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Abstract: The aim of this paper is to numerically investigate a PH/PH/1 inventory model with 
reneging of customers and finite shortage of items. We assume that arrivals occur according to a 
phase type renewal process. The associated phase type distribution has representation ( , )Uα . The 

service times are identically and independently distributed random variables having common 
phase type distribution with representation ( , )Vβ . The lead-time is zero. Costumers renege from 

the system at a constant rateγ . Shortage is permitted and hence shortage cost is finite. We 

perform the steady state analysis of the inventory model using Matrix analytic method. A suitable 
cost function is defined and analyzed numerically. The optimal shortage level is numerically 
evaluated. Some measures of the system performance in the steady state are also derived.   
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1. Introduction 

 

Phase type (PH) distribution, which was introduced by Neuts [8], generalizes the 

conventional approach employing only exponential distributions and other distributions 

such as Erlang, Generalized Erlang, and Coxian. In contrast to exponential distribution 

(which is closed under minimum only), the class of Phase-type distributions has very 

strong closure properties: they are closed under maximum, minimum and convolution 

(see Neuts [9]). Some work related to discrete PH distributions could be found in Alfa 

[1]; those related to continuous PH distributions could be found in Chakravarthy [4], 

Chakravarthy, Krishnamoorthy and Joshua [5]. 
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The first published work on stochastic inventory with service time is due to 

Parthasarathy and Vijayalakshmi [10]. They provide the transient analysis of an (S-1, S) 

inventory model with positive service time. Artalejo, Krishnamoorthy and Lopez Herrero 

[2] were the first to study inventory policies with positive lead-time and retrial of 

customers who could not get the item during their earlier attempts to access the service 

station. Where as their approach was algorithmic, the paper by Ushakumari [12] is purely 

analytical.   Recently, Schwarz et al. [11] discussed M/M/1 Queueing systems with 

inventory where service times and lead times are exponentially distributed. They derived 

stationary distribution of joint queue length and inventory processes in explicit product 

form and proved that the limiting distribution of the queue length process is same as that 

in classical M/M/1/∞ system. The product form solution could be arrived at solely 

because of the assumption that customers do not join the system when inventory level is 

zero.   

 

In this paper, we consider the inter-arrival time distribution of customers to be phase 

type with representation ( , )Uα . The service times have common phase type distribution 

with representation ( , )Vβ . The lead-time is assumed to be zero. Customers join the system 

and tend to leave from it with positive probability without getting any service. We 

compute the long run behavior of the system in the steady sate. A number of descriptors 

of the system are provided. A cost function associated with the model is numerically 

investigated. When the shortage cost is finite and relatively less than the holding cost of 

the inventoried items, the system orders for replenishment of the item only on 

accumulation of a certain number of customers. The shortage cost can be measured in 

terms the waiting cost of customers in the absence of inventory. In this paper, we assume 

that shortage cost is less than holding cost. Thus when the number of customers in the 

system accumulates to say K, an order is placed for replenishment and received instantly 

since the lead time is zero. However, customers tend to renege from the system. Here we 

assume the reneging rate to be the constant γ , irrespective of the number of customers 

waiting (i.e., excluding one in service). An objective of this paper is to compute the 

optimal value of K. Apart from this we also investigate the optimal number of items (S) 

to be purchased at each replenishment epoch. Since the model is quite complex one can 

not expect analytical tractability of the problem. Hence we approach the problem 

algorithmically.           

 

This paper is organized as follows. Section 2 deals with mathematical description of 

the model. Section 3 presents stability condition. Section 4 describes algorithmic 

analysis. Section 5 gives performance measures of the system. Finally, cost analysis and 

numerical results are included in section 6.  
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2.Mathematical Description of the Model  

 

 The following Assumptions and Notations are used for the analysis of the model.   

Assumptions 

         (i)      Maximum inventory level is S . 

           (ii)     Inter-arrival distribution is phase type with representation ( , )Uα . 

           (iii)    Lead-time is zero. 

           (iv)    Service times have phase type distribution with representation ( , )Vβ .  

           (v)    The reneging rate is a constant γ , when there are i ( 2)≥  customers in the 

system.  

           (vi)   A maximum of ( 0)K >   shortages is allowed in the system. 

 

Notations 

         ( )N t  : Number of customers in the system at time t . 

           ( )I t   : Inventory level at the time t . 

          1( )J t  : Phase of the arrival process at time t . 

          2 ( )J t  : Phase of the service process at time t , if a service is going on at that time. 

                e   : (1,1,1, .....1)′ , column vector of 1’s of appropriate order. 

 

Let ( )I t , ( )Nt ,
1
( )J t and 

2
( )J t be respectively the inventory level , number of customers in 

the system, phase  of the arrival process and phase of the service process at time t . 

Write ( ){ }1 2( ) ( ), ( ), ( ), ( ) ; 0X t N t I t J t J t t= ≥ . Then { }( ), 0X t t ≥  is a level independent quasi-birth death 

process (LIQBD) on the state space  

( ){ }
1

0, , ,0 ;1 1;1j k j S k m≤ ≤ − ≤ ≤ U ( ){ }
1

,0, ,0 ;1 1;1i k i K k m≤ ≤ − ≤ ≤ U
    

  
( ){ }

1 2
, , , ; 1,1 ;1 1,i j k l i j S k m l m≥ ≤ ≤ ≤ ≤ ≤ ≤ .  

Here the value 0 in the last coordinate indicates that no service is going on due to 

either the absence of customers or zero inventory level or both. Also it may be noted that 

if the inventory level is reduced to zero at a customer’s departure epoch, then an order for 

replenishment will be placed only on accumulation of K customers. This is done to 

ensure that at least certain minimum number of customers is served continuously in a 

busy cycle. This is because the fixed cost of ordering can be very high compared to the 

holding cost of customers.  

 

The infinitesimal generator Q  of the process is a block tri-diagonal matrix given by 
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0 0,0

2,1 1,1 0,1

2,2 1,2 0,2

2, 1 1, 1 0, 1

2, 1 0

2 1 0

2 1 0

K K K

K

B A

A A A

A A A

Q A A A

A A A

A A A

A A A

− − −

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

O O O

O OO

                                  (1) 

 

 where 0 S
B I U= ⊗  , a square matrix of order

1
m S  ; ( )0

0,0 1

0 , ( )
S

A diag U I Uα α β−= ⊗ ⊗ , 

which is a matrix of order
1 1 2 1

( )m S m m S m× + ; ( )
2

0

0,1 , ( )
S m

A diag I U I= ⊗ ⊗U α  , 

( )
11,1 , ( )m SA diag U I I U Vγ= − ⊗ ⊕  

 

 and ( )
1 1 21,2 ( ), (

m S m m
A diag U I I U V Iγ γ= − ⊗ ⊕ − . Also, 2,1A  is a matrix with entries

1m
Iγ , 

1

0

m
I ⊗ V  and ( )

1

0

1S m
I I− ⊗ ⊗ V  respectively on first position in first row, first position in 

second row and last in last row; all other entries are zero. 2 , 2A is a matrix with all entries 

on the main diagonal are 
1 2m m

Iγ  except 
1m

Iγ in the first position and all entries on the 

lower diagonal are equal to  
1

0

mI ⊗ V β  except 
1

0

mI ⊗V  in the first position; entries other than 

along main and lower diagonals are zero.    

 

In the above the notations  , ⊗ ⊕  stand for Kronecker product and sum, respectively. 

For details about the Kronecker operations on matrices, we refer the reader to Bellman 

[3]. Note that 

    
0,2 0,3 0, 3 0, 2 0,1..........

K K
A A A A A− −= = = = = , 

    
1,3 1,4 1, 2 1, 1 1,2.........

K K
A A A A A− −= = = = = , 

    
2,3 2,4 2, 2 2, 1 2,2..........

K K
A A A A A− −= = = = = , where 

0 , (1 2)iA i K≤ ≤ − , 
1, (2 1)iA i K≤ ≤ −  and  

2 , ( 2 1)iA i K≤ ≤ −  are square matrices of 

the same order
1 2 1

( )m m S m+ . We note that 
0 , 1KA −

 is a matrix with entries 0
( ) ⊗U α β , 

( )
2

0

1
( )

S m
I I

−
⊗ ⊗U α  and 

2

0
( )

m
I⊗U α  respectively on first position in first row, first position in 

second row and last in last row; all other entries are zero. 
2,KA  is a rectangular matrix with 

entries 
1

0

mI ⊗V ,
1

0

m
I ⊗V β  and

1 2mm
Iγ respectively on  (1,1)th , ( ),i i th and ( ), 1i i + th 

positions; all other entries are zero. Also ( )
2

0

0 ( )S mA I I= ⊗ ⊗U α , ( )
1 21 ( )S mmA I U V Iγ= ⊗ ⊕ −  and  
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2A is a matrix with all entries on the main diagonal
1 2m mIγ ; entries on the lower diagonal 

and in the upper right hand corner are equal to 
1

0

m
I ⊗V β and all other entries are zero. 

   

3. Stability Condition                

Define the generator A  as
210 AAAA ++= .Then A is a matrix with all entries on the 

main diagonal 0

2( )U V Im⊕ + ⊗U α ; entries on the lower diagonal and in the upper right 

hand corner are 
1

0

m
I ⊗V β  and all other entries are zero. 

 

        Now we can represent A as
U V

A A A= + , where ( )0

2( )
U

A diag U Im= + ⊗U α   

and
V

A is a matrix with all entries on the main diagonal
2mI V⊗ ; entries on the lower 

diagonal and in the upper right hand corner are 
1

0

m
I ⊗V β  and all other entries are zero. 

 

Theorem 3.1: The system is stable if and only if 

 

 ρ  < 1                                                                                        (2) 

where ( )( )ρ γ= +
0 0

πU πV%% %  with π%  satisfying ( ) 0U + =
0

π U α% , 1=πe% ; and π%%  satisfying 

( ) 0V + =
0

π V β%% , 1=πe%% . 

 

Proof: From the well-known result due to Neuts [8] we have  Q   is positive recurrent iff                     

                                    
0 2

A A<π e π e                                                                                                                  

(3) 

where π  is the steady state probability vector of A.  

That is,                        0A =π                                                 

(4) 

and                              1=πe .                                                                     

(5) 

Now ( )
1

( )
S

S
′= ⊗ ⊗π e π π%% % satisfies (4) and (5) where π%  is such that ( ) 0U + =

0
π U α% , 1=πe%  

and π%%  is such that ( ) 0V + =
0

π V β%% , 1=πe%% .Substituting π  in (3) we get (2). This completes 

the proof. 

 

3.1 Steady State Probability Vector  

 

Let ( )0 1 1, ,....... , ,........K Kx x x x +=x  be the steady state probability vector of Q . Under 

the stability condition (2), s  ( )
i

x i N′ ≥ are given by 
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  ( 1)r

K r Kx x R r+ = ≥    

where R is the unique non- negative solution of the equation                  

                                                       0012

2 =++ ARAAR  

 in which the spectral radius is less than one and the vectors 0 1, .......,
K

x x x  are given by 

solving the following equations 

               

0 0 1 2,1

1 0, 1 1, 1 2, 1

2

1 0, 1 1 2

0

0, (1 1)

( ) 0

i i i i i i

K K

x B x A

x A x A x A i K

x A RA R A

− − + +

− −

+ =


+ + = ≤ ≤ − 


+ + = 

                                              (6) 

subject to the normalizing condition                      

          ( )1 1

1
( ) 1

K

i Ki
x x I R

− −

=
+ − =∑ e .                                                                      (7) 

 

4. Algorithmic Analysis 

 

4.1 Evaluation of the Rate Matrix R 

 

To find the rate matrix R  we use the relation 

                                       1

0 1 0( )R A A A G
−= − − , 

where the  matrix G  is  the  minimal  nonnegative solution of the matrix quadratic 

equation     

 2

2 1 0 0A A G A G+ + = . 

The matrix G  will be stochastic if ( ) 1sp R < . The logarithmic reduction algorithm due to 

Ramaswami (see Latouche and Ramaswami [7]) can be used to evaluate R.. 

 

4.2 Computation of the Boundary Probabilities 

 

Let *x  be the partitioned vector ( 0 1, .......,
K

x x x ) corresponding to the boundary 

portion of Q  as in (1). Then *x  is the stationary vector normalized by (7) of the 

infinitesimal generator T  shown below  

 

0 0,0

2,1 1,1 0,1

2,2 1,2 0,2

2, 1 1, 1 0, 1

2, 1 2

K K K

K

B A

A A A

A A A
T

A A A

A A RA

− − −

 
 
 
 

=  
 
 
  + 

O O O

. 
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Now the system (6) can be written as 0T =*
x . To solve this system, we use the 

block Gauss-Seidel iterative scheme. The vectors 0 1, ,........
K

x x x  in the ( 1)thn +  iteration 

are given by  

                       

1

0 1 2,1 0

1

1 2, 1 1 0, 1 1,

1

1 0, 1 1 2

( 1) ( )

( 1) [ ( ) ( 1) ]

( 1) ( 1) ( ) .

i i i i i i

K K K

x n x n A B

x n x n A x n A A

x n x n A A RA

−

−

+ + − −

−

− −

+ =

+ = + +

+ = − + +

 ,   ( )1 ( 1)i K≤ ≤ −  

After each iteration, the elements of *x  may be scaled to satisfy (7). 

 

 

5. System Performance Measures 

 

The components of the steady state probability vector 
0 1 1( , ,....., , ,.....)

K K
x x x x−=x  can be 

partitioned as 

                            ( )0 0, , ,0j kx y=  ,  0 ( 1)j S≤ ≤ −  and
11 k m≤ ≤ ; 

for1 1i K≤ ≤ − , ( ), , ,i i j k lx y= , 0 j S≤ ≤ ,
11 k m≤ ≤ ,

21 l m≤ ≤ , with 0l =  when 0j = ; 

for   i K≥ ,       ( ), , ,i i j k l
x y= , 1 j S≤ ≤ , 

11 k m≤ ≤  and 
21 l m≤ ≤ .    Then we have 

      (i)    Expected re-order rate, ERO, is given by 

      ( )( )1 0

1,0 , ,01
( ) ( )

m

K kk
ERO y k−=

= ∑ U  

     (ii)    Expected inventory level, EI , is given by 

                         ( ) ( )1 1 21

0, , ,0 , , ,0 1 1 1 1 1

S m S m m

j k i j k lj k j i k l
EI j y j y

− ∞

= = = = = =
= +∑ ∑ ∑ ∑ ∑ ∑  

     (iii)   Expected number of departures after receiving service/unit time, EDS, is given 

by 

                        ( )1 2 0

, , ,1 1 1 1
( )( ( ))

S m m

i j k li j k l
EDS y l

∞

= = = =
=∑ ∑ ∑ ∑ V  

     (iv)  Expected number of departures due to reneging of customers/unit time, EDR, is 

given by    

                        ( ) ( )( )1 2 11

, , , ,0, ,02 1 1 1 1 1
( ) ( )

S m m K m

i j k l i ki j k l i k
EDR y yγ

∞ −

= = = = = =
= +∑ ∑ ∑ ∑ ∑ ∑  

     (v)    Expected number of customers, EC, in the system is given by 

                        ( )1 ii
E C ix

∞

=
= ∑ e  

                               ( )( )1 1 2

1
( ) ( ) ( )

K

i Ki
ix x K I R R I R

− − −

=
= + − + −∑ e  

    (vi)   Expected shortages, ES, in the system is given by 

                  ( )1

1

K

ii
ES ix

−

=
= ∑ e  
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6. Cost Analysis and Numerical Results  

 

  6.1 Cost Analysis   

 

 In order to construct a cost function explicitly, we define the following costs 

                          C =  fixed cost 

                          =1c  procurement cost/unit 

                                                          =2c  holding cost of inventory /unit /unit time 

                                                          =3c  service cost/unit/unit time 

                         =4c  loss due to reneging of customers/ unit /unit time 

                         =5c  holding cost of customers / unit /unit time 

=6c  shortage cost/unit/unit time 

=7c  revenue (profit) due to service / unit /unit time   

      The expected total cost (ETC) of the system/unit time is given by 

 ( )1 2 3 7 4 5 6
( )ETC C c S ERO c EI c c EDS c EDR c EC c ES= + + + − + + + . 

 

 

6.2 Numerical results 

 In the following tables and graphs, we provide numerical values of different 

performance measures and expected total cost of the system. In this, the input parameters 

are  

1m = 2, 
2

m = 2, ( )0.5, 0.5=α , ( )0.5, 0 .5=β , 

0
1.5

1.5
=
 
 
 

U  ,  0
4.5

3.5
=
 
 
 

V , 
2.0 0.5

0.5 2.0
U

−
=

−

 
 
 

 , 
5.0 0.5

0.5 4.0
V

−
=

−

 
 
 

   

 

The numerical values in the tables and total expected cost of the system are obtained 

using computations with FORTRAN program. The procedure of the program can be 

summarized in the following five steps. 

Step 1: Input the matrices
0A  ,

1A  ,
2A   and boundary matrices. 

Step 2: Check the stability condition (2). 

Step 3: Obtain the rate matrix R  using the logarithmic reduction algorithm due to 

Latouche  

             and Ramswami [7]. 

Step 4: Evaluate the steady sate probability vector *x . 

Step 5: Calculate the performance measures and total expected cost of the system. 
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TABLE 6.1. Variations in no. shortages K.  S =20; 1γ = . 

 

K 

 

EI 

 

EC 

 

ROR 

 

EDS 

 

EDR 

 

ES 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

5.76406 

4.97724 

4.31124 

3.75169 

3.28344 

2.89269 

2.56752 

2.29793 

2.07554 

1.89333 

1.15563 

1.49983 

1.89804 

2.34127 

2.82212 

3.33463 

3.87409 

4.43691 

5.02055 

5.62357 

0.05797 

0.05392 

0.05019 

0.04685 

0.04388 

0.04123 

0.03888 

0.03678 

0.03491 

0.03325 

1.08832 

1.01043 

0.94015 

0.87744 

0.82168 

0.77213 

0.72805 

0.68878 

0.65380 

0.62269 

0.40018 

0.47531 

0.54324 

0.60395 

0.65798 

0.70602 

0.74877 

0.78685 

0.82075 

0.85086 

1.01679 

1.35370 

1.74284 

2.17749 

2.65072 

3.15654 

3.69009 

4.24761 

4.82643 

5.42493 

 

  

TABLE 6.2. Variations in maximum S. K=10; 1γ = . 

 

S 

 

EI 

 

EC 

 

ROR 

 

EDS 

 

EDR 

 

ES 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

1.24635 

1.43158 

1.63534 

1.85657 

2.09410 

2.34672 

2.61328 

2.89269 

3.18396 

3.48616 

4.01872 

3.89957 

3.78931 

3.68660 

3.59044 

3.50010 

3.41499 

3.33463 

3.25861 

3.18658 

0.05171 

0.04977 

0.04804 

0.04647 

0.04502 

0.04367 

0.04241 

0.04123 

0.04012 

0.03906 

0.63077 

0.65350 

0.67555 

0.69675 

0.71702 

0.73633 

0.75469 

0.77213 

0.78870 

0.80443 

0.84182 

0.82012 

0.79899 

0.77863 

0.75913 

0.74053 

0.72284 

0.70602 

0.69005 

0.67487 

3.79552 

3.68468 

3.58186 

3.48592 

3.39601 

3.31148 

3.23180 

3.15654 

3.08533 

3.01785 
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TABLE 6.3. Variations in reneging rate γ. K=10; S = 10. 

 

 

γ 

 

EI 

 

EC 

 

ROR 

 

EDS 

 

EDR 

 

ES 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.39624 

1.26978 

1.14748 

1.02940 

0.91572 

0.80678 

0.70311 

0.60547 

0.51474 

0.43182 

5.75632 

5.54461 

5.33238 

5.11857 

4.90179 

4.68051 

4.45327 

4.21906 

3.97773 

3.73029 

0.10177 

0.09297 

0.08433 

0.07589 

0.06768 

0.05973 

0.05212 

0.04491 

0.03819 

0.03202 

0.99360 

0.90076 

0.81103 

0.72454 

0.64150 

0.56224 

0.48720 

0.41694 

0.35210 

0.29329 

0.47910 

0.56936 

0.65742 

0.74308 

0.82609 

0.90606 

0.98247 

1.05464 

1.12181 

1.18324 

5.00223 

4.85897 

4.70760 

4.54734 

4.37713 

4.19591 

4.00295 

3.79831 

3.58313 

3.35986 

 

 

 

 

 

 

 

 
 

Fig.6.1. Number of shortage (K) versus ETC 

 

 

C =100: 20S = ; 1γ = ; =1c 50; =2c 20;  

=3c 10; =4c 30; =5c 10; =6c 10; =7c 20. 
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 Fig.6.2.Maximum inventory level (S) versus ETC 

 

 

 

 

 

 

 

 
 

Fig.6.3.Reneging rate (γ) versus ETC 

 

 

C =100; K=10; 1γ = ; =1c 50; =2c 20; 

=3c 10; =4c 30; =5c 10; =6c 10; =7c 200. 

 

C =100; K=10; 10S = ; =1c 50; =2c 20; 

=3c 10; =4c 100; =5c 10; =6c 10; =7c 200. 
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6.3. Interpretation of the Numerical Results in the tables 

 

As the number of shortage K is increased, the values of expected number of 

customers EC, expected system abandonment due to reneging EDR and expected number 

of shortage ES are also increased (see table 6.1). Again from the same table we note that 

expected number of customers increases with increasing value of K. Further reorder rate, 

expected number of services per unit time and expected inventory level are seen to vary 

inversely with K. With the increase in maximum inventory level S, expected inventory 

level EI and expected departure due to service EDS will increase (see table 6.2). Also 

expected number of customers varies inversely with S; this is the case with reorder rate, 

expected reneging and expected shortage. Table 6.3 indicates that as the reneging rate γ 

increases, the expected departure due to reneging EDR also increases. However measures 

such as expected inventory level, expected number of customers in the system, expected 

number of departures on service completion and expected number of shortages tend to 

decrease with increasing value of γ.    

 

6.4. Interpretation of the Graphs and Concluding Remarks 

 

In graphical illustrations, we computed the optimal value of the total expected cost 

per unit time by varying the parameters one at a time and keeping other parameters fixed. 

By fixing the vectors α , β , 0
U , 0

V  and the matrices  U, V and all parameters except the 

‘number of shortages K’, it is clear from the fig.6.1 that the cost function is convex in K 

and attains its optimum (minimum) value 180.18780  at 9K = . As the maximum inventory 

level S increases (keeping other parameters fixed), the cost function is again seen to be 

convex. For given parameter values this function attains its optimum value 41.03711 at 

18S = (see fig.6.2). As the reneging rate γ  increases (keeping other parameters fixed), the 

expected total cost increases monotonically. (see fig.6.3). It may be noted that because it 

is not possible to get the closed form expression for the system state probability 

distribution, the cost function that we constructed cannot be proved to be convex. 

However, our numerical experiments are indicative of the cost function being either 

strictly convex or monotone. 

Finally, we compare the results obtained here with one of the existing models. Since 

inventory with positive service time has not been discussed quite extensively, we 

compare our present results with the results in Krishnamoorthy and Jose [6]. In that 

paper, lead time is assumed to be positive. Further customers encountering a busy server, 

will have to proceed to an orbit from where they retry to access the server. The reneging 

takes place when retrial customers find the busy sever or inventory level zero. In that 

model, the total expected cost of the system is seen to be either convex or monotone 

increasing which is the case with the problem investigated in the present paper as well.  
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