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Abstract 
The explicit group successive overrelaxation (EGSOR) methods which 

approximates the solution of the sparse linear systems derived from the discretisation 
of self-adjoint elliptic partial differential equations have been presented (Yousif & 
Evans, 1986) and it has been shown that these methods are faster and with a smaller 
computational effort in comparison with the implicit 1-line and 2-line block 
successive overrelaxation (SOR) iterative methods. Martins, Yousif and Evans (2002) 
introduced a new explicit 4-point group accelerated overrelaxation (EGAOR) iterative 
method and made a comparison with the point AOR method for the model problem 
showing its computational advantages. The aim of this paper is to present an explicit 
4-point de-coupled group accelerated overrelaxation iterative (EDGAOR) method and 
to show that it is faster than the explicit 4-point group accelerated overrelaxation 
(EGAOR) iterative method. 
 
KEY WORDS: Explicit Decoupled Group, rotated finite difference, 4 point group, 
Poisson’s equation. 
 
C.R. CATEGORIES:  G.1.3, G.1.8. 
 
 

1. INTRODUCTION AND PRELIMINARIES 

 

Many boundary value problems arising in partial differential equations, nonlinear 

systems, problems of eigenvalues and other subjects lead us to the linear system of 

equations. 

 A u = b, (1.1) 

where A nn,
C∈  is a given non-singular matrix with non vanishing diagonal entries,  

b
n

C∈ is a known vector and u is the unknown vector. To approximate the solution of 

(1.1) we can use the Accelerated Overrelaxation iterative method ( AOR ) introduced 

in (Hadjidimos, 1978),  or  the  4-point  group  accelerated  overrelaxation  (EGAOR)  
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Iterative method ( Martins, Yousif and Evans, 2002) which involves two real 

parameters r and ω, with ω ≠ 0. For some special values of the two parameters we can 

obtain the Jacobi (J), the Gauss-Seidel (GS), Simultaneous Overrelaxation (JOR) and 

Successive  

Overrelaxa tion (SOR) methods or their 4- point group versions. 
 

Let us consider the linear self-adjoint elliptic equation, 
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defined in a bounded region Ω, where A(x, y) > 0, B(x, y) > 0 and  F(x, y) ≥ 0  and ∂Ω 

is the boundary of Ω. For simplicity, we will work with Laplace’s equation  
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defined in the unit square, 0 ≤ x, y ≤ 1, with m2 internal mesh points in the region 

shown in figure 1. This equation is obtained from (1.2) if we consider A(x, y) = B(x, y) 

= 1  and  F(x, y) = G(x, y) = 0. 

        y 
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 Figure 1 

 

The standard technique for solving the sparse linear systems derived from the 

discretisation of self-adjoint elliptic partial differential equations by finite difference 

techniques (block or line iterative methods) can be improved if we use explicit group 

methods (Evans and Biggins, 1982), (Yousif & Evans, 1986). These explicit groups 

are obtained using the standard five point finite difference formula. 
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 In this paper we approximate the solution of the equation (1.4) by using 

coordinates rotated 45o with respect to the mesh (Dahlquist and Bjorck, 1974), 

(Vichnevetsky, 1981). The spacing between points becomes 2 h, then at each grid 

point, the discretised form of equation  (1.4) is 
 

 04 1,11,1,1,11,1 =++−+ +−−+−−++ jijijijiji uuuuu . (1.5) 
 

The discretisation of (1.4) leads to (1.1), (Varga, 1962). Thus, let us consider  

 

 A = D – E – F (1.6) 

 

where D = diag (A), E and F are strictly lower and upper triangular matrices obtained 

from  A , respectively. 

 The AOR iterative method is given by: 
 

 (D – rE) [ ] ,...1,0,)()1( )()1( =++−+−=+
kbuFErDu

kk ωωωω  (1.7) 
 

where ω, r are real parameters and ω ≠ 0. 

 

 If we  define L = ED 1−  and U = FD 1− then the equation (1.7) takes the form 
 

 ,...1,0,)( 1)(

,

)1( =−+= −+ kbrEDuLu k

r

k ωω  (1.8) 

where 

 =ω,rL [ ]ULrIrLI ωωω +−+−− − )()1()( 1   . (1.9) 

 

 As we mentioned before, some well-known iterative methods can be obtained 

from (1.7) with a suitable choice of values for ω and r. Therefore, if we consider ω =  

r we have the Successive Overrelaxation method (SOR), but if we take ω =1 and r = 0 

we have the Jacobi method (J). Obviously if we consider ω =  r = 1 we have the 

Gauss-Seidel (GS) method and the Simultaneous  Overrelaxation method (JOR) can 

be obtained if  r = 0 and ω  takes any value. 

 A brief description of the 4-point EGAOR iterative method is given in Sections 2 

then the 4-point EDGAOR method is presented in Section 3. In order to show the 

performance of the two methods and to investigate their behaviour, numerical 

experiments have been carried out and the results are summarised in Section 4. The 

computational complexity and the relative efficiency of the two methods are 

discussed in Section 5. A comparison between the two method is made when we 

approximate the solution of the model problem which shows that the new method is 

computationally more economic and much faster than the group AOR method. 
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2. THE 4-POINT EXPLICIT GROUP ACCELERATED 

OVERRELAXATION 

(EGAOR) ITERATIVE METHOD 

 

In this section we will briefly show  the derivation of the 4-point (EGAOR) iterative 

method. We assume that the mesh points of Figure 1 are ordered in groups of four in 

accordance with Figure 2, where t = (pm+1), step 2, (p+1)m-1,  m is an even number 

and  p = 0, step 2, m-2. Each group Gl, l = 1, 2,…, m2 /4 contains only four elements 

{t, t+1, t+m, t+m+1}. 

 
      t-m+2           t+2     t+m+2    t+2m+2  
     
 

   t-m+1              t+1      t+m+1  t+2m+1 

                   
               t-m     t   t+m    t+2m        
  
   
 

   t-m-1           t-1       t+m-1     t+2m-1 
 

                                           Figure 2 
 

Then the linear system obtained from employing the five-point difference formula to 

the four adjacent points, i.e., ut, ut+1, ut+m, ut+m+1, simultaneously, can be expressed in 

matrix vector notation as 
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Now the explicit solution of this system is  
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By using the system (2.2), we can derive the 4-point explicit group AOR iterative 

method: 
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(2.3c) 

(2.3d) 

where t = (pm + 1), step 2, (p + 1)m - 1  and  p = 0, step 2, m-2. 
 

 As we stated in section 1, the Jacobi, Gauss-Seidel, SOR and JOR methods are 

special cases of the AOR iterative method. 

 Therefore, in equations (2.3), if we consider ω = r, ω = r =1, r = 0 and ω = 1, 

and  

 r = 0 and ω taking any value, we obtain the explicit group SOR, Gauss-Seidel, Jacobi 

and JOR methods, respectively. Thus, obviously, equation (2.15) in (Yousif & Evans, 

1986)  , can be obtained from (2.3) if we let  r = 0  and  ω = 1. 

 
3. THE 4-POINT EXPLICIT DECOUPLED GROUP ACCELERATED 

OVERRELAXATION (EDGAOR) ITERATIVE METHOD 

In this section we will present an explicit set of equations for the 4-point EDGAOR 

iterative method, where each group is formed from 4 points of the net region Figure 1 

in accordance with Figure 2, where t, m,  p and Gl are defined in Section 2.  

If we use the rotated five-point approximation scheme, this will result in a (4×4) 

system of equations  
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The explicit solution of this system can be de-coupled into the following system of 

two (2×2) equations (see Abdullah (1991)) 
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Figure 3 and Figure 4 shows the position of the  computational molecule at the points 
t and t+1, respectively. Let us notice that the points (points of type     ) )) used in the 
calculation of u at the nodal points t and t+m+1  are independent from the points 
(points of type    ) used in the evaluation of  the function values at the points t+m 
and  t+1. 

 
 1/15                        1/15 

       

                            

         4/15         

      

                        1/15 

         

 

                              4/15                  4/15 

Figure 3   The computational molecule at the point ut 
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                                            1/15                 1/15 

Figure 4 The computational molecule at the point ut+1 
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Due to this independency, the execution time can be saved by nearly half if the 
iteration over the solution domain is only carried out on either type of points. After 
achieving convergence, the solution at the other half of the points is obtained directly 
once using the standard five point difference formula. 
 

Therefore we can derive the 4-point EDGAOR method, the iterative scheme is given 

by: 

                                                                                                                           (3.4a) 

(3.4b) 

or 

(3.5a) 

(3.5b) 
where t = (pm + 1), step 2, (p + 1)m - 1  and  p = 0, step 2, m-2. 

 Hence, the iterations to approximate the solution in all domain is only carried 
out on half the mesh points, using equations (3.4) or (3.5). Once convergence is 
achieved, the solution at the other half of the mesh is evaluated once using the 
standard five point difference formula. 

 

4.   NUMERICAL RESULTS 
 

In this section we present some numerical examples in order to compare the 4-point 

EGAOR and the 4-point EDGAOR iterative methods. These methods were applied to 

Laplace’s equation, 
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 The coefficient matrix for the two methods possesses Property A(π) and are π- 

consistently ordered (see Young, 1971). Therefore the theory of block AOR is valid 

and consequently the algorithms can be used with parameters ω  and  r ( ω ≠ 0). In 

some special cases the optimal values ω  and r can be obtained from Theorem 5.2 of 

(Hadjidimos, 2000). In this example, the used values ω and r were obtained 

computationally starting with r very close to the optimal parameter of the SOR 

method. 

The convergence test used in the numerical experiments was the average test with the 

maximum error  ∈ = 5×10-6. 

 

 

 

Table 1:  r, ω, and number of iterations for the 4-point GAOR method  

 

 h
-1 r ω No. of Iterations 

 11 1.452  1.42 – 1.43 17 

 21 1.66 1.60 – 1.66 34 

 31 1.76 1.613 48 

 41 1.81 1.74 – 1.75 64 

 61 1.866 1.816 – 1.818 94 

 81 1.897 1.815 – 1.824 125 

  101 1.917 1.851 – 1.852 155 

 

Table 2:  r, ω, and number of iterations for the 4-point  EDGAOR method  

 

 h
-1 r ω No. of Iterations 

 11 1.41  1.39 – 1.41 15 

 21 1.63 1.55 – 1.64 29 

 31 1.735 1.69 – 1.72 39 

 41 1.794 1.68 – 1.72 48 

 61 1.857 1.738 – 1.75 71 

 81 1.89 1.792 – 1.842 93 

  101 1.911 1.812 – 1.849 114 
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For self adjoint equations, the 4-point group coefficients can be stored in tabular form 

and then easily accessed for future iterations. 

 

 

 

5. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF THE 4-

POINT EDGAOR METHODS 
 
 

The computational effort measured by the number of operations needed to obtain an 

approximation of the solution of (1.1) using the 4-point EDGAOR method presented 

in Section 3 will be discussed. We assume that a multiplication takes the same 

computer time as an addition. 
 

 In equation (3.4), let   ,15/1=b ω−= 11w ,  )(2 rbw −×= ω ,  rbw ×=3  ,  

ω×= bw4      these need only be calculated once. 
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It can be seen that the number of operations required (excluding the convergence test) 

for the 4-point EDGAOR method is 

  4.5 m
2 operations per iteration + 2.5 m

2 operations.    (5.3) 
 

while the number of operations required (excluding the convergence test) for the 4-

point EGAOR method (Martins, Yousif and Evans, 2002) is 

 11.75 m2 operations per iteration.      (5.4) 
 

Hence, the total computing effort can be determined by multiplying the values of the 

calculated number of iterations for the two methods (see Tables 1 and 2) by the 

number of arithmetic operations in each iteration required by each of the methods, 

these are presented in Table 3. 

 

For the self adjoint case, 50% extra work is required for the 4-point EGAOR and the 

4-point EDGAOR methods. 
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   Table 3:  The computing effort for the two methods 

  

 h
-1 4-Point EGAOR 4-Point EDGAOR  

  

 11   199.75 2
m  70 2

m  

 21   399.50 2
m  133 2

m  

 31   564.00 2
m  178 2

m  

 41   752.00 2
m  218.5 2

m  

 61 1104.50 2
m  322 2

m  

 81 1468.75 2
m  421 2

m  

  101 1821.25 2
m  515.5 2

m  
 

6. CONCLUSIONS 
 

From our analysis of the computational complexity of the two methods (i.e. Equations 

(5.3) and (5.4)), it can be seen that the 4-point EDGAOR method enable more 

efficient manipulation of the algorithm by reducing the number of operations required 

to solve the problem. Further, the results given in Tables 1 and 2 together with the 

results shown in Table 3, indicates that the 4-point EDGAOR method should offer 

significant economies over the 4-point EGAOR method as a substantial reduction in 

the total computing effort was achieved.  
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