫ lnN , hI = 2ǫ

αN
lnN and

a∗
I
hI

ǫ
=

2a∗
I

αN
lnN which indicates that the

local mesh Reynolds number is independent of ǫ for [0, σ] and, therefore, Eq. (3.5) is

independent of ǫ for the interior points of the inner layer. Moreover, if 1
2
> 1

α
ǫ lnN ,

1
N
< hO = 2

αN
(1− 1

α
ǫ lnN) < 2

N
and

a∗
O
hO

ǫ
<

a∗
0

Nǫ
and, therefore, the term exp

(

−a∗
O
hO

ǫ

)

in Eq. (3.5) tends to zero as ǫ→ 0, i.e., the outer solution is obtained (cf. Eq. (3.5) and

Remark 1). Hereon, we shall refer to the exponential method in piecewise-uniform

meshes described above as EPUM. Note that the mesh spacing changes abruptly at

n = N
2

from hI to h0 for small values of ǫ.

Remark 6. The precise choice of the mesh transition point, σ, in a Shishkin piecewise

uniform mesh is of paramount importance both theoretically and numerically. For

example, when such a mesh is used with upwind for the convection terms for one-

dimensional linear convection-diffusion equations, uniform convergence requires that

σ should behave as k
α
ǫφ(N) where φ(N) → ∞, but 1

N
φ(N) → 0 as N → ∞ and k is a

positive constant. The simplest choice for φ(N) that satisfies the above requirements

is ln(N). Some authors have employed k = 2 and the choice of the optimal value

of k has been discussed by Stynes and Tobiska [36], for one-dimensional convection-

diffusion equations. For these equations, it must be noted that a Shishkin piecewise-

uniform mesh may not fully resolve the boundary layer because the absolute value of

the first-order derivative may be large in [xN

2
−1, xN

2

].

Remark 7. The piecewise-uniform meshes described above do require a knowledge

of the order of the initial layer thickness (a similar comment applies to convection-

dominated flows) and, in the long run, may be superseded by adaptive numerical

methods whereby a solution on some conventional mesh is first obtained by means of

a stable numerical technique and then used to compute local error estimators which

provide some guidance on where the original mesh should be refined or coarsened so

that the new mesh is better fitted for the problem. On this new mesh, one may then

obtain another solution to the problem, which is again modified based on the local

error estimator, and this iterative process is continued until an appropriate stopping

criterion is satisfied.
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3.4. Implicit Runge-Kutta method. The implicit Runge-Kutta method consid-

ered in this study is based on the solution of the ordinary differential Eq. (2.4), rather

than in Eq. (3.1). Consider an s-stage implicit Runge-Kutta method characterized

by an invertible matrix whose elements are aij and the coefficients (b1, . . . , bs) and

(c1, . . . , cs). If the approximations to y(tn) and u(tn, τ) are denoted by yn and un(τ),

respectively, then

yn+1 = yn + hn

s
∑

i=1

biY
′
ni,

un+1(τ) = un(τ) + hn

s
∑

i=1

biU
′
ni(τ),(3.17)

where

ǫY ′
ni = g(Yni, Uni),

U ′
ni(τ) = K(τ, Yni),(3.18)

tni = tn + cihn.

The internal stages of the implicit Runge-Kutta method can be written as

Yni = yn + hn

s
∑

j=1

aijY
′
nj,

Uni(τ) = un + hn

s
∑

j=1

aijU
′
nj(τ),(3.19)

for i = 1, 2, . . . , s, where Uni(τ) can be obtained from the substitution of Eq. (3.18)

into Eq. (3.19), and use of u(0, τ) = 0, i.e., u0(τ) = 0 (cf. Eq. (2.3)). Such a

substitution yields, after evaluating the expression so obtained at tni

Uni(tni) = hn

s
∑

j=1

aijK(tni, Ynj) +

n−1
∑

m=0

hm

s
∑

j=1

bjK(tni, Ymj),(3.20)

where we have assumed that the time step may be variable.

Substitution of Eq. (3.20) into Eq. (3.18) yields

ǫY ′
ni = g

(

Yni, hn

s
∑

j=1

aijK(tni, Ynj) +

n−1
∑

m=0

hm

s
∑

j=1

bjK(tni, Ymj)

)

,(3.21)

and this approximation coincides with the one that results from applying the Pouzet-

Volterra-Runge-Kutta method to Eq. (2.4) [7]. Furthermore, as shown by Hairer et

al. [15, 16, 17], if f and K are sufficiently smooth and the step size is constant and the

implicit Runge-Kutta method presented above is employed only in the outer layer,

i.e., when the fast transients have died out, then the errors in the outer layer are

O(hp) + O(ǫhq) if asi = bi for i = 1, 2, . . . , s, or O(hq+1), otherwise, where p and q

are the classical order and the stage order (1 ≤ q < p), respectively, of the implicit



VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 397

Runge-Kutta method. Moreover, for the outer solution, Hairer et al. [15] have shown

that the errors are O(h) for p = q = 1.

The implicit Runge-Kutta method described above was only employed to deter-

mine the solution of Eq. (2.1) or Eq. (2.4) in the outer layer, i.e., after the initial

transients associated with the internal layer are over. In this paper, either the exact

solution when available or the solution obtained with EPUM at t = σ was used as ini-

tial condition for the implicit Runge-Kutta method. In the latter case, the resulting

technique is a patching one and is hereafter referred to as EIRKO. Furthermore, we

have used Radau IIA methods which satisfy p = 2s − 1 and q = s, and their global

error is O(h2s−1) + O(ǫhs) in the outer layer, for fixed step size. This behavior has

been assessed by determining the solution in the outer layer with Radau IIA methods

as a function of s and h and the results indicate that the global error is O(h2s−1) for

small p (or small s) or large step size, h, whereas it is O(ǫhs) for large p (or large s)

or small h, as discussed below.

4. RESULTS

In this section, we present some sample results which have been obtained with

the EIEO, EPUM and EIRKO formulations presented in this paper for some singularly-

perturbed Volterra integro-differential equations, as well as comparisons with the

results obtained with the exponentially-fitted methods developed by Salama and

Bakr [35] and the author [29]. Salama and Bakr [35] also present comparisons with the

results obtained with the backward Euler and trapezoidal methods for Eq. (2.1), as

well as those corresponding to the outer solution of Eq. (2.1), i.e., to ǫ = 0 in Eq. (2.1).

This (leading-order) outer solution does not include the initial layer and the resulting

equation can be solved numerically by means of, for example, the trapezoidal rule or

Newton-Cotes quadrature.

In the two examples considered in this paper, we have determined the maximum-

norm errors, i.e.,

(4.1) EN = max
n

|yNn − y(tn)|, n = 1, 2, . . . , N + 1,

where y(tn) denotes the exact solution at t = tn, and the convergence order p of the

methods, i.e.,

(4.2) p = log2

(

EN

E2N

)

.

Example 1. This example corresponds to

(4.3) ǫy′ + y − (1 + ǫ)

∫ t

0

y(s)ds = (1 + ǫ)e−1 − ǫ, 0 < t ≤ 1,
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subject to y(0) = 1 + e−1, which has the following exact solution

(4.4) u(t) = exp(t− 1) + exp

(

− t
ǫ
(1 + ǫ)

)

,

and is a singularly-perturbed linear Volterra integro-differential equation [19] whose

solution exhibits an initial layer at t = 0 of thickness O(ǫ). For this example, a(t) = 1

(cf. Eq. (2.1)) and, therefore, the problem of consistency between the outer analytical

solution and that obtained from the exponential method presented in this paper does

not arise (cf. Remark 1).

Table 1. Maximum norm errors EN and convergence order p for the

EIEO, BE, TR and EFS2 formulations as functions of h = 1
N

and ǫ

for Example 1, where BE, TR and EFS2 denote the backward Euler,

trapezoidal and the exponential-fitted methods of Salama and Bakr [35]

with m = 2.

Method N = 1
h

ǫ = 1 ǫ = h ǫ = h2 ǫ = h3

E (p) E (p) E (p) E (p)

EIEO 32 1.11E-04 (2.00) 2.85E-03 (0.96) 3.68E-02 (0.96) 3.71E-02 (1.02)

EIEO 64 4.43E-05 (2.00) 1.46E-03 (0.98) 1.89E-02 (0.98) 1.83E-02 (1.03)

EIEO 128 1.11E-05 (2.04) 7.38E-04 (0.95) 9.59E-03 (0.99) 8.99E-03 (1.00)

EIEO 256 2.69E-06 3.81E-04 4.82E-03 4.50E-03

BE [35] 32 2.44E-02 (1.01) 1.35E-01 (0.02) 3.04E-02 (0.55) 1.69E-02 (1.02)

BE [35] 64 1.21E-02 (1.00) 1.33E-01 (0.01) 1.54E-02 (0.53) 7.92E-02 (1.01)

BE [35] 128 6.04E-03 (1.00) 1.33E-01 (0.00) 7.76E-03 (0.52) 3.93E-03 (1.00)

BE [35] 256 3.01E-03 1.32E-01 3.89E-03 1.96E-03

TR [35] 32 9.91E-05 (1.99) 3.69E-02 (0.04) 8.82E-01 (-0.09) 9.96E-01 (0.00)

TR [35] 64 2.47E-05 (2.00) 3.57E-02 (0.02) 9.39E-01 (-0.04) 9.99E-01 (0.00)

TR [35] 128 6.19E-06 (1.99) 3.51E-02 (0.01) 9.69E-01 (-0.02) 9.99E-01 (0.00)

TR [35] 256 1.54E-06 3.48E-02 9.84E-01 9.99E-01

EFS2 [35] 32 1.62E-06 (2.95) 2.46E-03 (0.99) 3.25E-02 (0.93) 3.51E-02 (0.99)

EFS2 [35] 64 2.10E-07 (2.97) 1.23E-03 (0.99) 1.69E-02 (0.97) 1.76E-02 (0.99)

EFS2 [35] 128 2.67E-08 (2.98) 6.20E-04 (0.99) 8.67E-03 (0.98) 8.83E-03 (0.99)

EFS2 [35] 256 3.36E-09 3.10E-04 4.38E-03 4.42E-03

Table 1 shows the maximum norm errors and the order of accuracy of EIEO as

well as those of the backward Euler, trapezoidal and Salama and Bakr’s [35] third-

order accurate exponentially-fitted method which are denoted by BE, TR and EFS2,

respectively. For fixed ǫ and h > ǫ, the results shown in Table 1 (and others not

presented here) indicate that BE and TR are first- and second-order accurate, respec-

tively; however, for ǫ < h, the accuracy and order of TR are lower than those of BE.

The order of EIEO is two for ǫ = 1, but decreases albeit it is near unity for ǫ < h;
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a similar comment applies to EFS2, although the accuracy of this method is higher

than that of EIEO for ǫ = 1. Table 1 also shows that the accuracy of EIEO is com-

parable but slightly lower than that of EFS2 for ǫ ≤ h. It must be pointed out that

the accuracy of EFS2 is O(h3) when the inner layer is resolved, and this is consistent

with the results shown in (the first column of) Table 1.

Table 2. Maximum norm errors EN and convergence order p for the

EPUM as functions of N and ǫ for Example 1.

ǫ = 2−4 ǫ = 2−6 ǫ = 2−8 ǫ = 2−10

N E (p) E (p) E (p) E (p)

32 1.12E-03 (1.99) 1.34E-03 (2.02) 1.41E-03 (2.01) 1.43E-03 (2.02)

64 2.79E-04 (2.00) 3.33E-04 (2.00) 3.52E-04 (2.01) 3.55E-04 (2.01)

128 6.98E-05 (1.99) 8.32E-05 (1.99) 8.79E-05 (2.01) 8.86E-05 (1.99)

256 1.74E-05 2.09E-05 2.19E-05 2.22E-03

In Table 2, the maximum norm errors and order of EPUM are presented as func-

tions of N and ǫ. This table clearly shown that EPUM is a second-order method

which is almost uniformly convergent.

Figure 1. Maximum norm errors at t = 0.5 as functions of the con-

stant step size, h, and stages of the implicit Runge-Kutta method for

Example 1 with ǫ = 10−5. (s = 1: +; s = 2 : ◦; s = 3 : ×; s = 4 : ∗;
s = 5 : �.)
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The maximum norm errors at t = 0.5 of the implicit Runge-Kutta-Radau II A

method for Example 1 are shown in Figure 1 as functions of the (constant) step size

in a log-log scale for ǫ = 10−5. The results reported in this figure as well as in Figure

2 were obtained by applying the Runge-Kutta method with the initial conditions at

t = σ as discussed above and, therefore, they do correspond to the outer layer.

The results exhibited in Figure 1 indicate that the errors of the implicit Runge-

Kutta method decreases as the order is increased and increase as the step size is

increased. For small s or large h, the error is O(h2s−1), but, for large s or small h,

the errors are O(ǫhs) in accordance with the errors estimates provided by Hairer et

al. [15, 16, 17] for the outer layer of singularly-perturbed or stiff systems of ordinary

differential equations. Note that the dependence of the maximum norm errors on ǫ

discussed above is associated with the fact that, even though the implicit Runge-Kutta

method has been used only in the outer layer, Eq. (2.4) depends on ǫ. This should be

contrasted with the leading-order outer problem which is obtained by setting ǫ = 0

in Eq. (2.1) and, therefore, the resulting equation does not depend on the small

perturbation parameter.

Example 2. This example corresponds to

ǫy′ + y + (1 + ǫ)

∫ t

0

y2(s)ds = − 1 + ǫ

2 exp(2)
− ǫ

2

(

1 + exp

(

− t
ǫ
(1 + ǫ)

))2

+
ǫ− 1

2
+
ǫ+ 1

2
(1 + exp(t− 1))2 +

2ǫ(ǫ+ 1)

e

(

1 − exp

(

− t
ǫ

))

,(4.5)

for 0 < t ≤ 1, subject to y(0) = 1 + e−1, which has the following exact solution

(4.6) y(t) = exp(t− 1) + exp

(

− t
ǫ
(1 + ǫ)

)

,

and is a singularly-perturbed nonlinear Volterra integro-differential equation [19]

whose solution exhibits an initial layer at t = 0 of thickness O(ǫ). For this ex-

ample, a(t) = 1 (cf. Eq. (2.1)) and, therefore, the problem of consistency between the

outer analytical solution and that obtained from the exponential method presented

in this paper does not arise (cf. Remark 1).

Table 3 shows similar trends to those found in Table 1, except that the errors of

the EIEO and EFS2 formulations for Example 2 are larger than those for Example 1.

Table 2 also shows that the errors of EIEO are larger than those of the exponentially-

fitted method of Salama and Bakr [35] for ǫ = h because the latter has been fitted

so that the resulting finite difference techniques are third-order accurate for fixed ǫ.

However, the order of accuracy of this method becomes one for ǫ < h because, for

such step sizes, this exponentially-fitted technique does not resolve the initial layer.

Both the EFS2 and EIEO methods show an order of accuracy equal to one for ǫ < h.
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Table 3. Maximum norm errors EN and convergence order p for the

EIEO, BE, TR and EFS2 formulations as functions of h = 1
N

and ǫ

for Example 2, where BE, TR and EFS2 denote the backward Euler,

trapezoidal and the exponential-fitted methods of Salama and Bakr [35]

with m = 2.

Method N = 1
h

ǫ = 1 ǫ = h ǫ = h2 ǫ = h3

E (p) E (p) E (p) E (p)

EIEO 32 2.45E-04 (2.03) 3.09E-03 (0.91) 4.01E-02 (0.95) 4.56E-02 (1.04)

EIEO 64 5.98E-05 (2.00) 1.65E-03 (0.97) 2.07E-02 (0.97) 2.22E-02 (1.02)

EIEO 128 1.50E-05 (2.00) 8.41E-04 (0.94) 1.06E-02 (0.97) 1.09E-02 (0.97)

EIEO 256 3.74E-06 4.39E-04 5.42E-03 5.55E-03

BE [35] 32 2.09E-02 (0.96) 1.42E-01 (0.05) 3.06E-02 (0.98) 8.32E-03 (0.99)

BE [35] 64 1.07E-02 (0.98) 1.37E-01 (0.02) 1.54E-02 (0.99) 4.17E-03 (0.99)

BE [35] 128 5.43E-03 (0.99) 1.34E-01 (0.01) 7.77E-03 (0.99) 2.09E-03 (0.99)

BE [35] 256 2.73E-03 1.33E-01 3.89E-03 1.04E-03

TR [35] 32 3.05E-04 (1.99) 3.89E-02 (0.08) 9.09E-01 (-0.06) 1.42E+00 (-0.09)

TR [35] 64 7.63E-05 (2.00) 3.67E-02 (0.04) 9.53E-01 (-0.03) 1.52E+00 (-0.05)

TR [35] 128 1.90E-06 (1.99) 3.56E-02 (0.02) 9.76E-01 (-0.01) 1.57E+00 (-0.02)

TR [35] 256 4.76E-06 3.50E-02 9.88E-01 1.60E+00

EFS2 [35] 32 1.30E-05 (2.98) 3.23E-03 (1.00) 2.09E-02 (0.94) 2.22E-02 (0.98)

EFS2 [35] 64 1.65E-06 (2.99) 1.62E-03 (1.00) 1.08E-02 (0.97) 1.12E-02 (1.00)

EFS2 [35] 128 2.07E-07 (2.99) 8.17E-04 (1.00) 5.54E-03 (0.98) 5.63E-03 (1.00)

EFS2 [35] 256 2.60E-08 4.10E-04 2.79E-03 2.82E-03

Table 4. Maximum norm errors EN and convergence order p for the

EPUM as functions of N and ǫ for Example 2.

ǫ = 2−4 ǫ = 2−6 ǫ = 2−8 ǫ = 2−10

N E (p) E (p) E (p) E (p)

32 1.83E-03 (1.99) 1.89E-03 (2.02) 1.93E-03 (2.00) 1.94E-03 (2.02)

64 4.58E-04 (2.00) 4.71E-04 (1.99) 4.83E-04 (2.00) 4.82E-04 (1.99)

128 1.15E-04 (1.99) 1.18E-04 (1.99) 1.21E-04 (1.99) 1.21E-05 (1.99)

256 2.89E-05 2.96E-05 3.03E-05 3.04E-03

Table 4 indicates that EPUM is an almost second-order uniformly convergent

method for Example 2 and the errors of this technique for Example 2 are larger than

those for Example 1.
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Figure 2. Maximum norm errors at t = 0.5 as functions of the con-

stant step size, h, and stages of the implicit Runge-Kutta method for

Example 2 with ǫ = 10−5. (s = 1: +; s = 2 : ◦; s = 3 : ×; s = 4 : ∗;
s = 5 : �.)

The maximum norm errors at t = 0.5 of the implicit Runge-Kutta-Radau II A

method for Example 2 are shown in Figure 2 as functions of the (constant) step size

in log-log scale for ǫ = 10−5, and exhibit similar trends to those of Figure 1, except

that the errors for Example 2 are larger than those for Example 1.

5. CONCLUSIONS

An exponential method for singularly-perturbed Volterra integro-differential equa-

tions has been developed. The method is based on a piecewise linear approximation,

results in a finite difference scheme of the exponential type, and is linearly stable.

This technique has been implemented in a piecewise-uniform mesh and the resulting

technique has been shown to provide a finite difference method which is independent

of the small perturbation parameter in the inner layer and is almost second-order

uniformly convergent.

Comparisons between the exponential method presented here and exponentially-

fitted techniques which are third-order accurate for fixed values of the perturbation

parameter indicate that the latter are slightly more accurate than the former for step

sizes larger than the initial layer thickness, but the order of both techniques is equal

to one when the initial layer is not resolved.
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An implicit Runge-Kutta-Radau IIA method has also been developed to deter-

mine the solution in the outer layer starting with initial values provided by the exact

solution, and it has been shown that the errors of this technique depend on both

the step size and the order of the method when the number of stages is large or

the step size is small, but they only depend on the step size when the number of

stages is small or the step size is large, in accordance with theoretical estimates for

singularly-perturbed systems of ordinary differential equations.
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