
Neural, Parallel, and Scientific Computations 16 (2008) 543-562

Memory Hierarchy Exploration for Accelerating the

Parallel Computation of SVDs

Mostafa I. Soliman

Computer & System Section, Electrical Engineering Department, Faculty of Engineering,

South Valley University, Aswan, Egypt

Abstract

The performance of many applications on modern computers is often limited by memory
latency rather than by processor speed. For computers with memory hierarchy, it is
preferable to perform the computation on blocks of data to reduce the impact of memory
latency by reusing the loaded data in cache memories. This paper proposes a fast
algorithm for parallel computing the extremely useful singular value decomposition
(SVD) based on one-sided Jacobi on multi-level memory hierarchy architectures. On P
parallel processors, the given matrix is divided into super-rows and then these super-rows
are partitioned into 2P blocks. One key point of the proposed algorithm is the highly
exploitation of memory hierarchy by performing all computations on super-rows loaded
in cache memory rather than on rows. Another key point is that the number of sweeps
required for convergence is very close to cyclic one-sided Jacobi. Third key point of the
proposed algorithm is that the number of sweeps required for convergence does not
depend drastically on the size of the input matrix. On two dual-core Intel Xeon
processors, our results show that the performance of parallel implementation of the
proposed algorithm is around 11 times higher than the sequential implementation on the
same hardware. Moreover, a performance of around 10 GFLOPS (double-precision) can
be achieved on the target system using multi-threading, Intel SIMD instructions, matrix
blocking, and loop unrolling techniques.
Keywords - memory hierarchy, multi-core computation, multi-threading techniques,
parallel algorithms, performance evaluation, SIMD, SVD, one-sided Jacobi.

1. INTRODUCTION

 The gap between CPU speed and memory speed is increasing rapidly as new

generations of computer systems are introduced [1, 2]. To address this memory access

bottleneck, most modern computers use multi-level memory hierarchies in their

architectures. The key to improve the performance of applications on multi-level memory

hierarchies is to avoid unnecessary memory references as well as to exploit locality by

reusing the loaded data into a higher-level cache [3]. In computers with multi-level

memory hierarchies, data flows hierarchy from/to main memory to/from registers through

cache memories (off/on-processor). Then data flows from registers into and out of

Received June 1, 2007 1061-5369 $15.00 © Dynamic Publishers, Inc.

544 Soliman

functional units, which perform the given instructions on the data. Therefore, an

algorithm performance can be dominated by the amount of memory traffic rather than by

the number of arithmetic operations involved. The movement of data between memory

and registers can have the same (or even more) cost as arithmetic operations.

 The cost of moving data to and from main memory provides a considerable

motivation to restructure existing algorithms and to devise new algorithms that minimize

data movement by reusing the loaded data into cache memories [4]. A number of

researchers have demonstrated the effectiveness of block algorithms on a variety of

modern computer architectures (see [3] for more detail). On these computers potentially

high performance can easily be degraded by excessive transfer of data between different

levels of memory (registers, cache, or main memory). In particular, for computers with

memory hierarchy, it is often preferable to partition the input data and to perform the

computation on the blocks. This approach provides for full reuse of data while the block

is held in cache memory. It avoids excessive movement of data to/from main memory

and gives a surface-to-volume effect for the ratio of arithmetic operations to data

movement, i.e., O(n3) arithmetic operations to O(n2) data movement [5]. In addition, on

architectures that provide for parallel processing, parallelism can be exploited in two

ways: (1) operations on distinct blocks may be performed in parallel; and (2) within the

operations on each block [4]. For example, on multi-core Intel processors [6], the given

problem can be partitioned into blocks. Parallel proceeding of these blocks are performed

on multiple cores to reduce the total execution time. Besides, Intel SIMD instructions [7]

may be used to perform operations on a block in parallel to further improve the

performance.

 In linear algebra, the singular value decomposition (SVD) is an important

factorization of a real matrix, with several applications in signal processing, data mining,

statistics, etc [8-10]. SVD problem is a very computationally intensive problem that

needs to exploit the growing availability of parallel hardware. The sequential

implementation of the standard Golub-Kahan SVD algorithm [11] on an m×n matrix

takes O(mn
2) time. This amount of time may not be acceptable especially when the data

size is large. Thus, many researchers have worked on designing efficient techniques to

compute SVDs on parallel to reduce the execution time especially for real time

applications [12-16]. This paper proposes a new algorithm for parallel computing SVD

on multi-level memory hierarchy architectures by restructuring the well-known one-sided

Jacobi method. Hestenes one-sided Jacobi method [17] is selected because it is the best

approach for achieving efficient parallel SVD computation (see [12] for more detail).

 The proposed algorithm, which is called hierarchal block Jacobi (HBJ), partitions the

given matrix into super-rows (panels of rows) to exploit the memory hierarchy by

 Memory Hierarchy Exploration 545

performing all computations on super-rows instead of on rows. Each super-row consists

of a set of consecutive rows of the input matrix. On P parallel processors, these super-

rows are partitioned into 2P blocks to be processed in parallel. Not all block sizes are

necessarily have the same number of super-rows (the number of super-rows in a block

depends on P, however, the number of rows in a super-row is constant). This results in

partitioning the input matrix hierarchy from rows to super-rows, and then to blocks of

super-rows. Our result shows that the hierarchal partitioning of the input matrix reduces

the number of sweeps required for convergence. Besides, in the proposed HBJ algorithm

the number of sweeps required for convergence does not depend drastically on the size of

the input matrix or on the number of parallel processors but depends on the size of super-

rows.

 This paper implements the proposed HBJ algorithm for parallel computing SVD on

multi-core Intel processors. The target system is Dell Precision 690 running Microsoft

Windows Vista operating system. It has two dual-core Intel Xeon processors with hyper-

threading technology running at 3.0 GHz, 2 GB memory, and unified, shared 16-way

second-level cache of 4 MB [6]. Our results show that on Intel Xeon processors, a good

performance of the proposed HBJ algorithm can be obtained by exploiting the multi-core

hardware, memory hierarchy, and Intel SIMD instruction set. Besides, the use of matrix

blocking and loop unrolling techniques further improves the performance of the proposed

algorithm. To be specific, the execution time of the HBJ algorithm on the target system is

around 11 times faster than the sequential implementation on the same hardware.

 This paper is organized as follows. Section 2 reviews of the singular value

decomposition problem briefly. Since most of parallel algorithms for computing SVDs

are based on Jacob technique, one-sided and two-sided Jacobi methods are reviewed. The

proposed algorithm for fast implementation of SVD on multi-level memory hierarchy

systems is presented in Section 3. Section 4 shows the implementation and performance

evaluation of the proposed algorithm on dual-core Intel Xeon processors. Finally, Section

5 concludes this paper and points out the key points of the proposed algorithm.

2. SINGULAR VALUE DECOMPOSITION

 This section provides a brief review of singular value decomposition (SVD) that is

well known in matrix algebra [10]. SVD of a real matrix Am×n (m ≥ n) is its factorization

into the product of three matrices Um×m, Σm×n, and Vn×n such that:

Am×n = Um×m Σm×n V
T

n×n

where Um×m and Vn×n are orthogonal matrices (i.e. UT
U = Im and VT

V = In), and Σm×n is a

diagonal matrix diag(σ0, σ1, σ2, ……,σn-1) on top of (m-n) rows of zeros, assuming that

m ≥ n. The σi are the singular values of Am×n. Matrix Um×m contains n left singular

546 Soliman

vectors, and matrix Vn×n consists of n right singular vectors. The singular values and

singular (column) vectors of Um×m and Vn×n form the relations:

Avi = σi ui and A
T
ui = σi vi.

This decomposition has many important scientific and engineering applications [8-10].

 There are various ways to compute the SVD. Two of the most commonly used

classes of algorithms are bidiagonalization-based and Jacobi-based [10]. The standard

bidiagonalization-based method was introduced by Golub and Kahan in 1965 [11]. It uses

first the Householder transformation to bidiagonalize the given matrix and then the QR

method to compute the singular values of the resultant bidiagonal form. In sequential

computing, the bidiagonalization-based algorithms are usually preferred because they are

faster than the sequential implementation of Jacob algorithms. However, on an m×n

matrix, O(mn
2) clock cycles are needed for implementing the standard Golub-Kahan

SVD algorithm sequentially. On a large matrix size (large values of m and n), the

execution time is unacceptable especially for real-time applications. Moreover, the

bidiagonalization-based algorithms have been found to be difficult to parallelize. In [18],

Luk gives three reasons why the standard SVD method of Golub-Kahan may be

undesirable on a parallel processor.

 On the other hand, the Jacob-based SVD algorithms may be more accurate and have

a higher degree of potential parallelism [19]. Thus, most of parallel algorithms are based

on Jacob technique. There are two varieties of Jacobi-based algorithms, one-sided and

two-sided. As shown below, the two-sided Jacobi algorithms are computationally more

expensive than the one-sided algorithms. Moreover, to implement the two-sided Jacobi

method, it needs to traverse both row and column of the given matrix; however, matrices

are stored either in row-major or column-major format. Thus, one of the two traversals

will be less efficient on conventional memory architectures. In other words, one of the

two traversals accesses the elements of the input matrix Am×n with unit stride, which is

efficient, however, the other traversal performs stride n accesses, which is expensive

because of cache miss handling time [7]. On the other hand, the one-sided rotation

modifies rows only, which is more suitable for memory hierarchy architectures. Thus, to

achieve efficient parallel SVD computation the best approach may be to adopt the

Hestenes one-sided Jacobi transformation method [17] as advocated in [12, 20].

 The two-sided Jacobi iteration algorithm transforms a symmetric matrix An×n into a

diagonal matrix Σn×n by a sequence of Jacobi rotations (J), where each transform attempts

to zero-out a given off-diagonal element of An×n.

Σn×n = (Jn
T
 · · · (J3

T (J2
T (J1

T AJ1)J2)J3) · · · Jn) = (J1J2J3 · · · Jn)
T
A(J1J2J3 · · · Jn).

 Memory Hierarchy Exploration 547

The Jacobi rotation J(i, j, θ) for an index pair (i, j) and a rotation angle θ is a square

matrix that is equal to the identity matrix I plus four additional entries at the intersections

of rows and columns i and j:

J(i, j, θ) =





























−

1000

00

00

0001

LLL

MOMMM

LLL

MMOMM

LLL

MMMOM

LLL

cs

sc

where c = cos(θ) and s = sin(θ). It is clear that the Jacobi rotation is an orthogonal matrix

(i.e. J(i, j, θ)T J(i, j, θ) = I) using the fact of cos2(θ)+ sin2(θ) = 1. The rotation parameters

c and s are computed such that the resultant matrix B = JT
AJ is diagonal, i.e., bij = bji = 0.










−


















−
=











cs

sc

aa

aa

cs

sc

bb

bb

jjji

ijii

T

jjji

ijii

By solving this equation and taking the smaller root, c and s are obtained by:

21

1

t
c

+

=

and

s = tc

where

1

)(
2

++

=

ττ

τsign
t

 and

ij

iijj

a

aa

2

−
=τ .

 Depending on the order of choosing the element to be zeroed, there are classic Jacobi

and cyclic Jacobi algorithms. In the classic Jacobi iteration algorithm, each

transformation chooses the off-diagonal element of the largest absolute value. However,

searching for this element requires expensive computations. Cyclic Jacobi algorithm

sacrifices the convergence behavior and steps through all the off-diagonal elements in a

row-by-row or column-by-column fashion. It needs to perform n(n - 1)/2 rotations

attempting to diagonalize an n×n symmetric matrix. These n(n - 1)/2 rotations constitute a

sweep. Note that when an off-diagonal element is zeroed it may not continue to be zero

when another off-diagonal element is zeroed. Since the norm of the off-diagonal elements

548 Soliman

decreases after each sweep, a finite number of sweeps are required for Jacobi algorithms

to converge. There are two important implementation details which determine the speed

of convergence of the Jacobi based algorithms for computing the SVD. The first is the

method of ordering, i.e., how to order the n(n - 1)/2 rotations in one sweep of

computation. Various orderings have been introduced in the literature. The second

important detail is the method for generating the plane of rotation parameters c and s in

each iteration.

 In Hestenes one-sided Jacobi algorithm [16], SVD of a real matrix Am×n (m ≥ n) is

computed by generating an orthogonal matrix Um×m such that the transformed matrix Bm×n

has orthogonal rows.

Um×m Am×n = Bm×n,

where rows of Bm×n satisfy:

bi
T
bj = 0 for i ≠ j.

By normalizing the Euclidean length of each non-zero row to unity, the following relation

can be obtained:

Bm×n = S Vn×n,

where Sn×n = diag(s1, s2, . . . , sn), and si = bi
T
bi and Vn×n is a matrix whose non-zero rows

form an orthogonal set of vectors. An SVD of Am×n is given by

Am×n = UT
m×m Sm×n Vn×n.

Hestenes [17] suggested that the orthogonal matrix Um×m should be constructed as a

sequence of plane rotations.

Am×n = (Jn
T
 · · · (J3

T (J2
T (J1

T A))) · · ·) = (J1J2J3 · · · Jn)
T
A

where, Jk is a plane rotation. Each plane rotation affects only two rows. For a given i and

j, rows i and j are orthogonalized by Bm×n = JT
Am×n where J = J(i, j, θ) is the same matrix

as in the two-sided Jacobi:




















−
=










T

j

T

i

T

T

j

T

i

a

a

cs

sc

b

b

here c and s are chosen such that bi
T
bj = 0. The solution of them is:

21

1

t
c

+

=

and

s = tc,

where

 Memory Hierarchy Exploration 549

1

)(
2

++

=

ττ

τsign
t

 and

j

T

i

i

T

ij

T

j

aa

aaaa

2

−
=τ .

 It is clear that there is a close similarity between one-sided and two sided versions of

the Jacobi algorithm.

3. THE PROPOSED ALGORITHM: HIERARCHAL BLOCK JACOBI (HBJ)

 Traditionally, parallel algorithms for computing SVD on n×n matrix partition the

n(n - 1)/2 rotations of a sweep into rotation sets. Each rotation set consists of some

number of independent rotations. Therefore, all the rotations of a rotation set can be

performed in parallel. Most of the parallel SVD algorithms in the literature employ (n - 1)

rotation sets, with each rotation set consisting of n/2 independent rotations. The Stream

Hestenes SVD algorithm [15] is an exception, where all rotations can be performed in

parallel even though they are dependent.

 The proposed HBJ algorithm employs the idea of calculating rotations parameters (c

and s) at once and then applying all of them also at once to exploit hierarchal memory.

This is a good step for switching from vector operations, which require O(n) memory

accesses for O(n) FLOPs, to matrix operations, which require O(n2) memory accesses for

O(n3) FLOPs. Matrix operations are performed based on matrix blocking technique,

which is an efficient technique to improve the performance of many matrix-based

applications on a variety of modern computer architectures with parallel processing

capabilities [3, 4].

 The main problem of the direct applying this idea of Stream Hestenes SVD

algorithm [15] is the increase of the number of sweeps required for convergence. To be

specific, Figure 1 shows the number of sweeps for parallel computing SVD of real

matrices on eight processors. Based on the partitioning method described in [21], the

input matrix An×n is portioned into 16 (2P and P = 8) blocks, with each block consisting

of n/16 consecutive rows of An×n. It is clear that as the matrix size increases, the number

of sweeps required for convergence increases. For a large matrix size, the number of

sweeps using Stream Hestenes SVD algorithm is orders of magnitude greater than that

required by cyclic Jacobi algorithm (see Figure 1). However, we observe that the number

of sweeps is close to the cyclic one-sided Jacobi when the number of rows per block is

small (see Figure 2). Approximately, the total execution time for computing SVD equals

the execution time of a sweep times the number of sweeps. Thus, our approach to reduce

550 Soliman

the total execution time for computing SVD is that: (1) parallel processing techniques

would be used to reduce the execution time per sweep; and (2) the use of a small number

of rows per block would reduce the number of sweeps required for convergence.

 The idea of our proposed HBJ algorithm is as follows. Instead of partitioning the

input matrix An×n based on the number of parallel processors (P) into 2P blocks, n/2P

rows each, the input matrix is partitioned into N super-rows (panels of rows). Each super-

row consists of S (1 ≤ S ≤ n/2P) consecutive rows of the input matrix An×n. These N

super-rows are then partitioned into 2P blocks; each block has N/2P or N/2P super-

rows. One advantage of the HBJ algorithm is the highly exploitation of memory

hierarchy by performing all computations on super-rows using matrix operations (based

on matrix blocking technique) instead of on rows using vector operations (based on strip

mining technique). Performing matrix operations on super-rows loaded in cache

memories exploits the memory hierarchy by reusing these loaded data. Another

advantage is that the number of sweeps required by HBJ for parallel computing SVD is

1

10

100

1000

10000

10
0

20
0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

10
00

11
00

12
00

13
00
14

00
15

00
16

00
17

00
18

00

Matrix Size

N
u

m
b

e
r

o
f

S
w

e
e

p
s

Stream Cyclic Jacobi

Figure 1: Number of sweeps of SVD on 8 parallel processors

0

5

10

15

20

25

30

13 25 38 50 63 75 88
Block Size

N
u

m
b

e
r

o
f

S
w

e
e

p
s

Stream Cyclic Jacobi

Figure 2: Number of sweeps for Stream and Cyclic Jacobi

 Memory Hierarchy Exploration 551

very close to cyclic one-sided Jacobi, as shown in details in Section 4. Moreover, the

number of sweeps required for converging the proposed HBJ algorithm does not depend

drastically on the size of the input matrix or the number of parallel processors but on the

size of super-rows. These advantages lead to reducing the total execution time required

for parallel computing the SVD problem on multi-level memory hierarchy architectures.

 There are two implementation approaches when S does not divide n. One approach is

extending the input matrix with rows of zeros, which results in N equals n/S and S is

constant. The other approach uses super-rows with different sizes (S is variable), which

results in N equals n/S and S varies from n/N to n/N rows. On other words, (n –

S*n/S) super-rows have a size of n/N rows and the remaining super-rows have a size

of n/N rows. For example, on 100×100 matrix, P = 8, and S = 6, the first approach

results in 17 super-rows, six rows each. However, the second approach results in 16

super-rows; four super-rows with seven rows each, and the remaining 12 super-rows with

six rows each. Both approaches are implemented and evaluated, and the performance of

one is close to the other. On P parallel processors, these N super-rows are portioned into

2P blocks. Each processor performs computations on a pair of blocks. Not all block sizes

are necessarily have the same number of super-rows; some blocks have N/2P super-

rows while the others have N/2P super-rows.

 In the proposed HBJ algorithm, the computation of SVD is done in two main parts.

In the first part, which is the beginning of a sweep, each processor orthogonalizes the

rows of a block. As shown in Listing 1 lines 3 to 10, the ith processor (1 ≤ i ≤ P) fetches

the super-rows of the (2i-1)th block sequentially and orthogonalizes the rows of a super-

row with each other exactly once. The idea of Steam Hestenes SVD algorithm [15] is

used to calculate the rotation parameters of a super-row (set of rows) at once and then

apply all of them as follows. All rotations parameters of the jth super-row are computed

and stored in arrays c[] and s[] by calling CalAll(SupRow[j],c[],s[]) routine.

Then, all rotation parameters (c[] and s[]) are applied to the corresponding super-row at

once by calling ApplyAll(SupRow[j],c[],s[]) routine (see Listing 1 lines 4 to

6). Note that the super-rows assigned to the b
th block can be accessed using a data

structure called Block[b]. The indices of the first and last super-rows of the bth block are

stored in Block[b].low and Block[b].high respectively. In short, the jth super-row of bth

block means Block[b].low ≤ j ≤ Block[b].high. The same is done to access the rows of a

super-row j; SupRow[j].low and SupRow[j].high are used to get the indices of the first

and last rows of the jth super-row, respectively.

 After performing the rotations within each super-row of a block, the rotation

parameters are computed and then applied between super-rows of the same block by

calling CalAll(SupRow[],SupRow[],c[],s[]) and ApplyAll(SupRow[],

SupRow[],c[],s[]) routines, respectively, as shown in Listing 1 lines 7 to 10. Each

552 Soliman

row in one super-row must be orthogonalized with each row in the other super-row once

but no rows in the same super-row are orthogonalized. The same is done for (2i)th block

by ith processor (again, each processor works on a pair of blocks).

 The second part of the proposed scheme iterates (2P - 1) steps (see Listing 1 lines 11

to 17). P(2P - 1) block pairs can be generated in (2P - 1) steps on P parallel processors.

The well-kwon round-robin algorithm is used to generate (2P - 1) steps, P block pairs

each, required for implementing SVD on P parallel processors. Figure 3 shows that the

generation of seven steps on four parallel processors using the round-robin method. In the

computations of each step, each super-row in one block must be orthogonalized with each

super-row in the other block once but no super-rows in the same block are

orthogonalized. This is done by calling CalAll(SupRow[],SupRow[],c[],s[])

and ApplyAll(SupRow[],SupRow[],c[],s[]) routines. The round-robin

ordering subroutine (see Figure 3) is applied to get the next step, and so forth.

 Note that in step 0 of Listing 1, the Frobenius norm of the input matrix is calculated,

which remains unchanged under orthogonal transformations. The Frobenius norm times

the machine epsilon (ε = 10-15) is used for checking the orthogonalization between two

rows. Besides, the new order of the round-robin routine is stored on up[] and dn[] arrays.

Initially up[] and dn[] arrays are initialized with even (2, 4, 6, …) and odd (1, 3, 5, …)

numbers, respectively, as shown in Figure 3 step 1. The contents of these arrays are

changed by calling the round-robin routine, as shown in Figure 3 steps 2 to 7.

Listing 1: The proposed HBJ algorithm

00. δ = ε ∑ A[i]TA[i], 1 ≤ i ≤ n
01. repeat
02. converged = true
03. for s = 1 to (2*P)
04. for i = Block[s].low to Block[s].high
05. CalAll(SupRow[i],c[],s[])
06. ApplyAll(SupRow[i],c[],s[])
07. for i = Block[s].low to Block[s].high-1
08. for j = i+1 to Block[s].high
09. CalAll(SupRow[i],SupRow[j],c[],s[])
10. ApplyAll(SupRow[i],SupRow[j],c[],s[])
11. for iteration = 1 to (2*P – 1)
12. for s = 1 to P
13. for i = Block[up[s]].low to Block[up[s]].high
14. for j = Block[dn[s]].low to Block[dn[s]].high
15. CalAll(SupRow[i],SupRow[j],c[],s[])
16. ApplyAll(SupRow[i],SupRow[j],c[],s[])
17. Round-Robin(up[], dn[])
18. until converged = true
19. for i = 1 to n

20. σ[i] = sqrt(A[i]TA[i]

 Memory Hierarchy Exploration 553

CalAll(SupRow[r],c[],s[])
 index = 0
 for i = SupRow[r].low to SupRow[r].high-1
 for j = i+1 to SupRow[k].high
 dii = A[i]TA[i] , djj = A[j]TA[j] , dij = A[i]TA[j]

 if |dij| > δ then converged = false

 if dij ≠ 0 then

 τ = (djj - dii)/(2 * dij) , t = sgn(τ)/(|τ| + sqrt(τ
2 + 1)

 c[index] = 1 / sqrt(t2 + 1) , s[index] = t * c[index]
 else
 c[index] = 1 , s[index] = 0
 index = index + 1
ApplyAll(SupRow[r],c[],s[])
 index = 0
 for i = SupRow[r].low to SupRow[r].high-1
 for j = i+1 to SupRow[k].high
 for k = 1 to n
 temp = c[index] * A[i][k] - s[index] * A[j][k]
 A[j][k] = s[index] * A[i][k] + c[index] * A[j][k]
 A[i][k] = temp
 index = index + 1
CalAll(SupRow[r],SupRow[q],c[],s[])
 index = 0
 for i = SupRow[r].low to SupRow[r].high-1
 for j = SupRow[q].low to SupRow[q].high-1
 dii = A[i]TA[i] , djj = A[j]TA[j] , dij = A[i]TA[j]

 if |dij| > δ then converged = false

 if dij ≠ 0 then

 τ = (djj - dii)/(2 * dij), t = sgn(τ)/(|τ| + sqrt(τ
2 + 1))

 c[index] = 1/ sqrt(t2 + 1) , s[index] = t * c[index]
 else
 c[index] = 1 , s[index] = 0
 index = index + 1
ApplyAll(SupRow[r],SupRow[q],c[],s[])
 index = 0
 for i = SupRow[r].low to SupRow[r].high-1
 for j = SupRow[q].low to SupRow[q].high-1
 for k = 1 to n
 temp = c[index] * A[i][k] - s[index] * A[j][k]
 A[j][k] = s[index] * A[i][k] + c[index] * A[j][k]
 A[i][k] = temp
 index = index + 1

Block 2

Block 1

Block 4

Block 3

Block 6

Block 5

Block 8

Block 7

Step 1: (B1, B2), (B3, B4), (B5, B6), (B7, B8)

Block 4

Block 2

Block 6

Block 1

Block 7

Block 3

Block 8

Block 5

Step 2: (B2, B4), (B1, B6), (B3, B7), (B5, B8)

Block 3

Block 5

Block 1

Block 7

Block 2

Block 6

Block 8

Block 4

Step 6: (B3, B5), (B1, B7), (B2, B6), (B4, B8)

Block 6

Block 4

Block 7

Block 2

Block 5

Block 1

Block 8

Block 3

Step 3: (B4, B6), (B2, B7), (B1, B5), (B3, B8)

Block 7

Block 6

Block 5

Block 4

Block 3

Block 2

Block 8

Block 1

Step 4: (B6, B7), (B4, B5), (B2, B3), (B1, B8)

Block 5

Block 7

Block 3

Block 6

Block 1

Block 4

Block 8

Block 2

Step 5: (B5, B7), (B3, B6), (B1, B4), (B2, B8)

Block 1

Block 3

Block 2

Block 5

Block 4

Block 7

Block 8

Block 6

Step 7: (B1, B3), (B2, B5), (B4, B7), (B6, B8)

Processor 1 Processor 2 Processor 3 Processor 4

Processor 1 Processor 2 Processor 3 Processor 4

Processor 1 Processor 2 Processor 3 Processor 4

Processor 1 Processor 2 Processor 3 Processor 4

Processor 1 Processor 2 Processor 3 Processor 4

Processor 1 Processor 2 Processor 3 Processor 4

Processor 1 Processor 2 Processor 3 Processor 4

Figure 3: Round-robin method for generating various orders

554 Soliman

Architecture
State

Architecture
State

Architecture
State

Architecture
State

Local APIC Local APIC Local APIC Local APIC

Execution
Engine

Execution
Engine

Second Level Cache

Bus Interface Bus Interface P
h
y
si
ca
l
C
o
re
 1

P
h
y
si
ca
l
C
o
re
 1

P
h
y
si
ca
l
C
o
re
 1

P
h
y
si
ca
l
C
o
re
 1

P
h
y
si
ca
l
C
o
re
 2

P
h
y
si
ca
l
C
o
re
 2

P
h
y
si
ca
l
C
o
re
 2

P
h
y
si
ca
l
C
o
re
 2

Logical Logical Logical Logical
Processor 1Processor 1Processor 1Processor 1

Logical Logical Logical Logical
Processor 2Processor 2Processor 2Processor 2

Logical Logical Logical Logical
Processor 3Processor 3Processor 3Processor 3

Logical Logical Logical Logical
Processor 4Processor 4Processor 4Processor 4

Architecture
State

Architecture
State

Architecture
State

Architecture
State

Local APIC Local APIC Local APIC Local APIC

Execution
Engine

Execution
Engine

Second Level Cache

Bus Interface Bus Interface P
h
y
si
ca
l
C
o
re
 3

P
h
y
si
ca
l
C
o
re
 3

P
h
y
si
ca
l
C
o
re
 3

P
h
y
si
ca
l
C
o
re
 3

P
h
y
si
ca
l
C
o
re
 4

P
h
y
si
ca
l
C
o
re
 4

P
h
y
si
ca
l
C
o
re
 4

P
h
y
si
ca
l
C
o
re
 4

Logical Logical Logical Logical
Processor 5Processor 5Processor 5Processor 5

LogicalLogicalLogicalLogical
Processor 6Processor 6Processor 6Processor 6

Logical Logical Logical Logical
Processor 7Processor 7Processor 7Processor 7

Logical Logical Logical Logical
Processor 8Processor 8Processor 8Processor 8

Main Memory

System Bus System Bus

Physical Processor 1Physical Processor 1Physical Processor 1Physical Processor 1 Physical Processor 2Physical Processor 2Physical Processor 2Physical Processor 2

Figure 4: The target system, two dual-core Intel Xeon Processors with HT technology

 Memory Hierarchy Exploration 555

4. PERFORMANCE EVALUATION OF THE PROPOSED HBJ ALGORITHM

ON MULTI-CORE PROCESSORS

 Multi-core technology is a form of hardware multi-threading capability in Intel 64

and IA-32 processor families [6]. Multi-core technology enhances hardware multi-

threading capability by providing two or more cores in a physical package. Each core

may support Hyper-Threading (HT) technology. A core that supports HT technology

consists of two or more logical processors (see Figure 4). HT technology leverages the

thread-level parallelism found in high-performance applications by allowing two or more

threads to be executed simultaneously on each core (i.e., each thread is executed on a

logical processor) [7, 22]. Each logical processor executes instructions from an

application thread using shared resources in the processor core. However, each logical

processor has its own architectural state (data registers, segment registers, control

registers, etc.). Moreover, each logical processor has its own advanced programmable

interrupt controller (APIC), which provides interrupt handling.

 The dual-core Intel Xeon processor features multi-core, Hyper-Threading technology

and supports multi-processor platforms. It provides four logical processors in a physical

package (two logical processors for each processor core) based on the Intel Core

microarchitecture [6]. As shown in Figure 4, the two cores on a Xeon processor share a

smart second level cache, which enables efficient data sharing between two cores to

reduce memory traffic bus.

 Beside the use of parallel processing on a multi-core Intel Xeon processor, multiple

data can be processed using a single instruction (SIMD) on each Xeon core [7, 23]. This

further improves the performance of many data-parallel applications. Four packed single-

precision (32-bit) or two packed double-precision (64-bit) floating-point data elements

556 Soliman

can be processed using a single instruction. Moreover, Intel Xeon processors support

8/16/32/64/128-bit integer data types. The operands can be in memory or in a set of

sixteen 128-bit XMM registers.

 This section presents the performance evaluation of the proposed HBJ algorithm for

parallel computing SVD on multi-core Intel Xeon processors. Figure 4 shows the block

diagram of the target system, which has two dual-core Xeon processors with HT

technology (i.e., the target system has eight logical processors). HBJ algorithm is

implemented and evaluated on matrices with sizes vary form 100×100 up to 2000×2000

in step of 100. The content of these matrices are generated randomly to have a value in

the interval [1, 10]. Besides, the norm of the input matrix times 10-15 is used as

convergence condition.

 Figure 5 shows the number of HBJ sweeps required for convergence, where SRx

means that x rows are in a super-row. It is clear that the number of sweeps required for

HBJ algorithm is very close to that needed for the cyclic one-sided Jacobi algorithm. To

be specific, the average number of sweeps needed for cyclic one-sided Jacobi and HBJ

algorithms are 14 and 15, respectively. This represents one of the main key points of the

proposed HBJ algorithm because of its effect on the total execution time.

 The execution time in seconds of the parallel implementation of HBJ algorithm on

1

10

100

1000

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Matrix Size

N
u

m
b

e
r

o
f

 S
w

e
e
p

s

Stream

SR2

SR4

SR6

SR8

SR10

SR12

SR14

SR16

SR18

SR20

Jacobi

Figure 5: Number of sweeps for HBJ algorithm

0

100

200

300

400

500

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Matrix Size

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

)

HBJ_Seq HBJ_Thr HBJ_Thr_SIMD2 HBJ_Thr_SIMD8

Figure 6: The performance of HBJ algorithm

 Memory Hierarchy Exploration 557

eight logical processors is shown in Figure 6. The size of a super-row is selected to be

eight rows. The curve “HBJ_Seq” represents the execution time of the sequential

implementation of the HBJ algorithm on the target system. Around 3.5 clock cycles are

needed to perform a double-precession floating-point operation (DP FLOP). The number

of clock cycles per FLOP would be reduced by parallel processing threads of HBJ code

on multi-core processors using multi-threading techniques [24]. The curve “HBJ_Thr”

represents the execution time of the parallel implementation of HBJ algorithm on eight

logical processors (four execution cores with HT technology) using eight threads. A

speedup of around five is achieved due to the use of multi-threading technique (see

Figure 7). Note that the ideal speedup on logical processors differs from that on multi-

processor systems, which use a single physical processor in a single chip package [7].

Thus, the ideal speedup due to multi-threading on the target system is less than eight

because the number of execution engines is only four (see Figure 4). However, the ideal

speedup should be greater than four because each Xeon core supports HT technology.

Intel HT technology improves the performance of many applications by around 30%

[24]. In total, the ideal speedup of the use of multi-threading technique on four cores with

HT technology is 5.2. On a reasonable matrix size, around 95% of the ideal speedup is

achieved on the target system using multi-threaded HBJ algorithm.

 The execution time of HBJ algorithm on Intel processors can be further reduced

using SIMD instruction sets [23]. The curve “HBJ_Thr_SIMD2” in Figure 6 shows the

parallel performance of HBJ algorithm using multi-threading and SIMD techniques. Two

double-precision floating-point elements are processed using a single SIMD instruction.

It is known that the ideal speedup of using Intel SIMD instruction on double-precision

numbers is two. Our result shows an average speedup of 1.9 (see Figure 7) due to the use

of double-precision Intel SIMD instructions on the HBJ algorithm.

 To further improve the performance of the proposed HBJ algorithm, loop unrolling

technique is used to reduce the number of branch instruction and to keep the pipeline full

for a long time [23]. The curve “HBJ_Thr_SIMD8” in Figure 6 shows the effect of

0

2

4

6

8

10

12

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Matrix Size

S
p

e
e

d
u

p

HBJ_Seq HBJ_Thr HBJ_Thr_SIMD2 HBJ_Thr_SIMD8

Figure 7: The speedup of HBJ over the sequential

558 Soliman

unrolling loops by a factor of four on the performance of the HBJ algorithm. The speedup

of the unrolled, multi-threaded, SIMD HBJ algorithm on multi-core processors is shown

in Figure 7. The proposed HBJ algorithm speeds up the parallel computations of SVD by

around 11 times higher than the sequential implementation on the same hardware. Figure

7 shows that HBJ is a highly parallel algorithm, accelerates the computations of SVDs on

Intel multi-core processors using multi-threading, SIMD, and loop unrolling techniques.

Moreover, Figure 8 shows the speedup of using the proposed HBJ over using cyclic one-

sided Jacobi algorithm. The parallel implementation of the HBJ algorithm gives a

speedup of around eight times higher than the sequential implementation of the cyclic

one-sided Jacobi algorithm. Note that the performance of multi-threaded HBJ algorithm

is not good on a small matrix size because of the overheads of creating threads (see [22,

24] for more detail). A performance of around 10 GFLOPS (double-precision) can be

achieved on four Intel Xeon cores with HT technology, using eight parallel threads as

shown in Figure 9.

0

2

4

6

8

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Matrix Size

S
p

e
e

d
u

p

HBJ_Seq HBJ_Thr HBJ_Thr_SIMD2 HBJ_Thr_SIMD8

Figure 8: The speedup of HBJ over cyclic Jacobi

0

2

4

6

8

10

12

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Matrix Size

G
F

L
O

P
S

Figure 9: GFLOPS performance of the proposed HBJ algorithm

 Memory Hierarchy Exploration 559

5. CONCLUSION

 In this paper the well-known one-sided Jacobi for computing SVD is restructured to

be implemented efficiently on multi-level memory hierarchy architectures. An efficient

algorithm is proposed to reduce the parallel execution time of computing SVDs by

exploiting memory hierarchy and reducing the number of sweeps required for

convergence. The given matrix is partitioned hierarchy into super-rows; each super-row

consisting of a set of consecutive rows. On P parallel processors, these super-rows are

partitioned into 2P blocks to be processed in parallel.

 One key point of the proposed scheme is the highly exploitation of memory

hierarchy by performing all computations on super-rows (matrix operations) instead on

rows (vector operation). Our results show that the performance of the proposed algorithm

does not degrade as the input matrix becomes large. Another key point is that the number

of sweeps required by the proposed scheme very close to cyclic one-sided Jacobi. This

key point helps to reduce the total execution time of the proposed algorithm. Our results

show the speedup of the proposed algorithm over cyclic one-sided Jacobi is around eight

on four Xeon cores with HT technology. Third key point of the proposed algorithm is that

the number of sweeps required for convergence does not depend drastically on the size of

the input matrix. This means that the proposed algorithm is suitable for implementation

on small as well as large number of parallel processors.

 On two dual-core Intel Xeon processors, our results show that the performance of

parallel implementation of the proposed scheme is around 11 times higher than the

sequential implementation on the same hardware. Moreover, a performance of around 10

GFLOPS (double-precision) can be achieved on four executions cores supporting Hyper-

Threading technology, using eight parallel threads.

 In conclusion, the proposed algorithm is highly parallel algorithm for computing

SVD based on cyclic one-sided Jacobi method. A good performance of the proposed

algorithm on multi-core processors like Intel Xeon processors can be achieved by

exploiting the multi-core hardware, memory hierarchy, and Intel SIMD instruction set.

REFERENCES

[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,

Morgan Kaufmann, San Francisco, CA, 3rd Edition, 2003, ISBN 1558605967.

[2] J. Crummey, D. Whalley, and K. Kennedy, “Improving Memory Hierarchy

Performance for Irregular Applications Using Data and Computation Reorderings,”

International Journal of Parallel Programming, Vol. 29, No. 3, 2001, pp. 217-247.

560 Soliman

[3] J. Demmel, J. Dongarra, J. Croz, A. Greenbaum, S. Hammarling, and D. Sorensen,

“Prospectus for the Development of a Linear Algebra Library for High-

Performance Computers,” Argonne National Laboratory Report, ANL-MCS-TM-97,

Mathematics and Computer Science Division, September 1987.

[4] O. Brewer, J. Dongarra, and D. Sorensen, “Tools to Aid in the Analysis of Memory

Access Patterns for FORTRAN Programs,” Parallel Computing, Vol. 9, No. 1,

December 1988, pp. 25-35.

[5] J. Dongarra, I. Foster, G. Fox, K. Kennedy, A. White, L. Torczon, and W. Gropp,

The Sourcebook of Parallel Computing, Morgan Kaufmann, November 2002, ISBN

1558608710.

[6] Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic

Architecture, http://www.intel.com/products/processor/manuals/index.htm.

[7] Intel 64 and IA-32 Architectures Optimization Reference Manual,

http://www.intel.com/products/processor/manuals/index.htm

[8] G. Golub and F. Luk “Singular Value Decomposition: Applications and

Computations,” ARO Rep. 77-1, Trans. 22
nd

 Conf. Army Mathemattctans, 1977, pp.

577-605.

[9] V. Klema and A. Laub, “The Singular Value Decomposition: Its Computation and

Some Applications,” IEEE Transactions on Automatic Control, Vol. AC-25, No. 2,

1980.

 [10] G. Golub and C. Van Loan, Matrix Computations. John Hopkins University Press,

Baltimore and London, 2nd edition, 1993.

[11] G. Golub and W. Kahan, “Calculating the Singular Values and Pseudo-Inverse of a

Matrix,” J SIAM Ser. B. Numer Anal 2, 1965, pp. 205-224.

[12] R. Brent, and F. Luk, “The Solution of Singular-Value and Symmetric Eigenvalue

Problems on Multiprocessor Arrays,” SIAM Journal on Scientific and Statistical

Computing, Vol 6, No.1, 1985, pp. 69-84.

[13] B. Zhou and R. Brent, “Parallel Computation of the Singular Value Decomposition

on Tree Architectures,” Proc. 22
nd

 International Conference of Parallel Processing

(ICPP), CRC Press, Ann Arbor, 1993, Vol. 3, pp. 128-131.

[14] B. Zhou and R. Brent, “On Parallel Implementation of the One-Sided Jacobi

Algorithm for Singular Value Decompositions,” Proc. Euromicro Workshop on

Parallel and Distributed Processing, San Remo, Italy, IEEE CS Press, 1995, pp.

401-408.

[15] V. Strumpen, H. Hoffmann, and A. Agarwal, “A Stream Algorithm for the SVD,”

Technical Memo 641, Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, October 2003.

 Memory Hierarchy Exploration 561

 [16] S. Rajasekaran and M. Song, “A Novel Scheme for the Parallel Computation of

SVDs,” Proc. High Performance Computing and Communications, 2006, pp.129-

137

[17] M. Hestenes, “Inversion of Matrices by Biorthogonalization and Related Results,”

Journal of the Society for Industrial and Applied Mathematics, Vol. 6, Issue 1,

1958, pp. 51-90.

[18] F. Luk, “Computing the Singular-Value Decomposition on the ILLIAC IV,” ACM

Trans. Math. Softw., 6, 1980, pp. 524-539.

[19] J. Demmel and K. Veselic, “Jacobi’s Method is More Accurate than QR,” SIAM J.

Matrix Anal. Appl, Vol. 13, 1992, pp. 1204-1246.

[20] R. Brent, “Parallel Algorithms for Digital Signal,” Proc. Numerical Linear Algebra,

Digital Signal Processing and Parallel Algorithms, Springer-Verlag, 1991, pp. 93-

110.

[21] R. Schreiber, “Solving Eigenvalue and Singular Value Problems on an Undersized

Systolic Array,” SIAM. J. Sci. Statist. Comput. Vol. 7, 1986, pp. 441-451.

[22] S. Akhter and J. Roberts, Multi-Core Programming: Increasing Performance

through Software Multithreading, Intel PRESS, 2006, ISBN 0976483246.

[23] R. Gerber, A. Bik, K. Smith and X. Tian, The Software Optimization Cookbook:

High-Performance Recipes for IA-32 Platforms, Second Edition, Intel PRESS,

2006, ISBN 0976483211

[24] A. Binstock and R. Gerber, Programming with Hyper-Threading Technology: How

to Write Multithreaded Software For Intel(r) IA-32 Processors, Intel PRESS 2003,

ISBN 0970284691.

