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ABSTRACT. In this paper, we give a lower upper bound of the number of zeros of part of the

Abelian integral I(h) =
∫

δ(h)
P (x, y)dx + Q(x, y)dy, h ∈ Σ, where δ(h) is an oval contained in the

level set {H(x, y) = y2 + x4 − x2 = h}, P (x, y), Q(x, y) are real polynomials of x and y with degree

not greater than n, Σ is the maximal interval of the existence of the ovals {δ(h)}. The corresponding

vector space of the Abelian integral I(h) defined on the open interval Σ obeys the Chebyshev property

(the maximal number of isolated zeros of each function is less than the dimension of the space of

functions).
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1. INTRODUCTION

It is well known that the second part of Hilbert’s 16th problem is about

the maximum number of limit cycles that a polynomial system may have. This a

very difficult problem which has not been solved even for quadratic systems. But it

has been known that: for sufficiently small ǫ, the limit cycles of the perturbed plane

Hamiltonian system:

dH + ǫ(Pdx + Qdy) = 0, h ∈ Σ, H, P, Q ∈ R[x, y]

which tend to certain ovals from the continuous family when ǫ −→ 0, are in one-to-one

correspondence with the zeros of the complete Abelian integral

I(h) =

∫

δ(h)

P (x, y)dx + Q(x, y)dy, h ∈ Σ,

where δ(h) ⊂ {(x, y) ∈ R2 : H(x, y) = h, h ∈ Σ}. So people usually consider to find

the number of zero of the Abelian integral I(h). The weakened Hilbert 16th problem

called by Arnold (see [1], p. 313) is to find the number of zeros of the Abelian integral

I(h) in terms of the degrees of H, P, Q (compare with Hilbert [6]; see also [7], [8],

[9]). The general results of solving the weakened Hilbert 16th problem are due to

A. N. Varchenko and A. G. Khovansky (see [10]), who achieved independently the
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existence of Z(m, n), where Z(m, n) denotes the upper bound of the number of zeros

of the Abelian integrals I(h) in terms of deg H = m, deg P, deg Q ≤ n. But the

explicit expression of Z(m, n) has not been obtained.

In general, the number of the isolated zeros of I(h) is related to the Picard-

Fuchsian equation:

(I0(h), I2(h))T = A(h)(I ′
0(h), I ′

2(h))T , (∗)

where I0(h), I2(h) satisfy:

I(h) = P0(h)I0(h) + P2(h)I2(h), h ∈ Σ,

and A(h) is a first-degree polynomial matrix (here, P0(h) and P2(h) are real polyno-

mials).

Recently, Lubomir Gavrilov and Iliya D. Iliev considered a two-parameter class

of Fuchsian systems. They described that the corresponding vector space of Abelian

integrals obeys the Chebyshev property if the above Picard-Fuchsian equation (∗)

satisfies the following conditions (see [2]):

H(1). A′ is a constant matrix with distinct real eigenvalues.

H(2). The equation detA(h) = 0 has real distinct roots h0, h1 (assume that h0 < h1)

and the identity: trace A(h) = (det A(h))′ holds.

H(3). I0(h), I2(h) are analytic in a neighborhood of h0.

And they applied their results to some cases such as: (a) H = y2 + x2 − x3, (b)

H = y2 + x2 − xy2, (c) H = y2 + x2 − x4 and so on.

Let us adopt the denotations in [2]: For systems (∗) satisfying H(1) and H(2), 1
λ

and 1
µ

denote the eigenvalues of the constant matrix A′; Define λ∗ = 2 if λ is integer

and λ∗ = max{|λ − 1|, 1 − |λ − 1|} otherwise.

On the basis of the work in [2], we consider a specific Hamiltonian:

(1) H = y2 + x4 − x2 = h,

(where l ∈ R) and the corresponding perturbed Hamiltonian system:

(2)

{

ẋ = −2y − ǫQ(x, y)

ẏ = 4x3 − 2x + ǫP (x, y)

The Hamiltonian (1) has been considered in [4]. We improve on the results in [4]

partly. In the present paper, we denote

Vn = {I(h)| I(h) =

∫

δ(h)

P (x, y)dx + Q(x, y)dy

P, Q ∈ R[x, y], deg P, deg Q ≤ n, h ∈ Σ},

where R[x, y] is the set of real polynomials about x, y. Σ is the maximal interval on

which a continuous family of ovals {δ(h)} exists.
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It’s evident that the unperturbed system (2) has three critical points: (0, 0) and

(±
√

2
2

, 0). And the critical values of H at these points are: H(0, 0) = 0 = hmax

and H(±
√

2
2

, 0) = −1
4

= hmin respectively. When h ∈ Σ = (−1
4
, 0), {δ(h)} are

surrounding the centers (±
√

2
2

, 0) with two components. When h ∈ Σ = (0,∞),

{δ(h)} are surrounding the three critical points (0, 0) and (±
√

2
2

, 0) consisting of one

component. See Figure 1.

This paper is organized as follows: In section 2, we introduce some results

which have been known. In section 3, I(h) is expressed as a linear combination

of I0(h), I1(h), I2(h). Then we derive a Picard-Fuchsian equation of I0(h), I2(h). Fi-

nally we prove that when the coefficient of I1(h) is identical to zero, the spaces of

Abelian integrals corresponding to systems (2) obey the Chebyshev property.

2. PRELIMINARIES

Definition 2.1. The space V of functions defined on the domain D is called Cheby-

shev with accuracy k (in D), if every non-zero function in V has at most dim V +k−1

zeros in D. V is said to be Chebyshev (in D) if every non-zero function has at most

dim V − 1 zeros in D.

Definition 2.2. Let I(h), h ∈ C be a function of locally analytic in a neighborhood

of ∞, and S ∈ R. We shall write I(h) . hS, if there exists a non-zero constant

CS such that I(h) 6 CS|h|
S for all sufficiently big |h|, h ∈ S, where S is any sector

centered at ∞.

Denote VS = {I(h) | I(h) = P0(h)I0(h) + P2(h)I2(h), P0, P2 ∈ R[h], I(h) . hS}.

We need the following Lemmas.
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Lemma 2.1 (2, Proposition 4). Let S ≥ λ∗, and λ, µ be not integer. Then:

dim VS =

{

2S − 1 if λ − µ and S − 1
2

are interger,

[S − λ] + [S − µ] + 2 otherwise.

Lemma 2.2 (2, Theorem 1). Assume that conditions H(1)–H(3) hold. If λ /∈ Z,

then VS is a Chebyshev vector space with accuracy 1 + [λ∗] in the complex domain

D = C\[h1,∞). If λ ∈ Z, then VS coincides with the space of real polynomials of

degree at most [S], which vanish at h0 and h1.

Lemma 2.3. If I0(h) and I2(h) satisfy H(1)-H(3), and h is near infinity, then

I0(h), I2(h) have the following form:
(

I0

I2

)

= a

(

hλ − λ
2
hλ−1 + · · ·

αhλ−1 + · · ·

)

+ b

(

βhµ−1 + · · ·

hµ − µ

2
hµ−1 + · · ·

)

,

where α = λ
2ω(µ−λ+1)

, β = µω

2(λ−µ+1)
and ω is a free parameter.

Proof: See the proof of Proposition 4 in [2]. Denote

Iij(h) =

∫

δ(h)

xiyjdx

and

I0 = I01, I1(h) = I11(h), I2(h) = I21(h), h ∈ Σ.

Lemma 2.4 (4, Lemma 3). For the system (2), any I(h) ∈ Vn can be expressed as:

(3) I(h) = p(h)I0(h) + r(h)I1(h) + q(h)I2(h),

where p(h), r(h), q(h) ∈ R[h], and deg p(h) ≤ [n−1
2

] = a, deg r(h) ≤ [n−2
2

] = b,

deg q(h) ≤ [n−3
2

] = c. And a, b, c are the lowest upper bounds of deg p(h), deg r(h),

deg q(h).

Remark 1: By Lemma 2.4,

Vn = {I(h) = p(h)I0(h) + r(h)I1(h) + q(h)I2(h)},

where p(h), r(h), q(h) ∈ R[h], deg p(h) ≤ [n−1
2

], deg r(h) ≤ [n−2
2

], deg q(h) ≤ [n−3
2

].

3. MAIN RESULTS

Proposition 3.1. I0, I2 satisfy the following Picard-Fuchsian equation:

(4)

(

I0

I2

)

=

(

4
3
h 2

3
2h
15

4
5
h + 4

15

)(

I ′
0

I ′
2

)

.
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Proof: Denote Ik =
∫

δ(h)
xkydx. From (1):

(5) ydy = xdx − 2x3dx.

Differentiate (1) with respect to h, it yields dy

dh
= 1

2y
. By partial integral and (5), we

have

Ik = −
1

k + 1

∫

δ(h)

xk+1(x − 2x3)

y
dx

(6) = −
2

k + 1
(I ′

k+2 − 2I ′
k+4).

On the other hand,

(7) Ik = 2

∫

δ(h)

xky2

2y
dx = 2

∫

δ(h)

xk(h + x2 − x4)

2y
dx = 2hI ′

k + 2I ′
k+2 − 2I ′

k+4.

Following from (6), (7), we have:

−2I ′
k+2

k + 1
+

4I ′
k+4

k + 1
= 2hI ′

k + 2Ik+2′ − 2I ′
k+4.

Simplifying the above equation, we obtain:

(8)

(

−1

k + 1
− 1

)

I ′
k+2 +

(

2

k + 1
+ 1

)

I ′
k+4 = hI ′

k.

Using k = 0 in (8), we get:

(9) I ′
4 =

2I ′
2

3
+

hI ′
0

3
.

Using (6), (7) again (getting rid of I ′
k+4), we have:

(10)
k + 3

4
Ik = hI ′

k +
1

2
I ′
k+2.

Let k = 0, 2 respectively in (10), so we have:

(11) I0 =
4h

3
I ′
0 +

2

3
I ′
2,

(12)
5

4
I2 = hI ′

2 +
1

2
I ′
4.

Displacing I ′
4 with (9), we obtain:

(13) I2 =
2h

15
I ′
0 +

(

4

5
h +

4

15

)

I ′
2.

Combining (11) and (13), we can get the Picard-Fuchsian equation (4). The proof is

completed.

Theorem 3.1. For the perturbed Hamiltonian systems (2), the linear space of inte-

grals Vn is Chebyshev in Σ if r(h) ≡ 0 in (3), where Σ is the maximal open interval

on which a continuous family of ovals {δ(h)} exists. So B(n) ≤ 2[n−1
2

] (B(n) is the

upper bound of the number of zeros of the Abelian integrals I(h) on the open interval

Σ).
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Proof: We will proof the theorem in two cases.

Case 1: Σ = (−1
4
, 0). By Proposition 3.1, the coefficient matrix of (4) satisfies

the conditions H(1)–H(2). Then we get λ = 3
4
, µ = 5

4
. So [λ∗] = 0. We choose

S = [n+1
2

]. From Lemma 2.1, dimVS = [S −λ] + [S −µ] + 2. So, dim VS = 2[n−1
2

] + 1.

We suppose that r(h) ≡ 0 for any I(h) ∈ Vn in the following. By Lemma 2.4,

dim Vn = 2[n−1
2

] + 1 when r(h) ≡ 0. Evidently, dim Vn = dim Vs. Next, we would

like to prove that Vn ⊆ Vs. Under the condition r(h) ≡ 0, Vn = {I(h) = P0(h)I0(h)+

P2(h)I2(h), deg P0 ≤ [n−1
2

], deg P2 ≤ [n−1
2

] − 1} by Lemma 2.4.

By Lemma 2.3, when h is near infinity, it’s obvious that deg P0(h) + deg I0(h) =

deg P0(h) + λ = deg P0(h) + 3
4

< [n+1
2

] = S. Similarly, deg P2(h) + deg I2(h) < S.

Then by the definition of VS, I(h) ∈ VS for any I(h) ∈ Vn. So Vn ⊆ Vs. Thus we

have: Vn = Vs.

It’s easy to check that the coefficient matrix of (4) and I0(h), I2(h) satisfy the

three conditions H(1)–H(3). So Vn is Chebyshev with accuracy 1 in D = C\(0,∞)

by Lemma 2.2 (because [λ∗] = 0). And Vn is Chebyshev in Σ, because we take into

account that I(h) has always a zero at h0 = −1
4
, which completes the proof.

Case 2: Σ = (0,∞). In this case, the condition H(3) isn’t satisfied. But see [4

Theorem 1] has proved that the space of integrals I(h) of real polynomial forms of

degree at most n is Chebyshev in the domain D+/0 where D+ is the plane with a cut

along the ray {h ≤ −1
4
}; And its dimension is 2[n−1

2
] + 1. So B(n) ≤ 2[n−1

2
] on the

interval (0,∞).

By the above two steps, the proof is finished.

4. SIMULATION

In the proof of Theorem 3.1, we extend I(h) from real interval Σ to complex

domain, and then give the conclusion of Theorem 3.1. Expanding I0(h) and I2(h) in

the interval Σ, where Σ is the maximal interval on which the continuous ovals δ(h)

exist, we give some examples to simulate the result of Theorem 3.1. See Figure 2 and

Figure 3.

Figure 2 shows that: in the interval (0,∞), the number of zeros of I(h) with

deg p(h) = 1 or 2, deg q(h) = 0 or 1 and r(h) = 0, is not great than 2. The zeros

of I(h) in the interval (−1
4
, 0) in Figure 3 is also less than the bound we give in

Theorem 3.1. All these numerical results and the conclusion of Theorem 3.1 are

consistent.
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Figure 2: Diagram for I(h) with r(h) = 0 in (3), and Σ = (0, ∞).
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Figure 3: Diagram for I(h) with r(h) = 0 in (3), and Σ = (−1
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, 0).
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