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Abstract 

The performance of many applications on modern computers is often limited by memory 
latency rather than by processor speed. For computers with memory hierarchy, it is 
preferable to perform the computation on blocks of data to reduce the impact of memory 
latency by reusing the loaded data in cache memories. This paper proposes a fast 
algorithm for parallel computing the extremely useful singular value decomposition 
(SVD) based on one-sided Jacobi on multi-level memory hierarchy architectures. On P 
parallel processors, the given matrix is divided into super-rows and then these super-rows 
are partitioned into 2P blocks. One key point of the proposed algorithm is the highly 
exploitation of memory hierarchy by performing all computations on super-rows loaded 
in cache memory rather than on rows. Another key point is that the number of sweeps 
required for convergence is very close to cyclic one-sided Jacobi. Third key point of the 
proposed algorithm is that the number of sweeps required for convergence does not 
depend drastically on the size of the input matrix. On two dual-core Intel Xeon 
processors, our results show that the performance of parallel implementation of the 
proposed algorithm is around 11 times higher than the sequential implementation on the 
same hardware. Moreover, a performance of around 10 GFLOPS (double-precision) can 
be achieved on the target system using multi-threading, Intel SIMD instructions, matrix 
blocking, and loop unrolling techniques.   
Keywords - memory hierarchy, multi-core computation, multi-threading techniques, 
parallel algorithms, performance evaluation, SIMD, SVD, one-sided Jacobi. 

 

1. INTRODUCTION 

 

 The gap between CPU speed and memory speed is increasing rapidly as new 

generations of computer systems are introduced [1, 2]. To address this memory access 

bottleneck, most modern computers use multi-level memory hierarchies in their 

architectures. The key to improve the performance of applications on multi-level memory 

hierarchies is to avoid unnecessary memory references as well as to exploit locality by 

reusing the loaded data into a higher-level cache [3]. In computers with multi-level 

memory hierarchies, data flows hierarchy from/to main memory to/from registers through 

cache memories (off/on-processor). Then data flows from registers into and out of  
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functional units, which perform the given instructions on the data. Therefore, an 

algorithm performance can be dominated by the amount of memory traffic rather than by 

the number of arithmetic operations involved. The movement of data between memory 

and registers can have the same (or even more) cost as arithmetic operations. 

 The cost of moving data to and from main memory provides a considerable 

motivation to restructure existing algorithms and to devise new algorithms that minimize 

data movement by reusing the loaded data into cache memories [4]. A number of 

researchers have demonstrated the effectiveness of block algorithms on a variety of 

modern computer architectures (see [3] for more detail). On these computers potentially 

high performance can easily be degraded by excessive transfer of data between different 

levels of memory (registers, cache, or main memory). In particular, for computers with 

memory hierarchy, it is often preferable to partition the input data and to perform the 

computation on the blocks. This approach provides for full reuse of data while the block 

is held in cache memory. It avoids excessive movement of data to/from main memory 

and gives a surface-to-volume effect for the ratio of arithmetic operations to data 

movement, i.e., O(n3) arithmetic operations to O(n2) data movement [5]. In addition, on 

architectures that provide for parallel processing, parallelism can be exploited in two 

ways: (1) operations on distinct blocks may be performed in parallel; and (2) within the 

operations on each block [4]. For example, on multi-core Intel processors [6], the given 

problem can be partitioned into blocks. Parallel proceeding of these blocks are performed 

on multiple cores to reduce the total execution time. Besides, Intel SIMD instructions [7] 

may be used to perform operations on a block in parallel to further improve the 

performance.   

 In linear algebra, the singular value decomposition (SVD) is an important 

factorization of a real matrix, with several applications in signal processing, data mining, 

statistics, etc [8-10]. SVD problem is a very computationally intensive problem that 

needs to exploit the growing availability of parallel hardware. The sequential 

implementation of the standard Golub-Kahan SVD algorithm [11] on an m×n matrix 

takes O(mn
2) time. This amount of time may not be acceptable especially when the data 

size is large. Thus, many researchers have worked on designing efficient techniques to 

compute SVDs on parallel to reduce the execution time especially for real time 

applications [12-16]. This paper proposes a new algorithm for parallel computing SVD 

on multi-level memory hierarchy architectures by restructuring the well-known one-sided 

Jacobi method. Hestenes one-sided Jacobi method [17] is selected because it is the best 

approach for achieving efficient parallel SVD computation (see [12] for more detail). 

 The proposed algorithm, which is called hierarchal block Jacobi (HBJ), partitions the 

given matrix into super-rows (panels of rows) to exploit the memory hierarchy by  
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performing all computations on super-rows instead of on rows. Each super-row consists 

of a set of consecutive rows of the input matrix. On P parallel processors, these super-

rows are partitioned into 2P blocks to be processed in parallel. Not all block sizes are 

necessarily have the same number of super-rows (the number of super-rows in a block 

depends on P, however, the number of rows in a super-row is constant). This results in 

partitioning the input matrix hierarchy from rows to super-rows, and then to blocks of 

super-rows. Our result shows that the hierarchal partitioning of the input matrix reduces 

the number of sweeps required for convergence. Besides, in the proposed HBJ algorithm 

the number of sweeps required for convergence does not depend drastically on the size of 

the input matrix or on the number of parallel processors but depends on the size of super-

rows. 

 This paper implements the proposed HBJ algorithm for parallel computing SVD on 

multi-core Intel processors. The target system is Dell Precision 690 running Microsoft 

Windows Vista operating system. It has two dual-core Intel Xeon processors with hyper-

threading technology running at 3.0 GHz, 2 GB memory, and unified, shared 16-way 

second-level cache of 4 MB [6]. Our results show that on Intel Xeon processors, a good 

performance of the proposed HBJ algorithm can be obtained by exploiting the multi-core 

hardware, memory hierarchy, and Intel SIMD instruction set. Besides, the use of matrix 

blocking and loop unrolling techniques further improves the performance of the proposed 

algorithm. To be specific, the execution time of the HBJ algorithm on the target system is 

around 11 times faster than the sequential implementation on the same hardware.  

 This paper is organized as follows. Section 2 reviews of the singular value 

decomposition problem briefly. Since most of parallel algorithms for computing SVDs 

are based on Jacob technique, one-sided and two-sided Jacobi methods are reviewed. The 

proposed algorithm for fast implementation of SVD on multi-level memory hierarchy 

systems is presented in Section 3. Section 4 shows the implementation and performance 

evaluation of the proposed algorithm on dual-core Intel Xeon processors. Finally, Section 

5 concludes this paper and points out the key points of the proposed algorithm. 

 

2. SINGULAR VALUE DECOMPOSITION 

 This section provides a brief review of singular value decomposition (SVD) that is 

well known in matrix algebra [10]. SVD of a real matrix Am×n (m ≥ n) is its factorization 

into the product of three matrices Um×m, Σm×n, and Vn×n such that: 

Am×n = Um×m Σm×n V
T

n×n 

where Um×m and Vn×n are orthogonal matrices (i.e. UT
U = Im and VT

V = In), and Σm×n is a 

diagonal matrix diag(σ0, σ1, σ2, ……,σn-1) on top of (m-n) rows of zeros, assuming that 

m ≥ n. The σi are the  singular  values  of  Am×n.  Matrix  Um×m  contains  n  left  singular  
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vectors, and matrix Vn×n consists of n right singular vectors. The singular values and 

singular (column) vectors of Um×m and Vn×n form the relations:  

Avi = σi ui and A
T
ui = σi vi. 

This decomposition has many important scientific and engineering applications [8-10].  

 There are various ways to compute the SVD. Two of the most commonly used 

classes of algorithms are bidiagonalization-based and Jacobi-based [10]. The standard 

bidiagonalization-based method was introduced by Golub and Kahan in 1965 [11]. It uses 

first the Householder transformation to bidiagonalize the given matrix and then the QR 

method to compute the singular values of the resultant bidiagonal form. In sequential 

computing, the bidiagonalization-based algorithms are usually preferred because they are 

faster than the sequential implementation of Jacob algorithms. However, on an m×n 

matrix, O(mn
2) clock cycles are needed for implementing the standard Golub-Kahan 

SVD algorithm sequentially. On a large matrix size (large values of m and n), the 

execution time is unacceptable especially for real-time applications. Moreover, the 

bidiagonalization-based algorithms have been found to be difficult to parallelize. In [18], 

Luk gives three reasons why the standard SVD method of Golub-Kahan may be 

undesirable on a parallel processor. 

 On the other hand, the Jacob-based SVD algorithms may be more accurate and have 

a higher degree of potential parallelism [19]. Thus, most of parallel algorithms are based 

on Jacob technique. There are two varieties of Jacobi-based algorithms, one-sided and 

two-sided. As shown below, the two-sided Jacobi algorithms are computationally more 

expensive than the one-sided algorithms. Moreover, to implement the two-sided Jacobi 

method, it needs to traverse both row and column of the given matrix; however, matrices 

are stored either in row-major or column-major format. Thus, one of the two traversals 

will be less efficient on conventional memory architectures. In other words, one of the 

two traversals accesses the elements of the input matrix Am×n with unit stride, which is 

efficient, however, the other traversal performs stride n accesses, which is expensive 

because of cache miss handling time [7]. On the other hand, the one-sided rotation 

modifies rows only, which is more suitable for memory hierarchy architectures. Thus, to 

achieve efficient parallel SVD computation the best approach may be to adopt the 

Hestenes one-sided Jacobi transformation method [17] as advocated in [12, 20]. 

 The two-sided Jacobi iteration algorithm transforms a symmetric matrix An×n into a 

diagonal matrix Σn×n by a sequence of Jacobi rotations (J), where each transform attempts 

to zero-out a given off-diagonal element of An×n.  

Σn×n = (Jn
T
 · · · (J3

T (J2
T (J1

T AJ1)J2)J3) · · · Jn) = (J1J2J3 · · · Jn)
T
A(J1J2J3 · · · Jn). 
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The Jacobi rotation J(i, j, θ) for an index pair (i, j) and a rotation angle θ is a square 

matrix that is equal to the identity matrix I plus four additional entries at the intersections 

of rows and columns i and j: 

J(i, j, θ) = 
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where c = cos(θ) and s = sin(θ). It is clear that the Jacobi rotation is an orthogonal matrix 

(i.e. J(i, j, θ)T J(i, j, θ) = I) using the fact of cos2(θ )+ sin2(θ) = 1. The rotation parameters 

c and s are computed such that the resultant matrix B = JT
AJ is diagonal, i.e., bij = bji = 0. 
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By solving this equation and taking the smaller root, c and s are obtained by: 

21
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s = tc 
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 Depending on the order of choosing the element to be zeroed, there are classic Jacobi 

and cyclic Jacobi algorithms. In the classic Jacobi iteration algorithm, each 

transformation chooses the off-diagonal element of the largest absolute value. However, 

searching for this element requires expensive computations. Cyclic Jacobi algorithm 

sacrifices the convergence behavior and steps through all the off-diagonal elements in a 

row-by-row or column-by-column fashion. It needs to perform n(n - 1)/2 rotations 

attempting to diagonalize an n×n symmetric matrix. These n(n - 1)/2 rotations constitute a 

sweep. Note that when an off-diagonal element is zeroed it may not continue to be zero 

when another off-diagonal element is zeroed. Since the norm of the off-diagonal elements  
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decreases after each sweep, a finite number of sweeps are required for Jacobi algorithms 

to converge. There are two important implementation details which determine the speed 

of convergence of the Jacobi based algorithms for computing the SVD. The first is the 

method of ordering, i.e., how to order the n(n - 1)/2 rotations in one sweep of 

computation. Various orderings have been introduced in the literature. The second 

important detail is the method for generating the plane of rotation parameters c and s in 

each iteration.  

 In Hestenes one-sided Jacobi algorithm [16], SVD of a real matrix Am×n (m ≥ n) is 

computed by generating an orthogonal matrix Um×m such that the transformed matrix Bm×n 

has orthogonal rows. 

Um×m Am×n = Bm×n, 

where rows of Bm×n satisfy:  

bi
T
bj = 0 for i ≠ j. 

By normalizing the Euclidean length of each non-zero row to unity, the following relation 

can be obtained: 

Bm×n = S Vn×n, 

where Sn×n = diag(s1, s2, . . . , sn), and si = bi
T
bi and  Vn×n is a matrix whose non-zero rows 

form an orthogonal set of vectors. An SVD of Am×n is given by  

Am×n = UT
m×m Sm×n Vn×n. 

Hestenes [17] suggested that the orthogonal matrix Um×m should be constructed as a 

sequence of plane rotations.  

Am×n = (Jn
T
 · · · (J3

T (J2
T (J1

T A))) · · · ) = (J1J2J3 · · · Jn)
T
A 

where, Jk is a plane rotation. Each plane rotation affects only two rows. For a given i and 

j, rows i and j are orthogonalized by Bm×n = JT
Am×n where J = J(i, j, θ) is the same matrix 

as in the two-sided Jacobi: 




















−
=










T

j

T

i

T

T

j

T

i

a

a

cs

sc

b

b
 

 

here c and s are chosen such that bi
T
bj = 0. The solution of them is: 

21

1

t
c

+

=   

and  

s = tc, 

where  

 

 



     Memory Hierarchy Exploration         549 

 

1

)(
2

++

=

ττ

τsign
t  

 and  

j

T

i

i

T

ij

T

j

aa

aaaa

2

−
=τ . 

 It is clear that there is a close similarity between one-sided and two sided versions of 

the Jacobi algorithm.  

 

3. THE PROPOSED ALGORITHM: HIERARCHAL BLOCK JACOBI (HBJ) 

 

 Traditionally, parallel algorithms for computing SVD on n×n matrix partition the  

n(n - 1)/2 rotations of a sweep into rotation sets. Each rotation set consists of some 

number of independent rotations. Therefore, all the rotations of a rotation set can be 

performed in parallel. Most of the parallel SVD algorithms in the literature employ (n - 1) 

rotation sets, with each rotation set consisting of n/2 independent rotations. The Stream 

Hestenes SVD algorithm [15] is an exception, where all rotations can be performed in 

parallel even though they are dependent. 

 The proposed HBJ algorithm employs the idea of calculating rotations parameters (c 

and s) at once and then applying all of them also at once to exploit hierarchal memory. 

This is a good step for switching from vector operations, which require O(n) memory 

accesses for O(n) FLOPs, to matrix operations, which require O(n2) memory accesses for 

O(n3) FLOPs. Matrix operations are performed based on matrix blocking technique, 

which is an efficient technique to improve the performance of many matrix-based 

applications on a variety of modern computer architectures with parallel processing 

capabilities [3, 4]. 

 The main problem of the direct applying this idea of Stream Hestenes SVD 

algorithm [15] is the increase of the number of sweeps required for convergence. To be 

specific, Figure 1 shows the number of sweeps for parallel computing SVD of real 

matrices on eight processors. Based on the partitioning method described in [21], the 

input matrix An×n is portioned into 16 (2P and P = 8) blocks, with each block consisting 

of n/16 consecutive rows of An×n. It is clear that as the matrix size increases, the number 

of sweeps required for convergence increases. For a large matrix size, the number of 

sweeps using Stream Hestenes SVD algorithm is orders of magnitude greater than that 

required by cyclic Jacobi algorithm (see Figure 1). However, we observe that the number 

of sweeps is close to the cyclic one-sided Jacobi when the number of rows per block is 

small (see Figure 2). Approximately, the total execution time for computing SVD equals 

the execution time of a sweep times the number of sweeps. Thus, our approach to reduce  
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the total execution time for computing SVD is that: (1) parallel processing techniques  

would be used to reduce the execution time per sweep; and (2) the use of a small number 

of rows per block would reduce the number of sweeps required for convergence.  

 The idea of our proposed HBJ algorithm is as follows. Instead of partitioning the 

input matrix An×n based on the number of parallel processors (P) into 2P blocks, n/2P 

rows each, the input matrix is partitioned into N super-rows (panels of rows). Each super-

row consists of S (1 ≤ S ≤ n/2P) consecutive rows of the input matrix An×n. These N 

super-rows are then partitioned into 2P blocks; each block has N/2P or N/2P super-

rows. One advantage of the HBJ algorithm is the highly exploitation of memory 

hierarchy by performing all computations on super-rows using matrix operations (based  

on matrix blocking technique) instead of on rows using vector operations (based on strip 

mining technique). Performing matrix operations on super-rows loaded in cache 

memories exploits the memory hierarchy by reusing these loaded data. Another 

advantage is that the number of sweeps required by HBJ for parallel computing SVD is  
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very close to cyclic one-sided Jacobi, as shown in details in Section 4. Moreover, the 

number of sweeps required for converging the proposed HBJ algorithm does not depend 

drastically on the size of the input matrix or the number of parallel processors but on the 

size of super-rows. These advantages lead to reducing the total execution time required 

for parallel computing the SVD problem on multi-level memory hierarchy architectures. 

 There are two implementation approaches when S does not divide n. One approach is 

extending the input matrix with rows of zeros, which results in N equals n/S and S is 

constant. The other approach uses super-rows with different sizes (S is variable), which 

results in N equals n/S and S varies from n/N to n/N rows. On other words, (n – 

S*n/S) super-rows have a size of n/N rows and the remaining super-rows have a size 

of n/N rows. For example, on 100×100 matrix, P = 8, and S = 6, the first approach 

results in 17 super-rows, six rows each. However, the second approach results in 16 

super-rows; four super-rows with seven rows each, and the remaining 12 super-rows with 

six rows each. Both approaches are implemented and evaluated, and the performance of 

one is close to the other. On P parallel processors, these N super-rows are portioned into 

2P blocks. Each processor performs computations on a pair of blocks. Not all block sizes 

are necessarily have the same number of super-rows; some blocks have N/2P super-

rows while the others have N/2P super-rows.  

 In the proposed HBJ algorithm, the computation of SVD is done in two main parts. 

In the first part, which is the beginning of a sweep, each processor orthogonalizes the 

rows of a block. As shown in Listing 1 lines 3 to 10, the ith processor (1 ≤ i ≤ P) fetches 

the super-rows of the (2i-1)th block sequentially and orthogonalizes the rows of a super-

row with each other exactly once. The idea of Steam Hestenes SVD algorithm [15] is 

used to calculate the rotation parameters of a super-row (set of rows) at once and then 

apply all of them as follows. All rotations parameters of the jth super-row are computed 

and stored in arrays c[] and s[] by calling CalAll(SupRow[j],c[],s[]) routine. 

Then, all rotation parameters (c[] and s[]) are applied to the corresponding super-row at 

once by calling ApplyAll(SupRow[j],c[],s[]) routine (see Listing 1 lines 4 to 

6). Note that the super-rows assigned to the b
th block can be accessed using a data 

structure called Block[b]. The indices of the first and last super-rows of the bth block are 

stored in Block[b].low and Block[b].high respectively. In short, the jth super-row of bth 

block means Block[b].low ≤ j ≤ Block[b].high. The same is done to access the rows of a 

super-row j; SupRow[j].low and SupRow[j].high are used to get the indices of the first 

and last rows of the jth super-row, respectively.  

 After performing the rotations within each super-row of a block, the rotation 

parameters are computed and then applied between super-rows of the same block by 

calling CalAll(SupRow[],SupRow[],c[],s[]) and ApplyAll(SupRow[], 

SupRow[],c[],s[]) routines, respectively, as shown in Listing 1 lines 7 to 10. Each  
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row in one super-row must be orthogonalized with each row in the other super-row once 

but no rows in the same super-row are orthogonalized. The same is done for (2i)th block 

by ith processor (again, each processor works on a pair of blocks).  

 The second part of the proposed scheme iterates (2P - 1) steps (see Listing 1 lines 11 

to 17). P(2P - 1) block pairs can be generated in (2P - 1) steps on P parallel processors. 

The well-kwon round-robin algorithm is used to generate (2P - 1) steps, P block pairs 

each, required for implementing SVD on P parallel processors. Figure 3 shows that the 

generation of seven steps on four parallel processors using the round-robin method. In the 

computations of each step, each super-row in one block must be orthogonalized with each 

super-row in the other block once but no super-rows in the same block are 

orthogonalized. This is done by calling CalAll(SupRow[],SupRow[],c[],s[]) 

and ApplyAll(SupRow[],SupRow[],c[],s[]) routines. The round-robin 

ordering subroutine (see Figure 3) is applied to get the next step, and so forth.  

 Note that in step 0 of Listing 1, the Frobenius norm of the input matrix is calculated, 

which remains unchanged under orthogonal transformations. The Frobenius norm times 

the machine epsilon (ε = 10-15) is used for checking the orthogonalization between two 

rows. Besides, the new order of the round-robin routine is stored on up[] and dn[] arrays. 

Initially up[] and dn[] arrays are initialized with even (2, 4, 6, …) and odd (1, 3, 5, …) 

numbers, respectively, as shown in Figure 3 step 1. The contents of these arrays are 

changed by calling the round-robin routine, as shown in Figure 3 steps 2 to 7. 

 

Listing 1: The proposed HBJ algorithm 

00. δ = ε ∑ A[i]TA[i], 1 ≤ i ≤ n  
01. repeat 
02. converged = true 
03. for s = 1 to (2*P) 
04.  for i = Block[s].low to Block[s].high 
05.   CalAll(SupRow[i],c[],s[]) 
06.   ApplyAll(SupRow[i],c[],s[]) 
07.  for i = Block[s].low to Block[s].high-1 
08.   for j = i+1 to Block[s].high 
09.    CalAll(SupRow[i],SupRow[j],c[],s[]) 
10.    ApplyAll(SupRow[i],SupRow[j],c[],s[]) 
11. for iteration = 1 to (2*P – 1)  
12.  for s = 1 to P    
13.   for i = Block[up[s]].low to Block[up[s]].high 
14.    for j = Block[dn[s]].low to Block[dn[s]].high 
15.     CalAll(SupRow[i],SupRow[j],c[],s[]) 
16.     ApplyAll(SupRow[i],SupRow[j],c[],s[]) 
17.  Round-Robin(up[], dn[]) 
18. until converged = true 
19. for i = 1 to n 

20. σ[i] = sqrt(A[i]TA[i] 
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CalAll(SupRow[r],c[],s[]) 
 index = 0 
 for i = SupRow[r].low to SupRow[r].high-1 
  for j = i+1 to SupRow[k].high 
   dii = A[i]TA[i] , djj = A[j]TA[j] , dij = A[i]TA[j]  

   if |dij| > δ then converged = false 

   if dij ≠ 0 then  

    τ = (djj - dii)/(2 * dij) , t = sgn(τ)/(|τ| + sqrt(τ
2 + 1)  

    c[index] = 1 / sqrt(t2 + 1)  , s[index] = t * c[index]  
   else  
    c[index] = 1 , s[index] = 0 
   index = index + 1 
ApplyAll(SupRow[r],c[],s[]) 
 index = 0 
 for i = SupRow[r].low to SupRow[r].high-1 
  for j = i+1 to SupRow[k].high 
   for k = 1 to n  
    temp = c[index] * A[i][k] - s[index] * A[j][k] 
    A[j][k] = s[index] * A[i][k] + c[index] * A[j][k] 
    A[i][k] = temp 
   index = index + 1  
CalAll(SupRow[r],SupRow[q],c[],s[]) 
 index = 0 
 for i = SupRow[r].low to SupRow[r].high-1 
  for j = SupRow[q].low to SupRow[q].high-1 
   dii = A[i]TA[i] , djj = A[j]TA[j] , dij = A[i]TA[j]  

   if |dij| > δ then converged = false 

   if dij ≠ 0 then  

    τ = (djj - dii)/(2 * dij), t = sgn(τ)/(|τ| + sqrt(τ
2 + 1))  

    c[index] = 1/ sqrt(t2 + 1)  , s[index] = t * c[index]  
   else  
    c[index] = 1 , s[index] = 0 
   index = index + 1 
ApplyAll(SupRow[r],SupRow[q],c[],s[]) 
 index = 0 
 for i = SupRow[r].low to SupRow[r].high-1 
  for j = SupRow[q].low to SupRow[q].high-1 
   for k = 1 to n  
    temp  = c[index] * A[i][k] - s[index] * A[j][k] 
    A[j][k] = s[index] * A[i][k] + c[index] * A[j][k] 
    A[i][k] = temp 
   index = index + 1 
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Figure 3: Round-robin method for generating various orders 
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Figure 4: The target system, two dual-core Intel Xeon Processors with HT technology 
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4. PERFORMANCE EVALUATION OF THE PROPOSED HBJ ALGORITHM 

ON MULTI-CORE PROCESSORS 

 

 Multi-core technology is a form of hardware multi-threading capability in Intel 64 

and IA-32 processor families [6]. Multi-core technology enhances hardware multi-

threading capability by providing two or more cores in a physical package. Each core 

may support Hyper-Threading (HT) technology. A core that supports HT technology 

consists of two or more logical processors (see Figure 4). HT technology leverages the 

thread-level parallelism found in high-performance applications by allowing two or more 

threads to be executed simultaneously on each core (i.e., each thread is executed on a 

logical processor) [7, 22]. Each logical processor executes instructions from an 

application thread using shared resources in the processor core. However, each logical 

processor has its own architectural state (data registers, segment registers, control 

registers, etc.). Moreover, each logical processor has its own advanced programmable 

interrupt controller (APIC), which provides interrupt handling. 

 The dual-core Intel Xeon processor features multi-core, Hyper-Threading technology 

and supports multi-processor platforms. It provides four logical processors in a physical 

package (two logical processors for each processor core) based on the Intel Core 

microarchitecture [6]. As shown in Figure 4, the two cores on a Xeon processor share a 

smart second level cache, which enables efficient data sharing between two cores to 

reduce memory traffic bus.  

 Beside the use of parallel processing on a multi-core Intel Xeon processor, multiple 

data can be processed using a single instruction (SIMD) on each Xeon core [7, 23].  This 

further improves the performance of many data-parallel applications. Four packed single-

precision (32-bit) or two packed double-precision (64-bit) floating-point data elements  
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can be processed using a single instruction. Moreover, Intel Xeon processors support 

8/16/32/64/128-bit integer data types. The operands can be in memory or in a set of 

sixteen 128-bit XMM registers.  

 This section presents the performance evaluation of the proposed HBJ algorithm for 

parallel computing SVD on multi-core Intel Xeon processors. Figure 4 shows the block 

diagram of the target system, which has two dual-core Xeon processors with HT 

technology (i.e., the target system has eight logical processors). HBJ algorithm is 

implemented and evaluated on matrices with sizes vary form 100×100 up to 2000×2000 

in step of 100. The content of these matrices are generated randomly to have a value in 

the interval [1, 10]. Besides, the norm of the input matrix times 10-15 is used as 

convergence condition.  

 Figure 5 shows the number of HBJ sweeps required for convergence, where SRx 

means that x rows are in a super-row. It is clear that the number of sweeps required for 

HBJ algorithm is very close to that needed for the cyclic one-sided Jacobi algorithm. To 

be specific, the average number of sweeps needed for cyclic one-sided Jacobi and HBJ 

algorithms are 14 and 15, respectively. This represents one of the main key points of the 

proposed HBJ algorithm because of its effect on the total execution time.  

 The execution time in seconds of the parallel implementation of HBJ algorithm on  
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Figure 5: Number of sweeps for HBJ algorithm 
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Figure 6: The performance of HBJ algorithm 
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eight logical processors is shown in Figure 6. The size of a super-row is selected to be 

eight rows. The curve “HBJ_Seq” represents the execution time of the sequential 

implementation of the HBJ algorithm on the target system. Around 3.5 clock cycles are 

needed to perform a double-precession floating-point operation (DP FLOP). The number 

of clock cycles per FLOP would be reduced by parallel processing threads of HBJ code 

on multi-core processors using multi-threading techniques [24]. The curve “HBJ_Thr” 

represents the execution time of the parallel implementation of HBJ algorithm on eight 

logical processors (four execution cores with HT technology) using eight threads. A 

speedup of around five is achieved due to the use of multi-threading technique (see 

Figure 7). Note that the ideal speedup on logical processors differs from that on multi-

processor systems, which use a single physical processor in a single chip package [7]. 

Thus, the ideal speedup due to multi-threading on the target system is less than eight 

because the number of execution engines is only four (see Figure 4). However, the ideal 

speedup should be greater than four because each Xeon core supports HT technology. 

Intel HT technology improves the performance of many applications by around 30% 

[24]. In total, the ideal speedup of the use of multi-threading technique on four cores with 

HT technology is 5.2. On a reasonable matrix size, around 95% of the ideal speedup is 

achieved on the target system using multi-threaded HBJ algorithm. 

 The execution time of HBJ algorithm on Intel processors can be further reduced 

using SIMD instruction sets [23]. The curve “HBJ_Thr_SIMD2” in Figure 6 shows the 

parallel performance of HBJ algorithm using multi-threading and SIMD techniques. Two 

double-precision floating-point elements are processed using a single SIMD instruction. 

It is known that the ideal speedup of using Intel SIMD instruction on double-precision 

numbers is two. Our result shows an average speedup of 1.9 (see Figure 7) due to the use 

of double-precision Intel SIMD instructions on the HBJ algorithm.   

 To further improve the performance of the proposed HBJ algorithm, loop unrolling 

technique is used to reduce the number of branch instruction and to keep the pipeline full 

for a long time [23]. The curve “HBJ_Thr_SIMD8” in Figure 6 shows the effect of  
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unrolling loops by a factor of four on the performance of the HBJ algorithm. The speedup 

of the unrolled, multi-threaded, SIMD HBJ algorithm on multi-core processors is shown 

in Figure 7. The proposed HBJ algorithm speeds up the parallel computations of SVD by 

around 11 times higher than the sequential implementation on the same hardware. Figure 

7 shows that HBJ is a highly parallel algorithm, accelerates the computations of SVDs on 

Intel multi-core processors using multi-threading, SIMD, and loop unrolling techniques. 

Moreover, Figure 8 shows the speedup of using the proposed HBJ over using cyclic one-

sided Jacobi algorithm. The parallel implementation of the HBJ algorithm gives a 

speedup of around eight times higher than the sequential implementation of the cyclic 

one-sided Jacobi algorithm. Note that the performance of multi-threaded HBJ algorithm 

is not good on a small matrix size because of the overheads of creating threads (see [22, 

24] for more detail). A performance of around 10 GFLOPS (double-precision) can be 

achieved on four Intel Xeon cores with HT technology, using eight parallel threads as 

shown in Figure 9.   
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Figure 8: The speedup of HBJ over cyclic Jacobi 

 

0

2

4

6

8

10

12

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Matrix Size

G
F

L
O

P
S

 

Figure 9: GFLOPS performance of the proposed HBJ algorithm 



     Memory Hierarchy Exploration         559 

 

5.  CONCLUSION 

 
 In this paper the well-known one-sided Jacobi for computing SVD is restructured to 

be implemented efficiently on multi-level memory hierarchy architectures. An efficient 

algorithm is proposed to reduce the parallel execution time of computing SVDs by 

exploiting memory hierarchy and reducing the number of sweeps required for 

convergence. The given matrix is partitioned hierarchy into super-rows; each super-row 

consisting of a set of consecutive rows. On P parallel processors, these super-rows are 

partitioned into 2P blocks to be processed in parallel.  

 One key point of the proposed scheme is the highly exploitation of memory 

hierarchy by performing all computations on super-rows (matrix operations) instead on 

rows (vector operation). Our results show that the performance of the proposed algorithm 

does not degrade as the input matrix becomes large. Another key point is that the number 

of sweeps required by the proposed scheme very close to cyclic one-sided Jacobi. This 

key point helps to reduce the total execution time of the proposed algorithm. Our results 

show the speedup of the proposed algorithm over cyclic one-sided Jacobi is around eight 

on four Xeon cores with HT technology. Third key point of the proposed algorithm is that 

the number of sweeps required for convergence does not depend drastically on the size of 

the input matrix. This means that the proposed algorithm is suitable for implementation 

on small as well as large number of parallel processors.  

 On two dual-core Intel Xeon processors, our results show that the performance of 

parallel implementation of the proposed scheme is around 11 times higher than the 

sequential implementation on the same hardware. Moreover, a performance of around 10 

GFLOPS (double-precision) can be achieved on four executions cores supporting Hyper-

Threading technology, using eight parallel threads. 

 In conclusion, the proposed algorithm is highly parallel algorithm for computing 

SVD based on cyclic one-sided Jacobi method. A good performance of the proposed 

algorithm on multi-core processors like Intel Xeon processors can be achieved by 

exploiting the multi-core hardware, memory hierarchy, and Intel SIMD instruction set.  
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