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ABSTRACT: In this paper, optimal control for stochastic linear singular system with indefinite

control cost and cross term in the cost functional is obtained using neural networks. The goal is to

provide optimal control with reduced calculus effort by comparing the solutions of the matrix Riccati

differential equation (MRDE) obtained from well known traditional Runge Kutta (RK) method and

nontraditional neural network method. To obtain the optimal control, the solution of MRDE is

computed by feed forward neural network (FFNN). Accuracy of the solution of the neural network

approach to the problem is qualitatively better. The advantage of the proposed approach is that,

once the network is trained, it allows instantaneous evaluation of solution at any desired number

of points spending negligible computing time and memory. The computation time of the proposed

method is shorter than the traditional RK method. An illustrative numerical example is presented

for the proposed method.
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1. INTRODUCTION

Stochastic linear quadratic regulator (LQR) problems have been studied by many

researchers (Athens, 1971; Bensoussan, 1983; Bucci & Pandolfi, 2000; Davis, 1977;

Wonham, 1968). Chen et al., (1998) have shown that the stochastic LQR problem

is well posed if there are solutions to the Riccati equation and an optimal feedback

control can then be obtained. For LQR problems, it is natural to study an associated

Riccati equation. However, the existence and uniqueness of the solution of the Riccati

equation in general, seem to be very difficult problems due to the presence of the

complicated nonlinear term. Zhu & Li, (2003) used the iterative method for solving

stochastic Riccati equations for stochastic LQR problems. There are several numerical

methods to solve conventional Riccati equation as a result of the nonlinear process
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essential error accumulations may occur. In order to minimize the error, recently the

conventional Riccati equation has been analyzed using neural network approach by

Balasubramaniam et al., (2006) and Balasubramaniam et al., (2007). This paper is

the extension of the neural network approach for solving stochastic Riccati equation.

Neural network approach is a nontraditional approach in which an artificial net-

work is constructed based upon the behavior of the natural biological neurons (Wilde,

1997) and it is trained to learn a complex relationship between two or many variables

or data sets. The advantage of this method is that once the network is trained,

it allows instantaneous evaluation of solution at any desired number of points with

negligible computing time and memory. Neural network approaches have been suc-

cessfully applied in various fields such as function approximation, signal processing

and adaptive (or) learning control for nonlinear systems (refer Karakasoglu, 1993;

Narendra & Parthasarathy, 1990).

There are two different approaches for implementing neural networks in control.

They are direct neural control design and indirect neural control design. Direct

neural control design means that a neural network directly implements the controller

— that is, the controller is a neural network. The network must be trained as the

controller according to some criteria, using either numerical input — output data or

a mathematical model of the system.

Indirect neural control design is based on a neural network model of the system

to be controlled. In this case, the controller itself may not be a neural network, but it

is derived from a plant that is modelled by a neural network. A neural network can

be used to approximate control laws that govern the controlling inputs to the plant.

In this paper, neural network approach is used for function approximation. The

function in the second term of the trial solution is approximated by neural network

approach in order to obtain optimal control. Neural network approach is not applied

directly in the components of the control.

Singular systems contain a mixture of algebraic and differential equations. In

that sense, the algebraic equations represent the constraints to the solution of the

differential part. These systems are also known as degenerate, descriptor or semi

state and generalized state space systems. The complex nature of singular system

causes many difficulties in the analytical and numerical treatment of such systems,

particularly when there is a need for their control. The system arises naturally as a

linear approximation of system models or linear system models in many applications

such as electrical networks, aircraft dynamics, neutral delay systems, chemical, ther-

mal and diffusion processes, large scale systems, robotics, biology, etc., (see Campbell,

1980; Campbell, 1982; Lewis, 1986).
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Many practical processes can be modelled as descriptor systems such as con-

strained control problems, electrical circuits, certain population growth models and

singular perturbations. In the past years, stability and control problems of descrip-

tor systems have been extensively studied due to the fact that the descriptor system

better describes physical systems than the state space systems. Compared with state

space systems, the descriptor system has a more complicated yet richer structure. Fur-

thermore, the study of the dynamic performance of descriptor systems is much more

difficult than that for state space systems since descriptor systems usually have three

types of modes, namely, finite dynamic modes, impulsive modes and non dynamic

modes (Dai, 1989), while the latter two do not appear in the state space systems.

As the theory of optimal control of linear systems with quadratic performance

criteria is well developed, the results are most complete and close to use in many

practical designing problems. The theory of the quadratic cost control problem has

been treated as a more interesting problem and the optimal feedback with minimum

cost control has been characterized by the solution of a Riccati equation. Da Prato

& Ichikawa (1988) showed that the optimal feedback control and the minimum cost

are characterized by the solution of a Riccati equation. Solving the MRDE is the

central issue in optimal control theory. The needs for solving such equations often

arise in analysis and synthesis such as linear quadratic optimal control systems, robust

control systems with H2 and H∞ control (Zhou, 1998) performance criteria, stochastic

filtering and control systems, model reduction, differential games etc. One of the most

intensely studied nonlinear matrix equations arising in mathematics and engineering

is the Riccati equation. This equation, in one form or another, has an important

role in optimal control problems, multivariable and large scale systems, scattering

theory, estimation, detection, transportation and radiative transfer (Jamshidi, 1980).

The solution of this equation is difficult to obtain from two points of view. One is

nonlinear and the other is in matrix form. Most general methods to solve MRDE

with a terminal boundary condition are obtained on transforming MRDE into an

equivalent linear differential Hamiltonian system (Jodar & Navarro, 1992). By using

this approach, the solution of MRDE is obtained by partitioning the transition matrix

of the associated Hamiltonian system (Vaughu, 1969). Another class of method is

based on transforming MRDE into a linear matrix differential equation and then

solving MRDE analytically or computationally (Lovren & Tomic, 1994; Razzaghi,

1978; Razzaghi, 1979). However, the method in (Razzaghi, 1997) is restricted for

cases when certain coefficients of MRDE are non-singular. In( Jodar & Navarro,

1992), an analytic procedure of solving the MRDE of the linear quadratic control

problem for homing missile systems is presented. The solution K(t) of MRDE is

obtained by using K(t) = p(t)
f(t)

, where f(t) and p(t) are solutions of certain first order
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ordinary linear differential equations. However, the given technique is restricted to

single input.

A variety of numerical algorithms (Choi, 1990) have been developed for solving

the algebraic Riccati equation. In recent years, neural network problems have at-

tracted considerable attention of many researchers for numerical aspects for algebraic

Riccati equations (reader may refer Ellacott, 1994; Ham & Collins, 1996; Wang &

Wu, 1998).

Solving MRDE by neural network is a novel approach. Computation time is very

minimum when compared with existing methods stated in the survey paper (Choi,

1990). High accuracy of numerical solution compared with traditional method like

Runge Kutta method has been analyzed. Once network is trained, it allows instan-

taneous evaluation of solutions at any desired number of points with less memory

occupation. The neural network approach for solving MRDE is different from the

previous methods discussed in the above mentioned survey paper in various direc-

tions stated sequentially as follows:

(i) In direct integration method, there is a difficulty to apply for higher order Riccati

differential equation.

(ii) In negative exponential method, the computation of transformation matrix is

numerically unreliable in a fixed precision of arithmetic.

(iii) In Davison Maki method, Pade’s approximation is used to compute the solution.

Accuracy of Pade’s solution is not better than this neural network approach.

(iv) In ASP(Automatic Synthesis Program), matrix iteration procedure for compu-

tation of matrix exponential of size 2n × 2n is time consuming.

(v) In a method using an algebric Riccati solution, the computation of matrix ex-

ponential of size n × n is also time consuming.

(vi) In square root method, accuracy of the solution is not satisfactory.

(vii) In analytic approximation method, the accuracy of solution depends upon ac-

curacy of solution of algebraic Riccati equation.

(viii) A matrix valued approach, the accuracy of solution depends upon the solution

of Sylvester equation.

Although parallel algorithms can compute the solutions faster than sequential algo-

rithms, there have been no report on neural network solutions for MRDE that is

compared with RK method solutions. This paper focuses upon the implementation

of neuro computing approach for solving MRDE in order to get the optimal solution.

The solution was found with uniform accuracy and trained neural network provides

a compact expression for the analytical solution over the entire finite domain. An

example is given which illustrates the advantage of the fast and accurate solutions

compared to RK method.
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This paper is organized as follows. In section 2, the statement of the problem

is given. In section 3, solution of the MRDE is presented. In section 4, numerical

example is discussed. The final conclusion section demonstrates the efficiency of the

method.

2. STATEMENT OF THE PROBLEM

Consider the stochastic linear dynamical singular system that can be expressed

in the form:

(1) Fdx(t) = [Ax(t) + Bu(t)]dt + Du(t)dW (t), x(0) = 0, t ∈ [0, tf ],

where the matrix F is possibly singular, x(t) ∈ Rn is a generalized state space vector,

u(t) ∈ Rm is a control variable and it takes value in some Euclidean space, W (t) is

a Brownian motion and A ∈ R
n×n, B ∈ R

n×m and D ∈ R
n×mare known coefficient

matrices associated with x(t) and u(t) respectively, x0 is given initial state vector and

m ≤ n.

In order to minimize both state and control signals of the feedback control system,

a quadratic performance index with cross term is usually minimized:

J = E
{1

2
xT (tf)F

T SFx(tf) +
1

2

∫ tf

0

[xT (t)Qx(t) + uT (t)Hx(t) + uT (t)Ru(t)]dt
}
,

where the superscript T denotes the transpose operator, S ∈ R
n×n and Q ∈ R

n×n

are symmetric and positive definite (or semidefinite) weighting matrices for x(t),

R ∈ R
m×m is a symmetric and indefinite (in particular negative definite) weighting

matrix for u(t) and H ∈ R
m×n is a coefficient matrix. It will be assumed that

|sF − A| 6= 0 for some s. This assumption guarantees that any input u(t) will

generate one and only one state trajectory x(t).

The relative MRDE for the stochastic linear singular system (1) is

F T K̇(t)F +F TK(t)A + AT K(t)F + Q

−F T (K(t)B + HT )(R + DT K(t)D)−1(BT K(t) + H)F = 0

K(tf) = F T SF





(2)

in which R < 0, G(t) = (R + DT K(t)D) > 0 and

G(t)+ ≥ R + DTK(t)+D

≥ R + DTK(t)−D

≥ G(t)−.

Here K(t) ∈ R
n×n is a symmetric matrix, G(t)+ ∈ C[0, tf ; M̂

m
+ ], G(t)− ∈ C[0, tf ; M̂

m
+ ]

and M̂m
+ is the subspace of all positive definite m × m symmetric matrices of Mm.
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As per the Remark 3.1 (Chen et al., 1998), the above MRDE admits a solution,

then the optimal feedback control is given by

u(t) = −(R + DT K(t)D)−1(BT K(t) + H)Fx(t).

After substituting the appropriate matrices in the above equation, it is transformed

into a system of differential equations. Therefore solving MRDE is equivalent to

solving the system of nonlinear differential equations.

3. SOLUTION OF MRDE

Consider the system of differential equation for (2)

(3) k̇ij(t) = φij(kij(t)), kij(tf) = Aij (i, j = 1, 2, ...., n).

3.1. Runge Kutta solution. RK algorithms have always been considered as the

best tool for the numerical integration of ordinary differential equations (ODEs). The

system (3) contains n2 first order ODEs with n2 variables, RK method is explained

for a system of two first order ODEs with two variables.

k11(i + 1) = k11(i) +
1

6

(
k1 + 2k2 + 2k3 + k4

)

k12(i + 1) = k12(i) +
1

6

(
l1 + 2l2 + 2l3 + l4

)

where

k1 = h ∗ φ11

(
k11, k12

)

l1 = h ∗ φ12

(
k11, k12

)

k2 = h ∗ φ11

(
k11 +

k1

2
, k12 +

l1

2

)

l2 = h ∗ φ12

(
k11 +

k1

2
, k12 +

l1

2

)

k3 = h ∗ φ11

(
k11 +

k2

2
, k12 +

l2

2

)

l3 = h ∗ φ12

(
k11 +

k2

2
, k12 +

l2

2

)

k4 = h ∗ φ11

(
k11 + k3, k12 + l3

)

l4 = h ∗ φ12

(
k11 + k3, k12 + l3

)
.

In the similar way, the original system (3) can be solved for n2 first order ODE’s.
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3.2. Neural network solution. In this approach, new feedforward neural network

is used to transfer the trial solution of equation (3) to the neural network solution

of (3). The trial solution is expressed as the difference of two terms as below (see

Lagaris, et. al., 1998)

(4) (kij)a(t) = Aij − tNij(tj , wij).

The first term satisfies the TCs and contains no adjustable parameters. The second

term employs a feedforward neural network and parameters wij correspond to the

weights of the neural architecture. Consider a multilayer perceptron with n input

units, one hidden layer with n sigmoidal units and a linear output unit. The extension

to the case of more than one hidden layer can be obtained accordingly. For a given

input vector, the output of the network is Nij =
∑n

i=1 viσ(zi) where zi =
∑n

j=1 wijtj +

ui, wij denotes the weight from the input unit j to the hidden unit i, vi denotes the

weight from the hidden unit i to the output, ui denotes the bias of the hidden unit i

and σ(z) is the sigmoidal transfer function.

The error quantity to be minimized is given by

(5) Er =

n∑

i,j=1

(
(k̇ij)a − φij((kij)a)

)2

.

The neural network is trained until the error function (5) becomes zero. Whenever

Er becomes zero, the trial solution (4) becomes the neural network solution of the

equation (3).

w11

z1
(z )1

v1

u1

t1

t2

t3

tn

z2

u2

zn

un

wnn

Input Layer Hidden Layer Output Layer

vn

(z )2

(z )n

v2

Figure 1. Neural network architecture
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3.3. Structure of the FFNN. The architecture consists of n input units, one hid-

den layer with n sigmoidal units and a linear output. Each neuron produces its output

by computing the inner product of its input and its appropriate weight vector. Dur-

ing the training, the weights and biases of the network are iteratively adjusted by

Nguyen and Widrow rule (Paplinski, 2004). The neural network architecture is given

in the Fig. 1 for computing Nij . The neural network algorithm was implemented in

MATLAB on a PC, CPU 1.7 GHz for the neuro computing approach to solve MRDE

(2) for the linear system (1).

Neural network algorithm

Step 1. Feed the input vector tj .

Step 2. Initialize randomized weight matrix wij and bias ui.

Step 3. Compute zi =
∑n

j=1 wijtj + ui.

Step 4. Pass zi into n sigmoidal functions.

Step 5. Initialize the weight vector vi from the hidden unit to output unit.

Step 6. Calculate Nij =
∑n

i=1 viσ(zi).

Step 7. Compute purelin function Nij .

Step 8: Repeat the neural network training until the following error function.

Er =

n∑

i,j=1

(
(k̇ij)a − φij((kij)a)

)2

= 0.

4. NUMERICAL EXAMPLE

Consider the two dimensional optimal control problem:

Minimize

J = E
{1

2
xT (tf )F

T SFx(tf) +
1

2

∫ tf

0

[xT (t)Qx(t) + uT (t)Hx(t) + uT (t)Ru(t)]dt
}

subject to the stochastic linear singular system

Fdx(t) = [Ax(t) + Bu(t)]dt + Du(t)dW (t), x(0) = x0,

where S ∈ R
2×2 and Q ∈ R

2×2 are symmetric and positive definite (or semidefinite)

weighting matrices for x(t), R ∈ R
1×1 is a symmetric and indefinite (in particular

negative definite) weighting matrix for u(t) and H ∈ R
1×2 is a coefficient matrix,

the matrix F is possibly singular, x(t) ∈ R2 is a generalized state space vector,

u(t) ∈ R1 is a control variable and it takes value in some Euclidean space, W(t)

is a Brownian motion and A ∈ R
2×2, B ∈ R

2×1 and D ∈ R
2×1are known coefficient

matrices associated with x(t) and u(t) respectively, x0 is given initial state vector. The

numerical implementation could be adapted by taking tf = 2 for solving the related

MRDE of the above stochastic linear singular system with the following appropriate
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matrices:

S =

[
2 0

0 0

]
, F =

[
1 0

0 0

]
, A =

[
1 2

0 4

]
, B =

[
0

1

]
, R = −1,

Q =

[
1 0

0 0

]
, D =

[
1

0

]
, H =

[
1 0

]
.

The above matrices are substituted in equation (2), the MRDE is transformed into

system of differential equation in k11 and k12. In this problem, the value of k22 for the

symmetric matrix K(t) is free and let k22 = 0. Then the optimal control of the system

can be found out by the solution of MRDE. The numerical solutions of MRDE are

calculated and displayed in the Table 1 using the RK method and the neural network

approach. A multilayer perceptron having one hidden layer with 10 hidden units and

one linear output unit is used. The sigmoid activation function of each hidden units

is σ(t) = 1
1+e−t .

4.1. Solution curves using neural networks. The solution of MRDE and the

error between the solution by neural network and traditional RK method is displayed

in Figures 2, 3, 4 and 5. The numerical values of the required solution are listed in the

Table 1. The computation time for neural network solution is 1.6 sec. whereas the

RK method is 2.2 sec. Hence it is proved that the computation time for the rate of

convergence of the neural network solution is faster than the solution of RK method.

k
11
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Figure 2. Solution curve for k11
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5. CONCLUSION

The optimal control for the stochastic linear singular system with indefinite con-

trol cost and cross term is obtained by neural network approach. A neuro computing

approach can yield a solution of MRDE significantly faster than standard solution

techniques like RK method. A numerical example is given to illustrate the derived

results. The long calculus time of finding optimal control is avoided by using neuro
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Figure 5. Error curve for k12

Neural network solution

t k11 k12

0.0 79.323700 -41.035915

0.2 56.859161 -29.130484

0.4 40.630684 -20.529818

0.6 28.908840 -14.317326

0.8 20.444633 -9.830992

1.0 14.336570 -6.592892

1.2 9.934965 -4.258411

1.4 6.773743 -2.579914

1.6 4.523712 -1.381439

1.8 2.966949 -0.543376

2.0 2.000000 0.000000

Runge Kutta solution

k11 k12

102.287193 -50.143597

71.621239 -34.810619

50.013248 -24.006624

34.789246 -16.394623

24.065388 -11.032695

16.514980 -7.257491

11.204577 -4.602289

7.479240 -2.739620

4.883680 -1.441840

3.113033 -0.556517

2.000000 0.000000

Table 1. Solutions of MRDE

optimal controller. The efficient approximations of the optimal solution are done in

MATLAB on PC, CPU 1.7 GHz.



478 N. KUMARESAN AND P. BALASUBRAMANIAM

REFERENCES

[1] Athens, M. (1971), Special issues on linear quadratic Gaussian problem, IEEE Trans. Automat.

Control, AC-16, 527–869.

[2] Balasubramaniam, P., Abdul Samath, J., Kumaresan, N. & Vincent Antony Kumar, A. (2006),

Solution of matrix Riccati differential equation for the linear quadratic singular system using

neural networks, Appl. Math. Comput., 182, 1832–1839.

[3] Balasubramaniam, P., Abdul Samath, J. & Kumaresan, N. (2007), Optimal control for nonlin-

ear singular systems with quadratic performance using neural networks, Appl. Math. Comput.,

187, 1535–1543.

[4] Balasubramaniam, P., Abdul Samath, J., Kumaresan, N. & Vincent Antony Kumar, A. (2007),

Neuro approach for solving matrix Riccati differential equation, Neural, Parallel Sci. Comput.,

15, 125–135.

[5] Bensoussan, A. (1983), Lecture on stochastic control part I. in : Nonlinear and Stochastic

Control , Lecture Notes in Math. 972, pp. 1–39, Springer-Verlag, Berlin.

[6] Bucci, F. & Pandolfi, L. (2000), The regulator problem with indefinite quadratic cost for

boundary control systems: The finite horizon case. Systems Control Lett., 39, 79–86.

[7] Campbell, S. L. (1980), Singular Systems of Differential Equations, Pitman, Marshfield.

[8] Campbell, S. L. (1982), Singular Systems of Differential Equations II, Pitman, Marshfield.

[9] Chen, S. P., Li, X. J. & Zho, X. Y. (1998), Stochastic linear quadratic regulators with indefinite

control weight costs, SIAM J. Control Optim., 36(5), 1685–1702.

[10] Chiu H. Choi, (1990), A survey of numerical methods for solving matrix Riccati differential

equation, IEEE Proceedings Southeastcon, 696–700.

[11] Dai, L. (1989) Singular control systems, Lecture Notes in Control and Information Sciences,

Springer , New York.

[12] Da Prato, G. and Ichikawa, A. (1988), Quadratic control for linear periodic systems, Appl.

Math. Optim., 18, 39–66.

[13] Davis, M. H. A.(1977), Linear Estimation and Stochastic Control, Chapman and Hall, London.

[14] Ellacott, S. W. (1994), Aspects of the numerical analysis of neural networks, Acta Numer., 5,

145–202.

[15] Ham, F. M. and Collins, E. G. (1996), A neurocomputing approach for solving the algebraic

matrix Riccati equation, Proceedings IEEE International Conference on Neural networks, 1,

617–622.

[16] Jamshidi, M. (1980), An overview on the solutions of the algebraic matrix Riccati equation

and related problems, Large Scale Systems, 1, 167–192.

[17] Jodar, L. & Navarro, E. (1992), Closed analytical solution of Riccati type matrix differential

equations, Indian J. Pure Appl. Math., 23, 185–187.

[18] Karakasoglu, A., Sudharsanan, S. L. & Sundareshan, M. K. (1993), Identification and de-

centralized adaptive control using neural networks with application to robotic manipulators,

IEEE Trans. Neural Networks, 4, 919–930.

[19] Lagaris, I. E., Likas, A. & Fotiadis, D. I. (1998), Artificial neural networks for solving ordinary

and partial differential equations, IEEE Trans. Neural Networks, 9, 987–1000.

[20] Lewis, F. L. (1986), A Survey of Linear Singular Systems, Circ. Syst. Sig. Proc., 5(1), 3–36.

[21] Lovren, N. & Tomic, M. (1994) Analytic solution of the Riccati equation for the homing missile

linear quadratic control problem, J. Guidance. Cont. Dynamics , 17, 619–621.



OPTIMAL CONTROL FOR STOCHASTIC LINEAR QUADRATIC SINGULAR SYSTEM 479

[22] Narendra, K. S. & Parathasarathy, K. (1990), Identification and control of dynamical systems

using neural networks, IEEE Trans. Neural networks, 1, 4–27.

[23] Paplinski, A. P. (2004), Lecture notes on feedforward multilayer neural networks NNet(L.5).

[24] Razzaghi, M.(1997), A Schur method for the solution of the matrix Riccati equation, Int. J.

Math. Math. Sci., 20, 335–338.

[25] Razzaghi, M. (1978), Solution of the matrix Riccati equation in optimal control, Information

Sci., 16, 61–73.

[26] Razzaghi, M. (1979), A computational solution for a matrix Riccati differential equation,

Numer. Math., 32, 271–279.

[27] Vaughu, D. R. (1969), A negative exponential solution for the matrix Riccati equation, IEEE

Trans. Automat. Control, 14, 72–75.

[28] Wang, J. & Wu, G. (1998), A multilayer recurrent neural network for solving continuous time

algebraic Riccati equations, Neural Networks, 11, 939–950.

[29] Wilde, P. De. (1997) Neural Network Models, Second ed., Springer-Verlag, London.

[30] Wonham, W. M. (1968), On a matrix Riccati equation of stochastic control, SIAM J. Control

Optim., 6, 681–697.

[31] Zhou, K. & Khargonekar, P. P. (1998), An algebraic Riccati equation approach to H∞ opti-

mization, Systems Control Lett., 11, 85–91.

[32] Zhu, J. and Li, K. (2003), An iterative method for solving stochastic Riccati differential equa-

tions for the stochastic LQR problem, Optim. Methods Softw., 18 , 721–732.


