
Neural, Parallel, and Scientific Computations 16 (2008) 517-530

 Integrated Resource Management Framework

for Bio-grid Computing

 Lizhe Wang1 and Wei Jie2

1 Institute for Scientific Computing (IWR), Research Center Karlsruhe (FZK)
Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

2 The National Centre for e-Social Science,

Arthur Lewis Building, Oxford Road, Manchester, U.K.

Abstract

Computing grid is a promising platform that provides plenty of resource for large scientific computing
applications. To achieve the performance of applications in the grid environment, careful resource
management is needed. Protein alignment analysis, a typical bio-grid computing application, is a
computing intensive, data parallel application, which needs data storage resources and large computing
resources. This paper proposes an integrated resource management framework for bio-grid computing. We
demonstrate that this kind of applications can benefit from resource management framework.

Keywords - Grid computing, protein alignment analysis, bio-grid computing

 1. INTRODUCTION

 Now, computing grid has been the most promising computing platform for large
scientific applications. Computing grid infrastructure middleware, such as Globus, have
been developed to support application users with grid services, e.g. resource
management, grid information services. However, on the top of these services, some
higher-level supports are still needed to achieve better performance.
 Bio-grid computing can benefit greatly from the computing grid [1,2,3]. The
application of protein alignment analysis [4,5], a typical bio-grid computing application,
is a common and often repeated work in the field of molecular biology. This application
consists of finding similarities between a particular query sequence and all sequences in
Protein Banks, which maybe large scale geographically distributed. Protein alignment
analysis needs huge computing resources to process large amount of data. Thus, to get the
best performance, integrated resource management for large computing resources and
data storage resources in the Grid environment need to be developed.
 Some previous work has focused on this field. SAM (Sequence Alignment and
Modeling System) [6, 7] is developed for general sequence analysis. PAPIA (Parallel
Protein Information Analysis system)[9] is a system for protein sequence analysis. These
systems focus on parallel algorithms of sequence analysis and modeling; give little
consideration of underlying parallel architecture support. An application level scheduling
framework [9], which is based on AppLeS [10,11,12], is developed for Gene sequence
analysis in the metacomputing systems. In this work, a time-balancing heuristic is used
[13] and only computing resources are considered. Some other general resource manage
systems, e.g., Condor [16,17], PBS [18], Legion [19] do not give convenient support for
integrated resource management for this specific type of bio-grid applications.

Received September 8, 2007 1061-5369 $15.00 © Dynamic Publishers, Inc.

518 Wang and Jie

 In this paper, an integrated resource management framework is discussed. This
resource management framework includes two parts: resource selection framework and
replica selection framework. Computing resources and data storage resources are
managed in the framework to improve the application performance. We improve self-
scheduled work queue algorithm [14,15] for task scheduling in the resource selection
framework. The replica selection framework is developed for data storage resources
management. Since Globus [20] has been the de Facto standard of Grid computing, our
work is developed on the platform of Globus ToolkitTM [20] and several popular
resource management systems. Results show that bio-grid applications can reach high
performance from the framework.
 This paper is organized as follows: in section 2, we introduce the background of
protein alignment analysis application. Section 3 describes the resource selection
framework and section 4 describes the replica selection framework. In section 5, we
present the performance of the resource management framework. We conclude our work
in section 6.

 2. PROTEIN ALIGNMENT ANALYSIS
2.1. Background
 Protein alignment analysis is a common and often repeated task in molecular
biology. The analysis process consists of finding similarities between a particular query
sequence and all the sequences of a Protein Bank. This operation allows biologists to
point out sequences sharing common subsequences. From a biological point of view, it
leads to the identification of similar functionalities. The need for speeding up this
application comes from the exponential growth of the bio-sequence Protein Banks: every
year their size scaled by a factor 1.5 to 2 [4].
 Surprising relationships have been discovered between protein sequences that
have little overall similarity but in which similar subsequences can be found. In that
sense, the identification of similar subsequences is probably the most useful and practical
method for comparing two sequences. The Smith-Waterman algorithm [4] finds the most
similar subsequences of two sequences (the local alignment) by dynamic programming.
The algorithm compares two sequences by computing a distance that represents the
minimal cost of transforming one segment into another. Two elementary operations are
used: substitution and insertion/deletion (also called a gap operation). Through series of
such elementary operations, any segments can be transformed into any other segment.
The smallest number of operations required to change one segment into another can be
used to measure the distance between the segments.
 Consider two strings S1 and S2 of length l1 and l2. To identify common
subsequences, the Smith-Waterman algorithm computes the similarity H(i,j) of two
sequences ending at position i and j of the two sequences S1 and S2. The computation of
H(i,j) is given by the following recurrences:













+−−

=

)2,1()1,1(

),(

),(

0

max),(

ji
SSSbtjiH

jiF

jiE
jiH

11 li ≤≤ , 21 lj ≤≤






−−

−−
=

β

α

)1,(

)1,(
max),(

jiE

jiH
jiE

 Bio-grid Computing 519

10 li ≤≤ , 21 lj ≤≤






−−

−−
=

β

α

),1(

),1(
max),(

jiE

jiH
jiF

11 li ≤≤ , 20 lj ≤≤

where Sbt is a character substitution cost table. Initializations of these values are given
by:

0),0(),0(

0)0,()0,(

==

==

jFjH

iEiH

20

10

lj

li

≤≤

≤≤

Multiple gap costs are taken into account as follows: α is the cost of the first gap; β is the

cost of the following gaps. Fig. 1 illustrates an example with gap costs α = 1 and β= 1
and Sbt defined as:





−
=

1

2
),(yxSbt

yx

yx

≠

=

Each position of the matrix H is a similarity value. The two segments of S1 and S2
producing this value can be determined by a backtracking procedure (see Fig. 1).

Fig. 1: Example of the Smith-Waterman algorithm to compute the local alignment between two
DNA sequences ATCTCGTATGATG and GTCTATCAC. The matrix H(i,j) is shown for the

computation with gap costs α = 1 and β= 1, and a substitution cost of +2 if the characters are
identical and -1 otherwise. From the highest score (+10 in the example), a trace back procedure
delivers the corresponding alignment (shaded cells), the two subsequences TCGTATGA and
TCTATCA.

2.2 Master-Slave Paradigm
 This application is based on SPMD concept. Thus, the application is modeled
with the master-slave paradigm. The master is responsible for dividing the tasks and
scheduling the tasks and slaves execute the tasks (see figure 2).

520 Wang and Jie

1 2 N

Pr ocess

MASTER

1

Pr ocess

SLAVE 1

2

Pr ocess

SLAVE 2

N

Pr ocess

SLAVE N

.

r esul t
t ask

submi ssi on

Fig. 2: Master-slave paradigm

Considering the tasks submitted to the slave, slave selects the nearest proper

Protein Banks and make a copy of part or total protein alignment paradigms of the
Protein Banks (see figure 3). These copies of protein alignment paradigms are used for
protein alignment comparison. When the task is finished, the results are sent back to the
master.

I nt er net

Pr ot ei n
Bank

Pr ot ei n
Bank

Pr ot ei n
Bank

Pr ot ei n
al i gnment
Par adi gms

Tasks

SLAVE

Figure 3 Replication Selection of Slave

 3. RESOURCE SELECTION FRAMWORK

3. 1 Overview

 The resource selection framework is designed with its server on the master node
and clients on the slave nodes. Resources are managed and jobs are submitted from the
server. The system configuration is shown in Figure 4.

Bio-grid Computing 521

Database

DIS

Scheduler

GUI

RSL
Generator

Job

Submission

grid resources

.

Figure 4 Resource Selection Framework

 Distributed Information System (DIS) maintains the static and dynamic
information of computing grid resources. Scheduler manages and schedules the
resources. After RSL generator generates the RSL files, jobs can be submitted to the
computing grid. Master-slave paradigm is used to schedule resources and submit jobs
(Figure 5). With GUI, users can submit jobs from one host to the computing grid. The
submission host is master node and other nodes in the computing grid are slave nodes.

master node

slave node1

sub-node2

sub-node1

sub-node3

slave node2 slave nodeN

Condor Cluster

slave node3

sub-node1

sub-node2

PBS Cluster

...

job
 su

bm
iss

io
n

jo
b

 s
u
b
m

is
s
io

n

job submission

job submission

job manage

by condor
job manage

by PBS

Figure 5 Job Submission

3.2 Distributed Information System
In the system, there is a daemon running on each slave node. The daemon will

maintain the static information (e.g., CPU speed, CPU count, memory) and the dynamic
information (e.g., available CPU percent and available memory) of slave nodes. The
maser node will send request to slave nodes and get system information periodically. So,
the master node can maintain a global system information table (Figure 6).

522 Wang and Jie

master node

slave node1 slave node2 slave nodeN...

qu
ery

q
u
e
ry

queryaw
sw

er

a
w

s
w

e
r

awswer

d
a
e
m

o
n

d
a
e
m

o
n

d
a
e
m

o
n

system
information

table

 Figure 6 Distributed information system

 With Globus API [22], we can get the information of slave nodes. Fig6 is an example of our system
output (see Figure 7).

Figure 7 Output of system information

3.3 Scheduler

Computing grid is a hierarchical, distributed and shared system. The static information
and run-time system information are both important for scheduling the resources [15].
We firstly quantify the static computing capacity by selecting a protein alignment whose
size is Length as the benchmark. On node j , the static computing capacity is:

(1)

where jT is the time to finish the job of processing protein alignment benchmark and jC

is the computing capacity of the node j (measured protein alignment length per hundred

seconds). It should be noticed that this parameter is application relevant. So, it can be
calculated before job submission.
 DIS can be used to obtain the following run-time information of the system:

jACPU (available CPU percent of node j). The run-time computing capacity of node

j can then be defined as:
 (2)

j

j
T

Length
C =

jjj ACPUCRC *=

 Bio-grid Computing 523

It is a metric that measures the current fulfillment of application’s computing requirement
by node j per unit time. Thus, for time period T , the work can be done by node j is:

 (3)

 Self-scheduled work queue algorithm is a popular algorithm for scheduling sets
of independent tasks. The algorithm assigns jobs to hosts as soon as they become
available in a greedy fashion [11,15]. Here, an improved self-scheduled work queue
algorithm is used. New algorithm does not use a parameter to decide whether the hosts
are free (e.g. when the available CPU percent is 30%, the node is defined to be free).
Improved self-scheduled work queue algorithm just allocates the jobs based on the
dynamic CPU load. Although the host is busy and not free (e.g., available CPU percent is
10%), new algorithm still allocate some small size jobs to this host to occupy the
available CPU percent. The scheduling process is shown as Figure 8.

update system information

dynamic computing capacity estimation

scheduling resource

job submission

sleep the time step T

Figure 8 Schedule process

 The platform updates the dynamic information periodically and schedule jobs. It
estimates the run-time computing capacity and submits jobs to each slave nodes. The
period of job submission is T . In the protein alignment analysis application, each job
generated has a parameter that indicates the size of the protein data to be searched. The

scheduler will make use of formula (3) to calculate jW and translates it to the parameter

of the job to be generated for node j .

3.4 Failure Recovery Scheme
Failure recovery scheme is developed to address the problem that application

programs hang up and waist the CPU cycles of computing resources. The system failure
of resources can be detected by DIS.
 Time out scheme is used here. After the task is submitted, if the limit of response
time reaches and there is no result back, the task in the slave node then is killed by the
master and re-submitted to other slave node.

TRCW jj *=

524 Wang and Jie

 The limit of response time is determined as follows:

(4)

where,

ijLimit is limit of response time of task i on slave j ,

ijERT is expected response time of task i on slave j .

Expected response time is determined as follows:

(5)

where,

iTask is the size of task i that running on node j (in term of protein alignment length),

jRC is the run-time computing capacity of node j , which is given in Equation (2).

4. Replica Selection Framework

After the task is submitted to the slave node, the slave node makes a replica selection for
running the task. Different types of task may require different data sets (protein
alignment paradigms) for protein alignment analysis. These data sets are stored in
different Protein Banks, which locate in geographically distributed sites.
 An LDAP [23, 24] server is configured to present replica directory service.
Replica catalog supports to register the Protein Banks as logical collections of data sets
and provides mappings between data sets and Protein banks (see also figure 9).

Repl i ca Cat al og

Pr ot ei n

Bank 1

Prot ei n

Bank M

Pr ot ei n

Bank 2
.

 Locat i on: 155. 69. 144. 231

 Pr ot ocal : Gr i dFTP, FTP

 Pat h: / st af f / wl z/ wor k

 dat aset 1: bsub. f aa

 dat aset 2: ecol i . f aa

 dat aset 5: mt ub. f aa

Figure 9 Replica catalog

ijij ERTLimit ×=)2~5.1(

j

i
ij

RC

Task
ERT =

Bio-grid Computing 525

I n t e r n e t

d a t a s e t s

T a s k s

S L A V E

L D A P
s e r v e r

P r o t e i n
B a n k k

P r o t e i n
B a n k 1

P r o t e i n
B a n k 2

R e p l i c a
C a t a l o g

Figure 10 Replica Selection Framework

 The replica selection in the slave node follows these steps (see also figure 10):
(i) Get information of tasks submitted to the slave node and determine the data sets needed for

tasks execution.
(ii) Query LDAP server to locate the proper Protein Banks that can present the data sets needed.
(iii) From every proper Protein Bank to the slave node, the peer-to-peer communication

performance is tested.
(iv) The slave node selects the Protein Banks that give minimum data transfer time as the replica

source.

5. PERFORMANCE EVALUATION

5.1 Test bed
Table 1. Test bed Configuration

Locati

on

Resource Operating System

Intel PIII-733 MHz *12 Condor / Linux

Intel PII-450 MHz *6 PBS / Linux

Computing Resource
(Cluster)

SUNW,UltraSPARC-II *10 Sun Grid Engine / Solaris 2.6

LDAP server Intel PIII-733 MHz Linux

NTU,
Singap

ore

Protein Bank Intel PIII-733 MHz Linux

Computing
Resource (Cluster)

IBM xSeries 330, PIII 933 MHz *13 Condor / Linux IHPC,
Singapr
e

Protein Bank IBM xSeries 330, PIII 933 MHz Linux

Osaka
Univ.,
Japan

Computing Resource
(Single Node)

Intel PII-450MHz*1 Fork / Free BSD

526 Wang and Jie

Table2 Experiments Results

Execution Time(s) Index Protein

Alignment

Length Static

scheduling

algorithm (T1)

Improved self-scheduled work

queue algorithm (T2)

Performance Efficiency

Enhancement

(1-T2/T1)

(a) 925 3071 2563 16.5%
(b) 2821 8911 7224 18.9%
(c) 4289 12973 10227 21.2%

LDAP Ser ver

Cl ust er s

Cl ust er s

si ngl e node

Pr ot ei n
Bank

Pr ot ei n
Bank

I nt er net

NTU
Si ngapor e

I HPC

Si ngapor e

Osaka Uni v.
Japan

dedi cat ed

l i nk

Figure 11 Test bed

In order to evaluate the performance of the integrated resource management
framework, a test bed is configured (see also Figure 11). It includes 3 clusters in NTU
(Nanyang Technological Univ., Singapore), one cluster in IHPC (Institute of High
performance Computing, Singapore) and a single node in Osaka University (Japan). A
LDAP is configured in NTU for replica service. Two Protein Bans are set inside NTU
and IHPC separately. Table 1 shows the hardware and software configuration of the test
bed. Globus ToolkitTM is installed on the head nodes of clusters and the single node in
Japan. Globus GRAM will talk with the local job manager (e.g., Condor) about how to
execute the jobs submitted by Globus GRAM.

Bio-grid Computing 527

5.2 Performance Evaluation
Three experiments were conducted with different problem sizes. We compare the

execution time of static scheduling algorithm and improved algorithm (Figure 12). Table
2 presents the experiment results in detail.
 The results show that the performance efficiency increases as the problem size
grows. In general, we can see that the resource management framework can help this
application achieve better performance.

E
x
ec

u
ti

o
n

T
im

e

(a) (b) (c)

Problem Size

staic algoritm

our algoritm
4000s

 8000s

12000s

Figure 12 Execution Times

Figure 13 Communication Performance

Table 3 shows the replica placement for the Protein Bank. Now, single node in the Osaka
Univ., as an example, is the slave node and replica selection result is showed below.
Table 5 shows the replica selection for different replica requirement of tasks running on
the slave node.

Table 3 Replica placement
Protein

Bank

Site Replica placement

1 NTU dataset1, dataset2, dataset5
2 IHPC dataset1, dataset3, dataset4

1

0. 5

1 2 3 4 5 6 7 8

Bandwi dt h
(Mbps)

i ndex

communi cat i on

per f ormance bet ween NTU

and Osaka Uni v.

communi cat i on

per f ormance bet ween I HPC

and Osaka Uni v.

528 Wang and Jie

6. CONCLUSION AND FUTURE WORK

The objective of resource management framework is to help bio-information
applications achieve better performance in the grid environment. In the framework, we
improve self-scheduled work queue algorithm to schedule the resources for these
applications. Experiment results show that applications can achieve better performance
than using static scheduling algorithm. On the other hand, replica selection framework
helps slave nodes to make replica selection dynamically. Thus, better performance is also
reached.

Table 4 Replica Requirement and Selection
Task
index

Replica
requirement

Replica
decision

1 dataset1 Protein Bank 1
2 dataset2 Protein Bank 1
3 dataset2 Protein Bank 1
4 dataset3 Protein Bank 2

5 dataset5 Protein Bank 1
6 dataset1 Protein Bank 1
7 dataset2 Protein Bank 1
8 dataset4 Protein Bank 2

Our future work is to include performance prediction for the computing resources and communication
network. Thus, with the prediction information, we expect to improve the performance of the applications.

REFERENCES

[1] BioGRID project in EUROGRID project, http://biogrid.icm.edu.pl/, 2002
[2] BioGRID Computing Symposium 2001, http://www.bic.nus.edu.sg/biogrid/biogrid01/ , 2001
[3] BioGRID project in Japan, http://www.biogrid.jp/, 2002
[4] Bertil Schmidt, Heiko Schroder and Thambipillai Srikanthan, A SIMD Solution to iosequence

Database Scanning, Proceedings PaCT'2001, Lecture Notes in Computer Science 2127, Springer
2001, pp. 498-509.

[5] Lizhe Wang, Wentong Cai, et. al. Bio-grid Computing Platform: Parallel Computing for Protein
Alignment Analysis, to appear 6th International Conference on High Performance Computing in
Asia Pacific Region (HPC Asia), 2002.

[6] Alignment and Modeling System, http://www.cse.ucsc.edu/research/compbio/sam.html, 2002.
[7] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler, Hidden Markov models in

computational biology: Applications to protein modeling. Journal of Molecular Biology,
235:1501--1531, February 1994.

[8] Parallel Protein Information Analysis system, http://www.cbrc.jp/papia/papia.html, 2002.
[9] Neil Spring and Rich Wolski. Application Level Scheduling of Gene Sequence Comparison on

Metacomputers. 12th ACM International Conference on Supercomputing, Melbourne, Australia,
July 1998.

[10] F. Berman and Rich Wolski, R., Scheduling from the Perspective of the Application. In
Proceedings of the 5th International Symposium on High-Performance Distributed Computing
(HPDC-5), pages 100-111, August 1996.

Bio-grid Computing 529

[11] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, The AppLeS Parameter Sweep Template:

User-Level Middleware for the Grid. In Proceedings of the Supercomputing Conference
(SC'2000), 2000.

[12] F. Berman and R. Wolski. The AppLeS Project: A Status Re- port. In Proceedings of the 8th NEC
Research Symposium, Berlin, Germany, May 1997.

[13] F. Berman, R. Wolski, et.al., Application Level Scheduling on Distributed Heterogeneous
Networks. In proceedings of Supercomputing, 1996.

[14] Henri Casanova, Graziano Obertelli, F. Berman, and R. Wolski, The AppLeS Parameter Sweep
Template User-level Middleware for the Grid, Proceedings of IEEE Supercomputing 2000,4-10
November 2000, Dallas, Texas, USA

[15] T. Hagerup, Allocating Independent Tasks to Parallel Processors: An Experimental Study, Journal
of Parallel and Distributed Computing 47(1997), 185-197

[16] M. Litzkow, M. Livny, and M. W. Mutka. Condor – A Hunter of Idle Workstations. In
Proceedings of 8th International Conference of Distributed Computing Systems, June 1988.

[17] Condor Project, http://www.cs.wisc.edu/condor/
[18] PBS Project, http://www.openpbs.org/
[19] Legion Project, http://legion.virginia.edu/
[20] Globus Project, http://www.globus.org
[21] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid Information Services for Distributed

Resource Sharing. In Proceedings of the 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

[22] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, CoG Kits: A Bridge between
Commodity Distributed Computing and High-Performance Grids. ACM 2000 Java Grande
Conference, 2000.

[23] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, B. Tierney. File and Object
Replication in Data Grids Proceedings of the Tenth International Symposium on High
Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

[24] T. A. Howes and M. C. Smith. LDAP Programming Directory-Enabled Application with
Lightweight Directory Access Protocol. Technology Series. MacMillan, 1997.

