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ABSTRACT: In this paper we introduce the twisted Euler numbers En,w and polynomials En,w(x).

Finally, we investigate the zeros of the twisted Euler polynomials.

1. INTRODUCTION

Many mathematicians have studied Euler numbers and Euler polynomials. Euler

polynomials posses many interesting properties and arising in many areas of mathe-

matics and physics. We introduce the twisted Euler numbers and polynomials. In the

21st century, the computing environment would make more and more rapid progress.

Using computer, a realistic study for new analogs of Euler numbers and polynomials

is very interesting. It is the aim of this paper to observe an interesting phenomenon of

‘scattering’ of the zeros of the twisted Euler polynomials En,w(x). The outline of this

paper is as follows. In Section 2, we study the the twisted Euler polynomials En,w(x).

In Section 3, we describe the beautiful zeros of the twisted Euler polynomials En,w(x)

using a numerical investigation. Also we display distribution and structure of the

zeros of the the twisted Euler polynomials En,w(x) by using computer. By using the

results of our paper the readers can observe the regular behaviour of the roots of the

twisted Euler polynomials En,w(x). Finally, we carried out computer experiments for

doing demonstrate a remarkably regular structure of the complex roots of the twisted

Euler polynomials En,w(x). Throughout this paper we use the following notations.

By Zp we denote the ring of p-adic rational integers, Q denotes the field of rational

numbers, Qp denotes the field of p-adic rational numbers, C denotes the complex

number field, and Cp denotes the completion of algebraic closure of Qp. Let νp be the

normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks

of q-extension, q is considered in many ways such as an indeterminate, a complex

number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1.
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If q ∈ Cp, we normally assume that |q − 1|p < p−
1

p−1 so that qx = exp(x log q) for

|x|p ≤ 1.

[x]q = [x : q] =
1− qx

1− q
, cf. [1,4,5] .

Hence, limq→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. Let d be a

fixed integer and let p be a fixed prime number. For any positive integer N , we set

X = lim
←−
N

(Z/dpNZ),

X∗ =
⋃

0<a<dp
(a,p)=1

(a + dpZp),

a + dpNZp = {x ∈ X | x ≡ a (mod dpN)},

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N ,

µq(a + dpNZp) =
qa

[dpN ]q

is known to be a distribution on X, cf. [3,4,5]. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiaable function},

the p-adic q-integral was defined by [3,4,5]

Iq(g) =

∫

Zp

g(x)dµq(x) = lim
N→∞

1

[pN ]

∑

0≤x<pN

g(x)qx.

Note that

I1(g) = lim
q→1

Iq(g) =

∫

Zp

g(x)dµ1(x) = lim
N→∞

1

pN

∑

0≤x<pN

g(x)

(see [4,5,7]). Now, we consider the case q ∈ (−1, 0) corresponding to q-deformed

fermionic certain and annihilation operators and the literature given therein [4,5,7].

The expression for the Iq(g) remains same, so it is tempting to consider the limit

q → −1. That is,

I−1(g) = lim
q→−1

Iq(g) =

∫

Zp

g(x)dµ−1(x) = lim
N→∞

∑

0≤x<pN

g(x)(−1)x. (1.1)

If we take g1(x) = g(x + 1) in (1.1), then we easily see that

I−1(g1) + I−1(g) = 2g(0). (1.2)

From (1.2), we obtain

I−1(gn) = (−1)nI−1(g) + 2
n−1
∑

l=0

(−1)n−1−lg(l),



CALCULATING ZEROS OF THE TWISTED EULER POLYNOMIALS 507

where gn(x) = g(x+n). First, we introduce the Euler numbers and Euler polynomials.

The Euler numbers En are defined by the generating function:

F (t) =
2

et + 1
=

∞
∑

n=0

Gn

tn

n!
, cf. [1,4,5] (1.3)

where we use the technique method notation by replacing En by En(n ≥ 0) symbol-

ically. For x ∈ R (= the field of real numbers), we consider the Euler polynomials

En(x) as follows:

F (x, t) =
2

et + 1
ext =

∞
∑

n=0

En(x)
tn

n!
. (1.4)

Note that En(x) =
∑n

k=0

(

n

k

)

Ekx
n−k. In the special case x = 0, we define En(0) = En.

2. THE TWISTED EULER NUMBERS AND POLYNOMIALS

In [7], we defined the twisted Euler numbers and polynomials. In this section, we

introduce the twisted Euler numbers En,w and polynomials En,w(x) and investigate

their properties. Let Tp = ∪N≥1CpN = limN→∞ CpN , where CpN = {w|wpN

= 1} is

the cyclic group of order pN . For w ∈ Tp, we denote by φw : Zp → Cp the locally

constant function x 7−→ wx. In (1.2), if we take g(x) = φw(x)ext, then we easily see

that

I−1(φw(x)ext) =

∫

Zp

φw(x)extdµ−1(x) =
2

wet + 1
.

Let us define the twisted Euler numbers En,w and polynomials En,w(x) as follows:

I−1(φw(y)eyt) =

∫

Zp

φw(y)eytdµ−1(y) =
∞
∑

n=0

En,w

tn

n!
, (2.1)

I−1(φw(y)e(y+x)t) =

∫

Zp

φw(y)e(x+y)tdµ−1(y) =

∞
∑

n=0

En,w(x)
tn

n!
. (2.2)

By (2.1) and (2.2), we obtain the following Witt’s formula.

Theorem 1. For w ∈ Tp, we have
∫

Zp

φw(x)xndµ−1(x) = En,w,

∫

Zp

φw(y)(x + y)ndµ−1(y) = En,w(x).

Let q be a complex number with |q| < 1 and w be the pN -th root of unity. By

the meaning of (1.3) and (1.4), let us define the twisted Euler numbers En,w and

polynomials En,w(x) as follows:

Fw(t) =
2

wet + 1
=

∞
∑

n=0

En,w

tn

n!
, (2.3)
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Fw(x, t) =
2

wet + 1
ext =

∞
∑

n=0

En,w(x)
tn

n!
. (2.4)

We have the following remark.

Remark. Note that

(1) En,w(0) = En,w,

(2) If w = 1, then En,w(x) = En(x), En,w = En,

(3) If w = 1, then Fw(x, t) = F (x, t), Fw(t) = F (t).

By above definition, we obtain
∞
∑

l=0

Gl,q(x)
tl

l!
=

2

wet + 1
ext =

∞
∑

n=0

En,w

tn

n!

∞
∑

m=0

xm tm

m!

=

∞
∑

l=0

(

l
∑

n=0

En,w

tn

n!
xl−n tl−n

(l − n)!

)

=

∞
∑

l=0

(

l
∑

n=0

(

l

n

)

En,wxl−n

)

tl

l!
.

By using comparing coefficients
tl

l!
, we have the following theorem.

Theorem 2. For any positive integer n, we have

En,w(x) =
n
∑

k=0

(

n

k

)

Ek,wxn−k.

Over five decades ago, Carlitz [1] defined q-extensions of the classical Bernoulli

numbers Bn and Bernoulli polynomials Bn(x) and proved properties analogues to

those satisfied by Bn and Bn(x). Carlitz’s q-Bernoulli numbers βn = βn,q can be

determined inductively by [1]

β0 = 1, q(qβ + 1)k − βk =

{

1, if k = 1,

0, if k > 1,

with the usual convention about replacing βk by βk. For the twisted Euler numbers,

we obtain the following theorem.

Theorem 3. The twisted Euler numbers En,w are defined respectively by

w(Ew + 1)n + En,w =

{

2, if n = 0,

0, if n > 0,

with the usual convention about replacing (Ew)n by En,w in the binomial expansion.

Proof. From (2.3), we obtain

2

wet + 1
=

∞
∑

n=0

En,w

tn

n!
=

∞
∑

n=0

(Ew)n tn

n!
= eEwt
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which yields

2 = (wet + 1)eEwt = we(Ew+1)t + eGEwt.

Using Taylor expansion of exponential function, we have

2 =
∞
∑

n=0

{w (Ew + 1)n + (Ew)n}
tn

n!

= w (Ew + 1)0 + (Ew)0 +

∞
∑

n=1

{w (Ew + 1)n + (Ew)n}
tn

n!
.

The result follows by comparing the coefficients.

Here is the list of the first the twisted Euler numbers En,w.

E0,w =
2

1 + w
, E2,w = −

2w

(1 + w)2
,

E3,w =
2(−1 + w)w

(1 + w)3
,

E3,w = −
2w(1− 4w + w2)

(1 + w)4
,

E4,w =
2(−1 + w)w(1− 10w + w2)

(1 + w)5
, · · · ,

Because

∂

∂x
Fw(x, t) = tFw(x, t) =

∞
∑

n=0

d

dx
Fn,w(x)

tn

n!
,

it follows the important relation

d

dx
En,w(x) = nEn−1,w(x).

Here is the list of the first the twisted Euler Polynomials Gn,w(x).

E0,w(x) =
2

1 + w
,

E1,w(x) =
2(−w + x + wx)

(1 + w)2
,

E2,w(x) =
2(−w + w2 − 2wx− 2w2x + x2 + 2wx2 + w2x2)

(1 + w)3
,

E3,w(x) =
2(−w + 4w2 − w3 − 3wx + 3w3x− 3wx2 − 6w2x2 − 3w3x2)

(1 + w)4

+
2(x3 + 3wx3 + 3w2x3 + w3x3)

(1 + w)4
, · · · ,
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Since
∞
∑

l=0

El,w(x + y)
tl

l!
=

2

wet + 1
e(x+y)t

=
∞
∑

n=0

En,w(x)
tn

n!

∞
∑

m=0

ym tm

m!

=

∞
∑

l=0

(

l
∑

n=0

En,w(x)
tn

n!
yl−n tl−n

(l − n)!

)

=

∞
∑

l=0

(

l
∑

n=0

(

l

n

)

En,w(x)yl−n

)

tl

l!
,

we have the following theorem.

Theorem 4. The twisted Euler polynomials En,w(x) satisfies the following relation:

El,w(x + y) =
l
∑

n=0

(

l

n

)

En,w(x)yl−n.

It is easy to see that
∞
∑

n=0

Gn,w(x)
tn

n!
=

2

wet + 1
ext

=
2t

wnemt + 1
ext

m−1
∑

a=0

(−1)awaeat

=
1

m

m−1
∑

a=0

(−1)awa 2m

wmemt + 1
e

 a + x

m

!

(mt)

=
1

m

m−1
∑

a=0

(−1)awa

∞
∑

n=0

En,wm

(

a + x

m

)

(mt)n

n!

=
∞
∑

n=0

(

mn−1
m−1
∑

a=0

(−1)awaEn,wm

(

a + x

m

)

)

tn

n!
.

Hence we have the below theorem.

Theorem 5. For any positive integer m(=odd), we have

En,w(x) = mn−1
m−1
∑

i=0

(−1)iwiEn,wm

(

i + x

m

)

, for n ≥ 0.

3. DISTRIBUTION AND STRUCTURE OF THE ZEROS

In this section, we investigate the zeros of the twisted Euler polynomials En,w(x)

by using computer. Let w = e
2πi
N in C. We plot the zeros of En,w(x), x ∈ C for

N = 1, 3, 5, 7. (Figures 1, 2, 3, and 4). Next, we plot the zeros of En,w(x), x ∈ C

for n = 12, 13, 14, 15, N = 7. (Figures 5, 6, 7, and 8). Next, we plot the zeros of
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Figure 1. Zeros of E16,w(x)
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Figure 2. Zeros of E16,w(x)
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Figure 3. Zeros of E16,w(x)

-7.5 -5 -2.5 0 2.5 5 7.5 10

ReHxL

-6

-4

-2

0

2

4

6

ImHxL

Figure 4. Zeros of E16,w(x)
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Figure 5. Zeros of E12,w(x)
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Figure 6. Zeros of E13,w(x)
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Figure 7. Zeros of E14,w(x)
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Figure 8. Zeros of E15,w(x)
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Figure 9. Zeros of E11,w(x)
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Figure 10. Zeros of E12,w(x)
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Figure 11. Zeros of E13,w(x)
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Figure 12. Zeros of E14,w(x)
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En,w(x), x ∈ C for n = 11, 12, 13, 14, N = 9. (Figures 9, 10, 11, and 12). Finally, we

plot the zeros of En,w(x), x ∈ C for n = 16, N = 11, 13, 15, 17. (Figures 13, 14, 15,

and 16).
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Figure 13. E16,w(x),

w = e
2πi
11
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Figure 14. E16,w(x),

w = e
2πi
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Figure 15. E16,w(x),

w = e
2πi
15
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Figure 16. E16,w(x),

w = e
2πi
17

In Figures 1-16, En,w(x), x ∈ C, has Re(x) = 1/2 reflection symmetry. This

translates to the following open problem: Prove or disprove: En,w(x), x ∈ C, has

Re(x) = 1/2 reflection symmetry.

Our numerical results for numbers of real and complex zeros of En,w(x) are dis-

played in Table 1.
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Figure 17. Stacks of zeros En,w(x), N = 7, for 1 ≤ n ≤ 16

Table 1. Numbers of real and complex zeros of En,w(x)

w = e
2πi
3 w = e

2πi
4

degree n real zeros complex zeros real zeros complex zeros

1 0 1 0 1

2 0 2 0 2

3 0 3 0 3

4 0 4 0 4

5 0 5 0 5

6 0 6 0 6

7 0 7 0 7

8 0 8 0 8

9 0 9 0 9

10 0 10 0 10

We shall consider the more general open problem. In general,how many roots does

En,w(x) have ? Prove or disprove: En,q(x) has n distinct solutions. Find the numbers

of complex zeros CEn,w(x) of En,w(x), Im(x) 6= 0. Prove or give a counterexample:

Conjecture: Since n is the degree of the polynomial En,w(x), the number of real

zeros REn,w(x) lying on the real plane Im(x) = 0 is then REn,w(x) = n − CEn,w(x),

where CEn,w(x) denotes complex zeros. See Table 1 for tabulated values of REn,w(x)

and CEn,w(x). Find the equation of envelope curves bounding the real zeros lying on

the plane, and the equation of a trajectory curve running through the complex zeros

on any one of the arcs. We plot the En,w(x), respectively (Figures 1–16). These

figures give mathematicians an unbounded capacity to create visual mathematical

investigations of the behavior of the roots of the En,w(x). Moreover, it is possible

to create a new mathematical ideas and analyze them in ways that generally are

not possible by hand. The authors have no doubt that investigation along this line

will lead to a new approach employing numerical method in the field of research of
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the twisted Euler polynomials En,w(x) to appear in mathematics and physics. For

related topics the interested reader is referred to [6], [7], [8], [9]. We calculated an

approximate solution satisfying En,w(x), N = 3, 4, x ∈ C. The results are given in

Table 2 and Table 3.

Table 2. Approximate solutions of En,w(x) = 0, w = e
2πi
3

degree n x

1 0.50000 + 0.86603i

2 −0.50000 + 0.86603i, 1.50000 + 0.86603i

3 −1.29144 + 0.60191i, 0.5000 + 1.3942i, 2.2914 + 0.6019i

4 −1.9630 + 0.2084i, −0.3936 + 1.5236i, 1.3936 + 1.5236i,

2.9630 + 0.2084i

5 −2.5580− 0.2656i, −1.1897 + 1.4655i, 0.5000 + 1.9303i,

2.1897 + 1.4655i, 3.5580− 0.2656i

6 −3.0992− 0.7946i, −1.9102 + 1.2875i, −0.3411 + 2.1052i,

1.341 + 2.105i, 2.910 + 1.287i, 4.0992− 0.7946i

Table 3. Approximate solutions of En,w(x) = 0, w = e
2πi
4

degree n x

1 0.50000 + 0.50000i

2 −0.20711 + 0.50000i, 1.20711 + 0.50000i

3 −0.75437 + 0.34355i, 0.50000 + 0.81291i, 1.75437 + 0.34355i

4 −1.20587 + 0.09999i, −0.14033 + 0.90001i, 1.14033 + 0.90001i

2.20587 + 0.09999i

5 −1.59983− 0.20378i, −0.69955 + 0.88218i, 0.5000 + 1.1432i,

1.6995 + 0.8822i, 2.5998− 0.2038i

6 −1.95697− 0.54893i, −1.19062 + 0.78778i, −0.1063 + 1.2611i,

1.1063 + 1.2611i, 2.1906 + 0.7878i, 2.9570− 0.5489i
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