
Neural, Parallel, and Scientific Computations 17 (2009) 31-46

A LOAD BALANCING FAULT-TOLERANT ALGORITHM
FOR HETEROGENEOUS CLUSTER ENVIRONMENTS

E. M. Karanikolaou

and M. P. Bekakos

Laboratory of Digital Systems, Department of Electrical and Computer

Engineering, Democritus University of Thrace, 67100, Xanthi, Hellas

Abstract

Herein, a fault-tolerant parallel pattern matching algorithm with load balancing support is

presented, targeting at both homogeneous and heterogeneous clusters of workstations

from the perspective of computational power. The algorithm is capable of handling up to

(n-1) faults, introduced at any time, with n being the total number of cluster nodes. It is

capable of handling either permanent faults or transient failure situations, temporarily

handled as permanent, due to network delay, and thus, nodes may be returned at any

time. The experimental results exhibit that the algorithm is capable of returning reliable

results in acceptable time limits.

Keywords - Parallel pattern matching, application level fault-tolerance, heterogeneous

cluster

1. INTRODUCTION

Clusters of workstations are becoming more and more the current trend for distributed

scientific computing, as they are a cost effective solution compared to high-end parallel

supercomputers. However, the drawback of this trend is the increasing probability for

node or link failures, as the number of nodes increases, due to the relatively cheap

components that clusters consist of. If a single failure occurs, it can halt the tasks

execution and tasks have to be re-executed, losing all computation carried out so far;

hence, hardware failures must be tolerated to save all computation carried out so far. In

order to increase the reliability of the system, fault tolerance is indispensable. Moreover,

due to the rapid advance in performance commodity computers, when such clusters are

upgraded by adding new nodes or even by substituting the failed ones, they become

heterogeneous; thus, necessitating the implementation of applications that take into

account the different characteristics of the cluster components, in order to achieve

optimum results as far as execution time is concerned.

The most natural way to achieve reliable results, in case of failures, is by saving

information concerning the state and progress of an application during the computation

phase. When components fail, the application can be returned or rolled back to its last

saved state and computation can proceed from that stage onwards. Checkpointing and

rollback recovery are very useful techniques to implement fault-tolerant applications.

There are two general approaches for checkpointing, one in the system level and the other

Received December 17, 2008 1061-5369 $15.00 © Dynamic Publishers, Inc.

32 Karanikolaou and Bekakos

in the application level. System level checkpointing, in parallel and distributed computing

settings, issuing coordinating checkpoints to define a consistent recovery line, has

received the attention of various researchers, as summarized in (Elnozahy et al., 2002).

This approach integrated in the message passing library, requires no action from the

programmer, but induces a high overhead and is generally difficult to handle in a

heterogeneous environment. On the contrary, application level fault-tolerance is a low

cost fault-tolerance scheme for detecting and recovering permanent or transient failures,

it is application specific and the main considered cost is the effort of the programmer to

incorporate this scheme into an application. Manually inserting code to save and recover

an application state is a very error prone process (Camargo et al., 2004).

This work concentrates on exact string matching, a subcategory of the pattern

matching problem, whose purpose is to find all strict occurrences of a pattern string in a

large text file [Charras & Thierry, 2004]. Using application level checkpointing, fault-

tolerance support has been added on a relaxed parallel implementation of the exact brute

force pattern matching algorithm. Moreover, a load balancing algorithm is also applied in

order for the application to scale up efficiently in heterogeneous cluster environments.

The experimental results show that the application can handle various failure situations

and scales efficiently as the number of processors increases.

The structure of the paper is organized as follows. Section 2, begins with the

description of the relaxed parallel brute force pattern matching algorithm. Section 3,

describes the steps that are required to incorporate fault-tolerance support into the parallel

pattern matching application, described in Section 2, and the issues that one must keep in

mind in order to implement similar applications. Section 4, describes the load balancing

algorithm used for application’s execution in heterogeneous workstations of clusters. The

experimental results for the proposed algorithms are presented in Section 5. Finally,

Section 6 concludes the investigation.

2. PARALLEL BRUTE FORCE PATTERN MATCHING ALGORITHM

The implementation of the parallel pattern matching application is based on the

sequential version of the brute force algorithm and is relaxed; namely, no communication

is needed between nodes during the searching phase. The brute force algorithm is not an

optimal pattern matching algorithm, but it has been chosen, due to its simplicity and its

computing power demands, since the purpose of this investigation is not to compare

parallel pattern matching approaches, but to demonstrate the methodology used to

incorporate fault-tolerance and load balancing support in such an application as well as to

evaluate the performance of the application in a heterogeneous cluster environment.

Before executing the application, a search file of usually huge size is transferred to

all participating nodes. The search file being local to all nodes leads to a lower execution

time, as no network traffic is necessary during runtime. The same approach may be

adopted for the pattern file without having any substantial effect on the results, due to the

small size of the pattern, as shown from the experimental results. Afterwards, each node

is set to execute the same instructions over a different data stream, according to the

identification number assigned by MPI, corresponding with the SPMD parallel

 BALANCING FAULT-TOLERANT ALGORITHM 33

programming model. After having all nodes finished the searching phase, i.e., the part of

the search file corresponding to each one of them, the results of occurrences are

accumulated to one node using an MPI reduction operation.

Workload for the nodes is based on the total number of the cluster nodes. The search

file size is divided with the number of nodes and each node is assigned with the same

amount of work, ignoring specific node characteristics. This partitioning gives good

performance gains in homogeneous clusters. However, in heterogeneous clusters the

performance is decreased since the total execution time depends on the processing

capacity of the slowest nodes. A load balancing algorithm for heterogeneous clusters is

presented in Section 4.

3. FAULT-TOLERANCE ALGORITHM

In case one or more of the cluster nodes fail, the previous application has to be re-

executed from the beginning, losing all the results obtained up to then. In order to handle

this situation, checkpointing and rollback recovery are necessary. So, to do this, the

master-slave programming paradigm has been used. Fault-tolerance algorithm includes

checkpoint critical values during runtime, failure detection and recovery of the failed

nodes. Master node is the one who keeps all the critical values for the workers’

computational progress state and is responsible for the detection of possible failures and

the reassigning of the remaining work to the remaining workers. In order for the

application to be able to handle upon (n-1) fails, where n is the total number of nodes,

master is always arranged to recover the first failed node.

The critical information that has to be checkpointed at regular intervals for the

pattern matching application is the file pointer, indicating the work progress and the

number of occurrences found till then, for each worker node. Master node collects this

information and stores it in a checkpoint table, which will be used later on either for fault

detection and recovering or, in case of no occurred faults, for occurrences summation and

application termination. Every time a node finishes its work, it is marked in a finish table,

also created in master. The communication between the master and the worker nodes is

performed through message passing with appropriate MPI routines. This communication

takes place using threads that interact with the main thread of the program for each node.

Thus, the overhead of the fault-tolerance mechanism is small and minimally affects the

total execution time of the application (Efremides & Ivanov, 2006).

Detection of failures is done by checking the finish table after all communication has

stopped. At this point it is essential to refer to the kind of failures that may occur. There

are failure situations in which the master node permanently stops receiving messages

from one or more nodes - category of permanent faults - and failure situations where

master node stops receiving messages for a period of time due to network delay, but

eventually messages arrive - category of transient faults. The application is capable of

handling both types of faults, behaving accordingly for each one of them.

In case permanent faults have occurred, the recovery of the detected as failed nodes,

takes place, retrieving information from the checkpoint table about their last saved

progress and assigning their remaining work to the working nodes. Both working and

34 Karanikolaou and Bekakos

failed nodes are detected through the finish table. The application’s execution time

depends on the number of the failed nodes, the amount of work which has been

completed and the number of the remaining nodes which will do the recovery. In case

transient faults have occurred, then, if the recovery of the failed nodes has already started

and the failed nodes finally communicate with the master, the results must be taken into

consideration, forcing the recovery process to stop, summing the results and terminating

the application. In order to achieve this goal in a minimum time, three different

checkpoint threads for the master have been created (MThread, MThread-Single,

MThread-Multiple). Each one of these threads is activated according to the conditions

taking place and only one can be active at any time. Moreover, a continuous checking

takes place for possible messages that may be received from nodes that were considered

as failed, till the end of the recovery.

The fault-tolerant parallel algorithm goes as follows:

1. The search file is divided according to the total nodes of the cluster.

2. Worker nodes seek to the designated part of the search file according to their ID

taken from MPI, while master always takes on the last part of the search file.

3. Workers start the checkpoint thread in order to send their critical values to master,

while master starts the checkpoint thread (MThread) in order to receive workers’ values

and create the checkpoint and the finish tables.

4. If (rank==MASTER) search for pattern occurrences into the last part of the search

file.

4.1. After search phase completes, wait until checkpoint thread completes as well.

4.2. Check the finish table for possible node failures.

4.2.1. If no fails have been detected, then sum the occurrences that each node found

using information from the checkpoint table and send finish messages to workers.

4.2.2. If failures are detected then,

 4.2.2.1. If only one failure has been detected, utilize checkpoint table’s information

for the progress of the failed node; set file pointer to the last known position; start

MThread-Single in order to check whether or not the failed node finally returns; and if

not, then complete the recovery and finalize the application.

 4.2.2.2. If more than one failures have been detected, then select from the finish table

the available nodes; send them recovering messages concerning the last known progress

of the failed nodes, by utilizing information from the checkpoint table; start MThread-

Multiple in order to check whether or not the failed nodes finally return; renew the

checkpoint table; start recovering the first failed node and go to step 4.1.

5. If (rank!=MASTER) search for pattern occurrences into the corresponding part of the

search file.

5.1. After search phase comes to an end, wait for a message from the master node.

5.1.1. If a finish message arrives, then exit.

5.1.2. If a recovering message arrives, then change your ID with the one of the node to

be recovered, set the file pointer to the last known position of the failed node, start the

checkpoint thread for sending key values to master, finish the remaining work and go to

step 5.1.

BALANCING FAULT-TOLERANT ALGORITHM 35

3.1. Implementation of the MThread

After setting the file pointer to the start of its corresponding part, in order to begin the

searching procedure, master creates the checkpoint table by starting the checkpoint

thread. This thread is responsible for receiving workers’ messages containing the key

values of the file pointer, which indicates the searching progress, as well as the pattern

occurrences already found; it runs concurrently with the main thread which implements

the searching phase. The message receiving is accomplished with the non blocking

routine MPI_Irecv of MPI, so as to overlap communication with computation. Thread

receives workers’ messages, one at a time and ignores repeated data that may be sent

from a worker node, whose searching phase may advance slower than the checkpoint

threshold. The thread ends in two cases. The first one is the case where all workers

successfully finish their work indicating that no faults have occurred and this is done by

checking the finish table every time a message arrives. The second one is when some (or

even all) workers stop sending messages to the master node prior to finishing their work,

thus indicating the presence of failures either permanent or transient due to network

delay. When no more messages are received, master thread waits for a certain period of

time Twait for workers’ return and after that the thread ends:

do {

wait for message from workers

i. if a message arrives and the values for the particular worker are updated compared

to those in the checkpoint table then renew values. Mark the finish table for workers

which completed their work

ii. else, wait for time equal to Twait and if still no messages arrive then end the thread

} while (all workers have not yet finished)

3.2. Single failure detection - MThread-Single

In case a single failure is detected, its recovery will be made by master, as it was

previously described. In such a case master starts the MThread-Single in order to wait for

the failed node’s possible return before the termination of the recovery procedure. It is a

variation of the MThread with the main difference being that this thread does not end

after time Τwait, in case no messages are received, but it is active until the completion of

the recovery. Thus, maximum time is given to the failed worker for possible return. As

previously mentioned, this is a transient failure situation during which a worker node

stops communicating with the master for a period of time. Even though the searching

phase may proceed normally for the worker node, messages are not sent to the master

node and thus the worker node is considered as failed. So, if at any time before the

termination of the recovery the node sends its critical values to the master, then the

master should be able to receive these values, terminate the recovery, set the occurrences

found during the recovery procedure, to zero, in order to avoid wrong results, and then

finalize the thread.

3.3. Multiple failures detection - MThread-Multiple

In case multiple failures are detected, the first failed node will be recovered by the master

and the others by the available nodes of the cluster. After the allocation of the work that

each node has to perform, the master begins the MThread-Multiple in order to wait for

36 Karanikolaou and Bekakos

the failed nodes’ possible return before the termination of the recovery procedure. This

thread is also a variation of the MThread and has been created in order to wait for

possible messages from the failed nodes. In case all recovering nodes except the master

have finished their work, the finish table would be complete and the MThread would end,

eliminating the case of the return of the node being recovered by the master. So, if nodes

that are recovered finally return, before the one which the master tries to recover, the

thread does not end, but it remains active until the end of the recovery that master

performs. If the failed node finally returns, then its values are registered to the checkpoint

table, the recovery stops, the occurrences found during the recovery procedure in the

master are set to zero, in order to avoid wrong results, and then the thread is finalized.

3.4. Implementation of the Worker_Thread

Worker_Thread is responsible for sending key values at regular intervals to the master,

concerning the searching phase until it completes. If master thread stops receiving these

messages, either due to permanent node fault, or due to network delay, the particular node

is considered as failed. Again, note that, in the case of network delay, although master

may have stopped receiving messages, the workers’ searching phase continues to proceed

into their main thread.

3.5. Generation of faults

Although our application supports failures at any point in the execution, having constant

failure points proves to be the most practical and reproducible approach for performance

measurements. Thus, failures are performed manually by introducing a piece of code with

a SLEEP statement into the Worker_Thread, which emulates the presence of faults, by

stopping the message passing to master node. Through this piece of code, it is possible to

select which nodes will be considered as failed and the exact time these fails will occur.

Also, it is possible to select if nodes that are considered as failed will finally return,

emulating any possible network delays that may exist and, thus, generating permanent or

transient failure situations.

4. A LOAD BALANCING ALGORITHM FOR HETEROGENEOUS CLUSTER

ENVIRONMENTS

Herein, a load balancing algorithm is presented for the previous application to achieve

exceptional performance when executed in heterogeneous clusters. Taking into account

that the same work is assigned to all nodes, the previous algorithm is effective only when

executed in homogeneous clusters. In case of heterogeneous clusters, from the

perspective of computational power, the load balancing algorithm that is presented

assigns work to nodes in proportion to their processing capacity. Therefore, the same

working time is achieved for all nodes, instead of the same working load that was applied

with the previous workload distribution. The goal of the algorithm is the effective

utilization of all cluster nodes according to their processing power. For the

implementation of the algorithm the first step that one has to do, is to evaluate the

processing power of each node regarding the total cluster’s processing power; this is done

by calculating weights for each node of the cluster.

BALANCING FAULT-TOLERANT ALGORITHM 37

The total algorithm can be analyzed as follows:

1. Calculation of weights for each node of the cluster.

In order to calculate the weights for each node, one way is to evaluate the total time

that each node needs to execute the sequential version of the particular application.

Another way is to count the checkpoints needed for each node to complete the part of

work that corresponds to it, by executing the parallel version of the algorithm using all

nodes of the cluster. Both ways have been experimentally evaluated and the weights that

computed came up to be alike. By using the previous methods the weights wi for each

node are computed regarding the fastest node as follows:

�� =
��

��
 , where tj is the minimum time evaluated and belongs to the fastest node, while

ti is the time that each node needs to execute the sequential application, or the time that
each node needs to execute the part of its work in the parallel application derived from
the number of checkpoints.

2. Normalization of weights in the unit in order to readjust the weights in a percentage

scale.

The normalization of the previous weights in the unit is conducted using two steps.

The first step is to sum up all the previous weights and the second step is to divide each

weight with the previous calculated sum for each node:
α. ���	 = ∑ ��

�
� , where n is the total number of cluster’s nodes

b. �′� =
��

����
 , for each node of the cluster, where �′� represents the weights

normalized in the unit.

3. Calculation of the partial size of the search file’s total size that each node will process

according to its weight.

The partial size of the search file’s total size, that each node will process, is

calculated from the product of the corresponding to each node normalized weight with

the total search file size:

for i=1 : (mysize-1)

 fszi = �′� * search_file_size

where mysize is the total number of processes, fsz is the part of the search file size that

each node will process and search_file_size is the total search file size in which the

pattern matching will take place.

4. Calculation of the limits between which the searching phase will take place for each

node whose partial size has been calculated in step 3, starting from the beginning for the

first node and assigning the last part of the search file to master node according to its

weight.

Each node searches for patterns starting from the beginning of the part that

corresponds to it and proceeding accordingly to its particular partial size. Calculation of

the limits in which the searching phase will take place for each node according to its

partial size is done as follows:

for i=1:(mysize-1)

 limitsi=limitsi-1+fszi

beginning from zero point, meaning the start of the file, for the first node and assigning

the last part to master node.

38

5.

The platform where all the experiments were

commodity workstations. The nodes are interconnected with a Gigabit network Ethernet.

Many of the nodes have different hardware characteristics, thus, forming a heterogeneous

environment. The operating system installed on

message passing implementation used

applications were implemented in the C++ programming language.
The hardware characteristics of each node of the cluster are presented in t

NODE ID

node1

node2-4

node5

node6

node7-8

node9

node10-16
Table 1:

The normalized weights in the unit that were calculated for each node of the cluster are

presented in the histogram of Figure 1.

from the DNA sequencing area. DNA sequencing is an active and very important field of

research, with databases constantly evolving, containing an increasing amount of data.

The search files were downloaded from the site of GenBank, a genetic sequ

that belongs to the National Institute of Health (cf. 6)

the importance of pattern matching in DNA sequencing and the large size they have.

Figure 1:

The application versions, whose performance were

in this section, will be referred from now on as:

BF: it is the parallel pattern matching version without fault

support, targeting at homogeneous clusters

Karanikolaou and Bekakos

5. EXPERIMENTAL RESULTS

The platform where all the experiments were performed is a 16-node cluster of

commodity workstations. The nodes are interconnected with a Gigabit network Ethernet.

Many of the nodes have different hardware characteristics, thus, forming a heterogeneous

environment. The operating system installed on each node is MS Windows XP and the

implementation used is MPICH-NT. In order to utilize threads, the

applications were implemented in the C++ programming language.
The hardware characteristics of each node of the cluster are presented in t

NODE ID CPU RAM

 Intel Pentium 4 - 2.8 GHz 1GB

4 AMD Athlon - 1.7 GHz 1GB

 Intel Pentium 4 - 2.4 GHz 1GB

 Intel Pentium 4 - 1.8 GHz 1GB

8 Intel Pentium 4 - 2.8 GHz 1GB

 Intel Pentium 4 - 3 GHz 1GB

16 Intel Pentium 4 - 2.8 GHz 1GB
Table 1: Hardware characteristics of the cluster

The normalized weights in the unit that were calculated for each node of the cluster are

ted in the histogram of Figure 1. The test files that were used as the search

from the DNA sequencing area. DNA sequencing is an active and very important field of

research, with databases constantly evolving, containing an increasing amount of data.

The search files were downloaded from the site of GenBank, a genetic sequence database

that belongs to the National Institute of Health (cf. 6). These files were chosen because of

the importance of pattern matching in DNA sequencing and the large size they have.

Figure 1: Normalized weights for cluster nodes

versions, whose performance were evaluated and will be compared

in this section, will be referred from now on as:

it is the parallel pattern matching version without fault-tolerance or load balancing

support, targeting at homogeneous clusters.

node cluster of

commodity workstations. The nodes are interconnected with a Gigabit network Ethernet.

Many of the nodes have different hardware characteristics, thus, forming a heterogeneous

each node is MS Windows XP and the

In order to utilize threads, the

The hardware characteristics of each node of the cluster are presented in table 1:

The normalized weights in the unit that were calculated for each node of the cluster are

The test files that were used as the search files are

from the DNA sequencing area. DNA sequencing is an active and very important field of

research, with databases constantly evolving, containing an increasing amount of data.

ence database

files were chosen because of

the importance of pattern matching in DNA sequencing and the large size they have.

evaluated and will be compared

tolerance or load balancing

BALANCING FAULT-TOLERANT ALGORITHM 39

BF-LB: it is the BF version with load balancing support targeting at heterogeneous

clusters.

BF-FT: it is the BF version with fault-tolerance support for homogeneous clusters.

BF-FT-LB: it is the BF-FT version with load balancing support for heterogeneous

clusters.

The initial time Twait that master thread (MThread) waits, for versions BF-FT and

BF-FT-LB, - if no worker messages arrive – has been chosen to be 10 seconds in order to

compensate with any network delays. After this period of time, if still no messages arrive,

the thread terminates. On the other side, workers are arranged to send their critical values

to master every one second. Thus, there is enough information for recovering failed

nodes, without causing network congestion.

The cases that we will examine are separated into two major categories. The first one

is the execution of the parallel pattern matching application with the absence of faults and

the second one is the parallel pattern matching application where faults are introduced. In

the first category, experimental results will be presented from the execution of the

versions BF, BF-LB, BF-FT, BF-FT-LB for two different search files and for different

number of processors used for solving the problem, in order to evaluate the performance

of each version and the overhead that is introduced. In the second category, experimental

results will be presented from the execution of BF-FT and BF-FT-LB versions with an

increasing number of faults introduced. Several different scenarios will be presented

concerning various numbers of permanent or transient faults, as well as the exact time

faults occur. The results concern the large search file and the total number of cluster’s

nodes.

Herein, speedup diagrams for all versions without faults are presented, in order to

evaluate each version’s performance. The experimental results presented, in figure 2 and

figure 3, include searching for occurrences of a 5Bytes pattern into two search files, one

of size 286MB and another one of size 3,16GB. Patterns of size up to 20 Bytes have been

tested without noting any substantial differences in the execution time. Thus, at least for

small patterns, their size is immaterial to the performance achieved.

 Task mapping to processors can be configured through machinefile of MPI

implementation and herein it is done from node16 -which has the role of the master node-

to node1. Thus, all nodes except node16 are worker nodes. The execution time is the

average time of several executions. For the versions without load balancing support, the

speedup is almost linear only when up to 8 nodes are utilized. For more than 8 nodes the

environment becomes heterogeneous, for the particular task mapping; thus, the utilization

of the added nodes does not increase the speedup, due to the fact that the total execution

time depends upon the processing capacity of the slowest nodes.

40

Figure 2: Speedup diagrams for all versions in the case of a small search file

Figure 3: Speedup diagrams for all versions in the case of a large search file

According to the experimental results shown in figure 2 and r

algorithm, it can be observed

file, due to the fact that communication overlaps computation. In case of the large search

file, in figure 3, it can be observe

from the added fault-tolerance support. The average overhead for the BF

FT-LB versions without any faults introduced, was evaluated to 3.6745 seconds

compared to the versions without fault

search file, with all nodes of the cluster being utilized.

From the experimental results and regarding the load balancing algorithm, it can be

observed that, when all nodes are utilized, there is a significant decrease in the execution

time. Thus, speedup is increased from

compared to the BF version, achieving a 37,99% gain in the total execution time, and

from 8,336 to 13,076 for the BF

achieving a 36,25% gain in the total execution time.

The execution time for all versions and for the case of the large search file, utilizing

all nodes of the cluster is presented in the histogram of figure 4

Karanikolaou and Bekakos

Speedup diagrams for all versions in the case of a small search file

Speedup diagrams for all versions in the case of a large search file

According to the experimental results shown in figure 2 and regarding the fault

d that the overhead is bigger in the case of the small search

due to the fact that communication overlaps computation. In case of the large search

observed that the overhead decreases, indicating on

tolerance support. The average overhead for the BF-FT and the BF

LB versions without any faults introduced, was evaluated to 3.6745 seconds

compared to the versions without fault-tolerance support and for the case of the

search file, with all nodes of the cluster being utilized.

From the experimental results and regarding the load balancing algorithm, it can be

that, when all nodes are utilized, there is a significant decrease in the execution

peedup is increased from 8,890 to 14,336 for the BF-LB version

compared to the BF version, achieving a 37,99% gain in the total execution time, and

for the BF-FT-LB version as compared to the BF

n the total execution time.

The execution time for all versions and for the case of the large search file, utilizing

all nodes of the cluster is presented in the histogram of figure 4.

Speedup diagrams for all versions in the case of a small search file

Speedup diagrams for all versions in the case of a large search file

egarding the fault-tolerant

that the overhead is bigger in the case of the small search

due to the fact that communication overlaps computation. In case of the large search

that the overhead decreases, indicating only benefits

FT and the BF-

LB versions without any faults introduced, was evaluated to 3.6745 seconds

tolerance support and for the case of the large

From the experimental results and regarding the load balancing algorithm, it can be

that, when all nodes are utilized, there is a significant decrease in the execution

LB version as

compared to the BF version, achieving a 37,99% gain in the total execution time, and

compared to the BF-FT version,

The execution time for all versions and for the case of the large search file, utilizing

BALANCING FAULT

Figure 4: Execution time for all versions in the case of the large search file utilizing all nodes of the cluster

The execution time of the serial brute force pattern matching algorithm has been

evaluated to 517,708 seconds

5.1. Experimental results for

Herein, experimental results

using the large search file, when permanent faults occur.

examined. The first is the case where faults a

application’s execution, while the second is the case where faults are introduced 20

seconds after the beginning of the application’s execution, when a part of the work has

already been performed by all nodes. In the h

execution time that each application needed to complete for the two cases and for an

increasing number of faults introduced.

grouped. Faults of 1, 2, 8, 9, 15 nodes ar

recovery of all failed nodes is performed by the master node, the only one that is

considered as a working node. In case master node fails, then the whole application will

also fail. In order to deal with th

adopted in order to replicate the master node, offering high availability

5).

Figure 5: Execution time for BF_FT and BF_FT_LB versions for an increasing number of permanent

BALANCING FAULT-TOLERANT ALGORITHM

Execution time for all versions in the case of the large search file utilizing all nodes of the cluster

The execution time of the serial brute force pattern matching algorithm has been

seconds.

Experimental results for the case of permanent node faults

Herein, experimental results will be presented for the BF-FT and BF-FT-

le, when permanent faults occur. Two characteristic cases will be

examined. The first is the case where faults are introduced at the beginning of the

application’s execution, while the second is the case where faults are introduced 20

seconds after the beginning of the application’s execution, when a part of the work has

already been performed by all nodes. In the histogram of figure 5 is presented

execution time that each application needed to complete for the two cases and for an

increasing number of faults introduced. It follows table 2, in which all these results are

grouped. Faults of 1, 2, 8, 9, 15 nodes are introduced, where in the case of 15 faults the

recovery of all failed nodes is performed by the master node, the only one that is

considered as a working node. In case master node fails, then the whole application will

also fail. In order to deal with this, additional hardware and software approaches must be

adopted in order to replicate the master node, offering high availability functionality (

Execution time for BF_FT and BF_FT_LB versions for an increasing number of permanent
faults

TOLERANT ALGORITHM 41

Execution time for all versions in the case of the large search file utilizing all nodes of the cluster

The execution time of the serial brute force pattern matching algorithm has been

-LB versions,

Two characteristic cases will be

re introduced at the beginning of the

application’s execution, while the second is the case where faults are introduced 20

seconds after the beginning of the application’s execution, when a part of the work has

is presented the

execution time that each application needed to complete for the two cases and for an

able 2, in which all these results are

e introduced, where in the case of 15 faults the

recovery of all failed nodes is performed by the master node, the only one that is

considered as a working node. In case master node fails, then the whole application will

is, additional hardware and software approaches must be

functionality (cf.

Execution time for BF_FT and BF_FT_LB versions for an increasing number of permanent

42 Karanikolaou and Bekakos

Without Load

Balancing

(BF-FT)

Time in

seconds

With Load

Balancing

(BF-FT-LB)

Time

in

seconds

No FAULTS 62,106 No FAULTS 39,593

of FAULTS # of FAULTS

From the

beginning (time:0)

From the

beginning (time:0)

1F(1) 112,091 1F(1) 86,304

2F(1,8) 113,035 2F(1,8) 86,721

 2F(1,2) 104,627

8F(1,2,3,4,5,6,7,8) 94,516 8F(1,2,3,4,5,6,7,8) 102,942

9F(1,2,3,4,5,6,7,8,9) 145,796 9F(1,2,3,4,5,6,7,8,9) 168,026

15F(All except 16) 637,716 15F(All except 16) 649,328

After having

performed 20

seconds of work

After having

performed 20

seconds of work

1F(1) 91,925 1F(1) 65,889

2F(1,8) 92,972 2F(1,8) 66,086

 2F(1,2) 72,736

8F(1,2,3,4,5,6,7,8) 78,809 8F(1,2,3,4,5,6,7,8) 72,720

9F(1,2,3,4,5,6,7,8,9) 110,844 9F(1,2,3,4,5,6,7,8,9) 104,346

15F(All except 16) 313,412 15F(All except 16) 309,449

Table 2: Analytical and grouped results of figure 5

Due to the heterogeneity of the nodes, the execution time for each scenario depends on

which nodes fail and which nodes are available in order to make the recovery of the

failed ones. For our scenarios, the nodes which fail are marked into brackets in the above

table. The nodes that recover the failed ones are selectively chosen, beginning from the

master node, for the recovery of the first failed node, and finding the available ones in

order to assign them the task of recovering the rest of the failed nodes.

The main objective of the applications is to return correct pattern occurrences, for

each of the above mentioned scenarios and this must be done in acceptable time limits.

The experimental results confirm the above goal, showing that the application can

effectively handle up to (n-1) faults.

The total execution time depends upon the time that each application requires to

complete without any faults occurrence, plus the time defined for the master node to wait

for any message being received, when communication between workers and master node

stops; plus the time that the slowest recovery node needs for completing the remaining

work of the failed node recovering:

� = ��� + ����� + ���{
��

�!
∗ #! �$%&'(,

��*

�!*
∗ #!*�$%&'(, … ,

��'

�!'
∗ #!'�$%&'(}

where is the total execution time, T./ is the execution time when no faults occur, T0123

is the waiting time, which has been selected to be 10 seconds for all the experiments, �4�

is the weight of the recovery node, �5� is the weight of the failed node that is recovered

by the node whose weight is �4� and 67�48	9�� is the remaining time that the failed node

would need to complete its work if it had not failed. The index i refers to the ID of the

failed nodes and to the ID of the nodes that make the recovery, accordingly.

BALANCING FAULT-TOLERANT ALGORITHM 43

When up to 50% of nodes present a failure, then their recovery takes place

concurrently from the other 50% of nodes; consequently the worst total execution time

increases similarly to the case where only one node fails. In case more than 50% of nodes

fail, then due to the fact that there are not enough remaining nodes to recover the failed

ones concurrently, the total execution time increases, depending on how many of the

nodes are available to be utilized for the recovery.

5.2. Experimental results for the case of transient node faults

Herein, experimental results will be presented for the BF-FT and BF-FT-LB versions,

using the large search file, when one and two transient faults occur. Transient faults, are

faults detected due to network delay. Although the recovery process starts, worker nodes

finally communicate with the master node sending their key values. Similar to the

previous section, two typical cases will be examined. The first is the case where faults are

introduced at the beginning of the application’s execution, while the second is the case

where faults are introduced 20 seconds after the beginning of the application’s execution,

when a portion of the work has already been performed by all nodes.

 The nodes that are detected as failed, but finally return, are marked in brackets in

table 3. Moreover, the exact time the nodes return is also referred. As it can be observed,

while the recovery of the considered as failed nodes (due to large network delay) may has

started, if nodes finally return then the application is terminated with a total execution

time depending upon the return time of the last node. The total number of pattern

occurrences is correctly computed in every case.

Without Load Balancing

(BF-FT)

Time in

seconds

With Load Balancing

(BF-FT-LB)

Time in

seconds

of FAULTS # of FAULTS

From the beginning

(time:0)

From the beginning

(time:0)

1F(1) : returns at the 75th
second 76,779

1F(1) : returns at the 55th
second 57,141

2F(1,8) : return at the 75th
second 76,215

2F(1,8) : return at the 55th
second 56,769

After having performed

20 seconds of work

After having performed

20 seconds of work

1F(1) : returns at the 75th
second 76,719

1F(1) : returns at the 55th
second 57,376

2F(1,8) : return at the 75th
second 76,939

2F(1,8) : return at the 55th
second 56,814

Table 3: Experimental results for the case of transient node faults

5.3. Experimental results for the case that a recovering node also fails

In the following table the experimental results for a case a node that recovers a failed

node also fails, are presented. More specifically, the case where two nodes are detected as

failed and the recovery process starts is considered. The first failed node is recovered by

the master node, while the second failed node is recovered by a worker node. While the

worker node performs the recovery, it also fails and thus the remaining work is finally

performed by the master node. The execution time that is marked concerns both BF-FT

44 Karanikolaou and Bekakos

and BF-FT-LB versions, when the initial faults occur a) at the beginning of the execution,

and b) after having performed 10 seconds of work. The second fault, the one for the

recovering node, also occurs after having performed 10 seconds of the remaining work.

 Thus, from the experimental results of table 4, it can be observed that even when a

recovering node also fails, the application is capable of completing the remaining work in

acceptable time limits.

6. CONCLUSIONS

Herein, a fault-tolerant parallel pattern matching algorithm with load balancing support

for homogeneous/heterogeneous clusters has been presented. The main intention was the

return of reliable results in any case of faults, either permanent or transient, in acceptable

time limits. In case of occurring faults, transparently to the user, the application can

recover from any number of faults, provided that the master node is still up. As seen from

the experimental results, the overhead of the fault-tolerant mechanism is relatively small

when compared to the overhead the re-execution of the application would cause.

Consequently, such an approach is highly recommended for long hour applications

executed on commodity clusters, where faults are most likely to occur. Moreover, the

load balancing algorithm for heterogeneous cluster environments presented herein,

exhibited a significant increase in applications’ speedup.

Without Load

Balancing (BF-FT)

Time in

seconds

With Load Balancing

(BF-FT-LB)

Time in

seconds

2 (+1) Faults(1,8,15) :
Initial faults occur at the
beginning of the
application’s execution
Second fault occurs
after having performed
10 seconds of work

141,913

2 (+1) Faults(1,8,15) :
Initial faults occur at
the beginning of the
application’s execution
Second fault occurs
after having performed
10 seconds of work

113,700

2 (+1) Faults(1,8,15) :
Inital faults occur after
10 seconds of the
application’s execution
Second fault occurs
after having performed
10 seconds of the
remaining work

121,501

2 (+1) Faults(1,8,15) :
Initial faults occur after
10 seconds of the
application’s execution
Second fault occurs
after having performed
10 seconds of the
remaining work

92,837

Table 4: Experimental results for the case a recovering node also fails

 REFERENCES

1. Treaster, M. (2005). A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems,

ACM Computing Research Repository, v.501002, pp. 1-11.

2. Gropp W. & Lusk E. (2002). Fault Tolerance in MPI Programs, Special issue of the Journal High

Performance Computing Applications (IJHPCA), v.18, pp. 363-372.

3. Efremides O. & Ivanov G. (2006). A Fault-Tolerant Parallel Text Searching Technique on a Cluster of

Workstations, Proceedings of the 5th WSEAS International Conference on Applied Computer Science,

pp. 368-373.

BALANCING FAULT-TOLERANT ALGORITHM 45

4. Elnozahy E. N., Alvisi L., Wang Y.-M. & Johnson D. B. (2002). A survey of rollback-recovery

protocols in message-passing systems, ACM Computing Surveys, v.34, pp. 375–408.

5. IEEE Task Force on Cluster Computing. http://ieeetfcc.org/high-availability.html

6. Genbank: National Institutes of Health genetic sequence database. http://www.ncbi.nih.gov/Genbank

7. Charras C. & Thierry L. (2004). Handbook of Exact String Matching Algorithms: King’s College

Publications.

8. Camargo R. Y., Goldchleger A., Kon F., & Goldman A. (2004). Checkpointing-based rollback

recovery for parallel applications on the InteGrade grid middleware, Proceedings of the 2nd Workshop

on Middleware for Grid Computing (ACM), v.76, pp. 35-40.

