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Abstract 

Computing grid is a promising platform that provides plenty of resource for large scientific computing 
applications. To achieve the performance of applications in the grid environment, careful resource 
management is needed.  Protein alignment analysis, a typical bio-grid computing application, is a 
computing intensive, data parallel application, which needs data storage resources and large computing 
resources. This paper proposes an integrated resource management framework for bio-grid computing.  We 
demonstrate that this kind of applications can benefit from resource management framework. 
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 1. INTRODUCTION 
 

 Now, computing grid has been the most promising computing platform for large 
scientific applications. Computing grid infrastructure middleware, such as Globus, have 
been developed to support application users with grid services, e.g. resource 
management, grid information services. However, on the top of these services, some 
higher-level supports are still needed to achieve better performance.  
     Bio-grid computing can benefit greatly from the computing grid [1,2,3]. The 
application of protein alignment analysis [4,5], a typical bio-grid computing application, 
is a common and often repeated work in the field of molecular biology. This application 
consists of finding similarities between a particular query sequence and all sequences in 
Protein Banks, which maybe large scale geographically distributed. Protein alignment 
analysis needs huge computing resources to process large amount of data. Thus, to get the 
best performance, integrated resource management for large computing resources and 
data storage resources in the Grid environment need to be developed.  
     Some previous work has focused on this field. SAM (Sequence Alignment and 
Modeling System) [6, 7] is developed for general sequence analysis. PAPIA (Parallel 
Protein Information Analysis system)[9] is a system for protein sequence analysis. These 
systems focus on parallel algorithms of sequence analysis and modeling; give little 
consideration of underlying parallel architecture support.  An application level scheduling 
framework [9], which is based on AppLeS [10,11,12], is developed for Gene sequence 
analysis in the metacomputing systems. In this work, a time-balancing heuristic is used 
[13] and only computing resources are considered. Some other general resource manage 
systems, e.g., Condor [16,17], PBS [18], Legion [19] do not give convenient support for 
integrated resource management for this specific type of bio-grid applications. 
______________ 
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     In this paper, an integrated resource management framework is discussed. This 
resource management framework includes two parts: resource selection framework and 
replica selection framework. Computing resources and data storage resources are 
managed in the framework to improve the application performance. We improve self-
scheduled work queue algorithm [14,15] for task scheduling in the resource selection 
framework. The replica selection framework is developed for data storage resources 
management. Since Globus [20] has been the de Facto standard of Grid computing, our 
work is developed on the platform of Globus ToolkitTM  [20] and several popular 
resource management systems. Results show that bio-grid applications can reach high 
performance from the framework.  
     This paper is organized as follows: in section 2, we introduce the background of 
protein alignment analysis application. Section 3 describes the resource selection 
framework and section 4 describes the replica selection framework. In section 5, we 
present the performance of the resource management framework. We conclude our work 
in section 6.   
 
 

 2. PROTEIN ALIGNMENT ANALYSIS  
2.1. Background 
 Protein alignment analysis is a common and often repeated task in molecular 
biology. The analysis process consists of finding similarities between a particular query 
sequence and all the sequences of a Protein Bank. This operation allows biologists to 
point out sequences sharing common subsequences. From a biological point of view, it 
leads to the identification of similar functionalities. The need for speeding up this 
application comes from the exponential growth of the bio-sequence Protein Banks: every 
year their size scaled by a factor 1.5 to 2 [4]. 
     Surprising relationships have been discovered between protein sequences that 
have little overall similarity but in which similar subsequences can be found. In that 
sense, the identification of similar subsequences is probably the most useful and practical 
method for comparing two sequences. The Smith-Waterman algorithm [4] finds the most 
similar subsequences of two sequences (the local alignment) by dynamic programming. 
The algorithm compares two sequences by computing a distance that represents the 
minimal cost of transforming one segment into another. Two elementary operations are 
used: substitution and insertion/deletion (also called a gap operation). Through series of 
such elementary operations, any segments can be transformed into any other segment. 
The smallest number of operations required to change one segment into another can be 
used to measure the distance between the segments. 
     Consider two strings S1 and S2 of length l1 and l2. To identify common 
subsequences, the Smith-Waterman algorithm computes the similarity H(i,j) of two 
sequences ending at position  i and j of the two sequences S1 and S2. The computation of 
H(i,j) is given by the following recurrences: 
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where Sbt is a character substitution cost table. Initializations of these values are given 
by: 
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Multiple gap costs are taken into account as follows: α is the cost of the first gap; β is the 

cost of the following gaps. Fig. 1 illustrates an example with gap costs α = 1 and β= 1 
and Sbt defined as: 
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Each position of the matrix H is a similarity value. The two segments of S1 and S2 
producing this value can be determined by a backtracking procedure (see Fig. 1). 
 
 

 
 

Fig. 1: Example of the Smith-Waterman algorithm to compute the local alignment between two 
DNA sequences ATCTCGTATGATG and GTCTATCAC. The matrix H(i,j) is shown for the 

computation with gap costs α = 1 and β= 1, and a substitution cost of +2 if the characters are 
identical and -1 otherwise. From the highest score (+10 in the example), a trace back procedure 
delivers the corresponding alignment (shaded cells), the two subsequences TCGTATGA and 
TCTATCA. 

 
 

2.2 Master-Slave Paradigm 
 This application is based on SPMD concept. Thus, the application is modeled 
with the master-slave paradigm. The master is responsible for dividing the tasks and 
scheduling the tasks and slaves execute the tasks (see figure 2). 
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Fig. 2: Master-slave paradigm 
 

 
Considering the tasks submitted to the slave, slave selects the nearest proper 

Protein Banks and make a copy of part or total protein alignment paradigms of the 
Protein Banks (see figure 3). These copies of protein alignment paradigms are used for 
protein alignment comparison. When the task is finished, the results are sent back to the 
master. 
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Figure 3   Replication Selection of Slave 
 
 

 3. RESOURCE SELECTION FRAMWORK 
 

3. 1   Overview  
 

 The resource selection framework is designed with its server on the master node 
and clients on the slave nodes. Resources are managed and jobs are submitted from the 
server. The system configuration is shown in Figure 4. 
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Figure 4    Resource Selection Framework 
 

   Distributed Information System (DIS) maintains the static and dynamic 
information of computing grid resources. Scheduler manages and schedules the 
resources. After RSL generator generates the RSL files, jobs can be submitted to the 
computing grid. Master-slave paradigm is used to schedule resources and submit jobs 
(Figure 5). With GUI, users can submit jobs from one host to the computing grid. The 
submission host is master node and other nodes in the computing grid are slave nodes. 
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Figure 5   Job Submission 
 

 

3.2  Distributed Information System 
In the system, there is a daemon running on each slave node. The daemon will 

maintain the static information (e.g., CPU speed, CPU count, memory) and the dynamic 
information (e.g., available CPU percent and available memory) of slave nodes. The 
maser node will send request to slave nodes and get system information periodically. So, 
the master node can maintain a global system information table (Figure 6).  
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 Figure 6   Distributed information system 
 

      With Globus API [22], we can get the information of slave nodes. Fig6 is an example of our system 
output (see Figure 7). 

 
 

 
 

Figure 7   Output of system information 
 

3.3 Scheduler 

 
Computing grid is a hierarchical, distributed and shared system. The static information 
and run-time system information are both important for scheduling the resources [15]. 
We firstly quantify the static computing capacity by selecting a protein alignment whose 
size is Length  as the benchmark. On node j , the static computing capacity is: 
 

(1) 
 

where jT  is the time to finish the job of processing protein alignment benchmark and jC  

is the computing capacity of the node j  (measured protein alignment length per hundred 

seconds). It should be noticed that this parameter is application relevant. So, it can be 
calculated before job submission. 
     DIS can be used to obtain the following run-time information of the system: 

jACPU (available CPU percent of node j ). The run-time computing capacity of node 

j can then be defined as: 
         (2) 

j

j
T

Length
C =

jjj ACPUCRC *=



 Bio-grid Computing        523 
 
 
 
It is a metric that measures the current fulfillment of application’s computing requirement 
by node j  per unit time. Thus, for time period T , the work can be done by node j  is: 

                                                           (3) 
 

     Self-scheduled work queue algorithm is a popular algorithm for scheduling sets 
of independent tasks. The algorithm assigns jobs to hosts as soon as they become 
available in a greedy fashion [11,15]. Here, an improved self-scheduled work queue 
algorithm is used. New algorithm does not use a parameter to decide whether the hosts 
are free (e.g. when the available CPU percent is 30%, the node is defined to be free). 
Improved self-scheduled work queue algorithm just allocates the jobs based on the 
dynamic CPU load. Although the host is busy and not free (e.g., available CPU percent is 
10%), new algorithm still allocate some small size jobs to this host to occupy the 
available CPU percent. The scheduling process is shown as Figure 8. 
 

update system information

dynamic computing capacity estimation

scheduling resource

job submission

sleep the time step  T

 
     

Figure 8   Schedule process 
 

     The platform updates the dynamic information periodically and schedule jobs. It 
estimates the run-time computing capacity and submits jobs to each slave nodes. The 
period of job submission is T . In the protein alignment analysis application, each job 
generated has a parameter that indicates the size of the protein data to be searched. The 

scheduler will make use of formula (3) to calculate jW  and translates it to the parameter 

of the job to be generated for node j . 
 
 

3.4 Failure Recovery Scheme 
Failure recovery scheme is developed to address the problem that application 

programs hang up and waist the CPU cycles of computing resources. The system failure 
of resources can be detected by DIS.  
     Time out scheme is used here. After the task is submitted, if the limit of response 
time reaches and there is no result back, the task in the slave node then is killed by the 
master and re-submitted to other slave node. 

TRCW jj *=
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    The limit of response time is determined as follows: 
 

(4) 
 

where,   

ijLimit  is limit of response time of task i on slave j , 

ijERT  is expected response time of task i on slave j . 

Expected response time is determined as follows: 
 
  

(5) 
 

 

where,   

iTask  is the size of task i that running on node j (in term of protein alignment length), 

jRC  is the run-time computing capacity of node j , which is given in Equation (2). 

 
 

4.    Replica Selection Framework 
 
After the task is submitted to the slave node, the slave node makes a replica selection for 
running the task.  Different types of task may require different data sets (protein 
alignment paradigms) for protein alignment analysis. These data sets are stored in 
different Protein Banks, which locate in geographically distributed sites. 
    An LDAP [23, 24] server is configured to present replica directory service. 
Replica catalog supports to register the Protein Banks as logical collections of data sets 
and provides mappings between data sets and Protein banks (see also figure 9). 
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Figure 9 Replica catalog 
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Figure 10   Replica Selection Framework 
 

    The replica selection in the slave node follows these steps (see also figure 10): 
(i)   Get information of tasks submitted to the slave node and determine the data sets needed for 

tasks execution. 
(ii)  Query LDAP server to locate the proper Protein Banks that can present the data sets needed. 
(iii) From every proper Protein Bank to the slave node, the peer-to-peer communication 

performance is tested. 
(iv) The slave node selects the Protein Banks that give minimum data transfer time as the replica 

source. 
  

5. PERFORMANCE EVALUATION 
 

5.1 Test bed 
Table 1. Test bed Configuration  

 
Locati

on 

Resource Operating   System 

Intel  PIII-733 MHz *12 Condor   / Linux  

Intel  PII-450 MHz *6 PBS   / Linux  

Computing Resource 
(Cluster) 

SUNW,UltraSPARC-II *10 Sun Grid Engine  / Solaris 2.6 

LDAP server Intel  PIII-733 MHz Linux  

NTU, 
Singap

ore 
 

Protein Bank Intel PIII-733 MHz Linux  

Computing  
Resource (Cluster) 

IBM xSeries 330, PIII 933 MHz *13 Condor / Linux  IHPC, 
Singapr
e 

 
Protein  Bank IBM  xSeries 330, PIII 933 MHz Linux 

Osaka 
Univ., 
Japan 

Computing Resource  
(Single Node) 

Intel PII-450MHz*1 Fork / Free BSD  
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Table2 Experiments Results  
 

Execution Time(s) Index Protein 

Alignment 

Length Static 

scheduling 

algorithm (T1) 

Improved self-scheduled work 

queue algorithm (T2) 

Performance Efficiency 

Enhancement 

(1-T2/T1) 

(a) 925 3071 2563 16.5% 
(b) 2821 8911 7224 18.9% 
(c) 4289 12973 10227 21.2% 
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Figure 11  Test bed 
 

In order to evaluate the performance of the integrated resource management 
framework, a test bed is configured  (see also Figure 11). It includes 3 clusters in NTU 
(Nanyang Technological Univ., Singapore), one cluster in IHPC (Institute of High 
performance Computing, Singapore) and a single node in Osaka University (Japan). A 
LDAP is configured in NTU for replica service. Two Protein Bans are set inside NTU 
and IHPC separately.  Table 1 shows the hardware and software configuration of the test 
bed.  Globus ToolkitTM is installed on the head nodes of clusters and the single node in 
Japan. Globus GRAM will talk with the local job manager (e.g., Condor) about how to 
execute the jobs submitted by Globus GRAM. 
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5.2 Performance Evaluation 
Three experiments were conducted with different problem sizes. We compare the 

execution time of static scheduling algorithm and improved algorithm (Figure 12). Table 
2 presents the experiment results in detail.  
     The results show that the performance efficiency increases as the problem size 
grows.  In general, we can see that the resource management framework can help this 
application achieve better performance. 
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Figure 12   Execution Times 

 

Figure 13   Communication Performance  
 

Table 3 shows the replica placement for the Protein Bank.  Now, single node in the Osaka 
Univ., as an example, is the slave node and replica selection result is showed below. 
Table 5 shows the replica selection for different replica requirement of tasks running on 
the slave node. 
 
 

Table 3 Replica placement 
Protein 

Bank 

Site Replica placement 

1 NTU dataset1, dataset2, dataset5 
2 IHPC dataset1, dataset3, dataset4 
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6. CONCLUSION AND FUTURE WORK 

 

The objective of resource management framework is to help bio-information 
applications achieve better performance in the grid environment. In the framework, we 
improve self-scheduled work queue algorithm to schedule the resources for these 
applications. Experiment results show that applications can achieve better performance 
than using static scheduling algorithm. On the other hand, replica selection framework 
helps slave nodes to make replica selection dynamically. Thus, better performance is also 
reached. 

 
 
    

Table  4   Replica Requirement and Selection 
Task  
index  

Replica 
requirement 

Replica  
decision  

1 dataset1 Protein Bank 1 
2 dataset2 Protein Bank 1 
3 dataset2 Protein Bank 1 
4 dataset3 Protein Bank 2 

5 dataset5 Protein Bank 1 
6 dataset1 Protein Bank 1 
7 dataset2 Protein Bank 1 
8 dataset4 Protein Bank 2 

 
 
Our future work is to include performance prediction for the computing resources and communication 
network.  Thus, with the prediction information, we expect to improve the performance of the applications. 
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