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Abstract: We describe a new approach for the classical problem of solving ordinary 
systems of linear equations with rectangular (or singular) coefficient matrices. Using 
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1. Introduction - Preliminaries Results 

For every finite matrix m nA ×∈^ , there is a unique matrix n mX ×∈^  satisfying the 

four equations. 

(1) ,AXA A=  

(2) ,XAX X=  

(3) ( )* ,AX AX=  

(4) ( )* ,XA XA=  

where *A  denotes the conjugate transpose of A .  

For any matrix m nA ×∈^ , let { }1,..., 4A denotes the set n mX ×∈^  which satisfies 

equations 1, , 4…  from among the above equations (1) - (4). A matrix ∈X  

{ }1, 2,3, 4A  is called a { }1, 2,3, 4 -inverse of A , and also denoted by ( )1,2,3,4A .  

______________ 
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One of the principal applications of { }1 -inverses (i.e. it satisfies only the equation 

(1)) is to the solution of ordinary systems of linear equations (1.1), see for instance 

[1], [2], [4] etc. Let m nA ×∈^ , mb∈^ , then the equation  

Ax b=              (1.1) 

is consistent if and only if for some ( )1A  (i.e. AGA A= , which some time is called a 

g -inverse), 

( )1AA b b=  

in which case the general solution of (1.1) is given by 

( ) ( )( )1 1x A b I A A z= + − ,            (1.2) 

for arbitrary nz∈^ , (i.e. n  unknown elements). 

In another words by using a classical terminology of linear systems, it is known 

that a system of m linear equations in n unknowns is said to be a consistent system if 

it possesses at least one solution. If there are no solutions, then the system is called 

inconsistent, see [8].  

To describe the set of all possible solutions of a consistent non-homogeneous rec-

tangular system, see Eq. (1.1), we construct a general solution as follows; consult [8]. 

Definitely, this approach is very classical and well known. However, for reasons of 

complicity and comparison, it is described briefly in the next few lines.   

Algorithm: Let [ ]|A b  be the augmented matrix for a consistent m n×  non-

homogeneous system in which rank ( A ) = r. 

• Reducing [ ]|A b  to a row echelon form using Gaussian elimination and then solv-

ing for the basic variables in terms of the free variables leads to the general solu-

tion  

           
1 21 2 n rf f f n rx p x h x h x h

− −= + + + +… .        (1.3) 

• As the free variables 
if

x  range over all possible values, this general solution gen-

erates all possible solutions of the system. 

• Column p  is a particular solution of the non-homogeneous system. 
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• The expression 
1 21 2 n rf f f n rx h x h x h

− −+ + +…  is the general solution of the associated 

homogeneous system. 

• Column p  as well as the columns ih  are independent of the row echelon form to 

which [ ]|A b  is reduced. 

• The system possesses a unique solution if and only if any of the following is true. 

 rank ( A ) = n = number of unknowns. 

 There are no free variables. 

 The associated homogeneous system possesses only the trivial solution. 

Now, we return to the terminology of generalized inverses, i.e. Eq. (1.2) provides 

us with the solution of system (1.1). However, the generalized inverses are very useful 

in formulating theoretical statements such as those above, but just as in the case of the 

ordinary inverse, generalized inverses are not practical computational tools. In addi-

tion to being computationally inefficient, serious numerical problems result from the 

fact that ( )1A  need not be a continuous function of the entries of A , for further details 

see [8], pp. 424. For example, consider 

( ) ( ) ( )1

1 0
,    0

0 1/1 0
0 1 0

,        0
0 0

for x
x

A x A x
x

for x

⎧⎡ ⎤
≠⎪⎢ ⎥

⎡ ⎤ ⎪⎣ ⎦= ⇒ = ⎨⎢ ⎥
⎡ ⎤⎣ ⎦ ⎪ =⎢ ⎥⎪⎣ ⎦⎩

. 

Thus, we can conclude that not only ( ) ( )1A x  is discontinuous in the sense that  

( ) ( ) ( ) ( )1 1
0lim 0x A x A→ ≠ , 

but it is discontinuous in the worst way because as ( )A x  comes closer to ( )0A  the 

matrix ( ) ( )1A x  moves farther away from ( ) ( )1 0A . 

In the present study, we provide a new approach based on matrix pencil theory, 

which minimizes naturally and sufficiently the arbitrary elements of vector nz∈^ . 

This method follows a completely different way. Thus, it is based on the deeper 

knowledge of the structure of matrices, since the complex Kronecker canonical form 

is being used. However, before we discuss analytically system (1.1), we shall begin 

with the ordinary system with rectangular (or singular) coefficient matrix,  
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AX B= ,                    (1.4) 

where ,  m nA B ×∈^ , (with det 0A =  when m n= ), and n nX ×∈^ . Now, with the 

given constant matrices ,  A B  and an indeterminate s , the pencil sA B−  is called sin-

gular when m n≠  (or m n=  and ( )det 0sA B− ≡ ). It is well known that the pencil 

sA B−  is said to be strictly equivalent to the pencil 1 1sA B−  if and only if there exist 

invertible matrices m mP ×∈^ , n nQ ×∈^ , such as ( )P sA B Q− = 1 1sA B− . The class of 

strict equivalence, i.e. ( )s sA B−E , is characterized by a uniquely defined element, 

known as a complex Kronecker canonical form (KCF), k ksA B− , see [3], which is 

specified by the complete set of invariants of ( )s sA B−E . The characterization of sin-

gular pencils requires the definition of additional sets of invariants known as the 

minimal indices. Now, let us assume that ( ) ( ) { }min ,sr rank sA B m n= − ≤^ , where 

( )s^  denotes the field of rational functions in s  having complex coefficients. Then 

equations, 

( ) ( ) 0sA B x s− =  and ( )( ) 0t ts sA Bψ − = , 

have solutions ( )x s  and ( )sψ , which are vectors in the rational vector spaces  

( ) ( )r rs sA B−�N N  and ( ) ( )l ls sA B−�N N , 

respectively, where 

( ) ( ) ( ) ( ) ( ){ }: 0n
r s x s s sA B x s∈ − =� ^N ,  

and 

( ) ( ) ( ) ( )( ){ }: 0ψ ψ= ∈ − =^m t t
l s s s s sA BN . 

Obviously, ( )r sN   and ( )l sN  are vector spaces over ( )s^  with  

( )dim r s n r= −N  and ( )dim l s m r= −N . 

It is also known that ( )r sN  and ( )l sN  are spanned by minimal polynomial 

bases ( ){ }, 1, 2, ,ix s i n r= −…  and ( ){ }, 1, 2, ,t
j s i m rψ = −…  of minimal degrees, cor-

respondingly, see [6], with 
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{ }1 2 1 20g g g n rv v v v v v+ + −= = = = < ≤ ≤ ≤" "           (1.5) 

and 

{ }1 2 1 20h h h m ru u u u u u+ + −= = = = < ≤ ≤ ≤" " .          (1.6) 

The sets of the minimal degrees { },  1iv i n r≤ ≤ −  and { },  1ju j m r≤ ≤ −  are known 

by [3] as column minimal indices (c.m.i.) and row minimal indices (r.m.i.) of sA B− , 

respectively. Moreover, we have elementary divisors (e.d.) of the following type: 

• e.d. of the type ds , d ∈` , are called zero finite elementary divisors (z. f.e.d.) 

• e.d. of the type ( )cs a− , 0a ≠ , c∈`  are called non-zero finite elementary divi-

sors (nz. f.e.d.) 

• e.d. of the type ˆqs  are called infinite elementary divisors (i.e.d) 

• c.m.i. of the type { }0ν ∈`∪  are called column minimal indices (c.m.i.) deduced 

from the column degrees of minimal polynomial bases of the maximal sub-module 

NM  embedded in ( )r sN  with a free ( )s^ -module structure. 

• r.m.i. of the type { }0u∈`∪  are called row minimal indices (r.m.i.) deduced from 

the row degrees of minimal polynomial bases of the maximal sub module NM  

embedded in ( )l sN  with a free ( )s^ -module structure.  

For further details, see [5], [6] and [7].  

Thus, there exists m mP ×∈^  and n nQ ×∈^  such that the complex Kronecker form 

k ksA B−  of the singular pencil sA B−  is defined as follows. 

( )
{ },                     , , , , .

k k

t t
h g v v u u p p q q

P sA B Q sA B

block diag s s sI J sH Iλ λ

− = −

Λ − Λ − − −� O
 (1.7) 

Note that the, matrix ,h gO  is uniquely defined by the sets { }0,0, ,0
g

…��	�
  and { }0,0, ,0
h

…��	�
  

of zero column and row minimal indices, respectively. 
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The second normal block v vs λΛ −  is uniquely defined by the set of non-zero column 

minimal indices (a new arrangement of the indices of v  must be noted in order to 

simplify the notation) { }1 2g g n rv v v+ + −≤ ≤ ≤"  of sA B−  and has the form 

{ }1 1
 , , , ,

g g i i n r n rv v v v v v v vs block diag s s sλ λ λ λ
+ + − −

Λ − Λ − Λ − Λ −� … … ,     (1.8) 

where ( )10 i i

i i

v v
v vI × +⎡ ⎤Λ = ∈⎣ ⎦# ^ , ( )1i i

i i i

v v
v v vHλ ε × +⎡ ⎤= ∈⎣ ⎦# ^  for every 1, 2,i g g= + +  

,n r−… , and 
ivI  and 

ivH  denote the i iv v×  identity and the nilpotent (with annihila-

tion index iv ) matrix, respectively. Also, 0  and [ ]0 0 1 i

i

t v
vε = ∈" ^  are the 

zero column and the column with element 1 at the iv -place, respectively.  

The third normal block t t
u us λΛ −  is uniquely determined by the set of non-zero row 

minimal indices (a new arrangement of the indices of u  must be noted in order to 

simplify the notation) { }1 2h h m ru u u+ + −≤ ≤ ≤"  of sF G−  and has the form 

{ }1 1
 , , , ,

h h j j m r m r

t t t t t t t t
u u u u u u u us block diag s s sλ λ λ λ

+ + − −
Λ − Λ − Λ − Λ −� … … ,   (1.9) 

where ( )1
j

j j

j

j

t
u

u ut
u

u

e

H

+ ×

⎡ ⎤
⎢ ⎥

Λ = ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" ^ , ( )1
0

j j

j

j

t

u ut
u

uI
λ + ×

⎡ ⎤
⎢ ⎥

= ∈⎢ ⎥
⎢ ⎥
⎣ ⎦

" ^  for every 1, 2,...,= + +j h h  

−m r , and 
juI  and 

juH  denote the j ju u×  identity and nilpotent (with annihilation 

index ju ) matrix and the zero column matrix, respectively. Furthermore, 0  and 

[ ]1 0 0 j

j

t u
ue = ∈" ^  are the zero column and the column with element 1 at the 

first place, respectively. 

The forth and the fifth normal matrix block is the complex Weierstrass form 

w wsA B−  of the regular pencil sA B−  which is defined by  

{ } ,w w p p q qsA B block diag sI J sH I− − −� ,   (1.10) 

where the first normal Jordan type block p psI J−  is uniquely defined by the set of 

f.e.d.,  

( ) ( )1

1 ,p ps a s a ν

ν− −… , 
1 jj

p pν

=
=∑           (1.11) 
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of sA B−  and has the form 

( ) ( ){ }1 1 1 , ,p p p p p psI J block diag sI J a sI J a
ν ν ν− − −� … .     (1.12) 

The q  blocks of the second uniquely defined block q qsH I−  correspond to the i.e.d.,  

( ) ( )1ˆ ˆ, ,q qs s σ… , 
1 jj
q qσ

=
=∑     (1.13) 

of sA B−  and has the form 

 { }1 1
 , ,q q q q q qsH I block diag sH I sH I

σ σ
− − −� … .       (1.14) 

Thus, the qH  is a nilpotent matrix of index { }max : 1,2, ,jq q j σ= =� … , where  

q
qH =� O  .                               (1.15) 

We proceed to identify the matrices ( )  
i i ip p i qI , J a , H  as follows: 

1 0 0
0 1 0

0 0 1

i i

i

p p
pI ×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

\
# # % #

"

, 

( )

1 0 0
0 1 0

0 0 0 1
0 0 0 0

i i

i

i

i
p p

p i

i

i

a
a

J a
a

a

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % # # ^  and 

0 1 0 0
0 0 1 0

0 0 0 0 1
0 0 0 0 0

i i

i

q q
qH ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

\# # % # # .  (1.16) 

Lemma 1. System (1.4) may be decomposed into the equivalent set of subsystems 

, , ,h g g n h nY D=O , where ,
g n

g nY ×∈^    (1.17) 

1, ,i i iv v n v nY D+Λ = , where ( )1
1,

i

i

v n
v nY + ×
+ ∈^  for 1, 2,i g g= + + ,n r−… ,   (1.18) 

, 1,j j j

t
u u n u nY D +Λ = , where ,

j

j

u n
u nY ×∈^  for 1, 2,j h h= + + ,m r−… ,   (1.19) 

, ,p p n p nI Y D= , where ,
p n

p nY ×∈^                    (1.20) 

and 

, ,j j jq q n q nH Y D= , for 1, 2, ,j σ= … , where ,
q n

q nY ×∈^ .             (1.21) 
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Proof. Consider the transformation 

X QY= .                    (1.22) 

Substituting the previous expression into (1.4) we obtain  

    AQY B= . 

Whereby, multiplying by P , we arrive at m n
kA Y PB ×= ∈^ .  

Now, by denoting D PB= , we can conclude that kA Y D= . After that, we use the 

complex Kronecker canonical form, i.e.   

{ }, , , , , .t
k h g v u p qA block diag I HΛ Λ� O  

Furthermore, by writing  

, , , , ,

tt t t t t
g n v n u n p n q nY Y Y Y Y Y⎡ ⎤= ⎣ ⎦  and , , , , ,

tt t t t t
h n v n u n p n q nD D D D D D⎡ ⎤= ⎣ ⎦  

and taking into account the previous analysis, we can easily arrive at (1.17) - (1.21). 

The following Theorem is very important, because it provides the baseline for 

Theorem 2, which follows in the 2nd section. Under the results of this Theorem, we 

have an understanding of the consistency of the solution of system (1.3).   

Theorem 1. By solving systems (1.17) - (1.21), we have the following results.  

a) We obtain a consistent solution, when the row vectors , 0i nd =  ( d  is a row vector 

of D PB= ),  for every   

1 1 21 1 1 1

11 1 1 1 1

1 21 1

1, 2, , , 1, 2, ,

, ,

, ,

n r n r n r m r
i h i h h i ji g i g i g j h

n r m r n r m r
i j i i ji g j h i i g j h

n r
i i ji i g j

i h h v u h v u u h v u

m h r h v u m h r p q h v u m h r

p q q h v u

ν

ν

− − − −

+ + += + = + = + = +

− − − −

= + = + = = + = +

−

= = + =

= + + + + + + + + +

+ − − + + + − − + + + + + − −

+ + + + +

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑

∑ ∑

… …

…
1 1 1

.m r
i jh i j

m h r p qν σ−

+ = =
+ − − + +∑ ∑ ∑

 

b) We obtain specified arbitrarily vectors, i.e. 1 n
jy ×∈^ , for every  

1 1 2 1 1

11 1 1 1 1

1 1 1 1

1, 2, , , 1 ,  2, . . . , ,

1, 1, ,

n r n r
g g g i ii g i g

m r n r m r
j i i j ij h i i g j h i

n r m r
i j i ji g j h i j

j g g v g v v g v n r g g v

n r g u p g v n r g u p q

g v u n r g p q

ν ν

ν σ

− −

+ + + = + = +

− − −

= + = = + = + =

− −

= + = + = =

= + + + + + + + − − +

+ − − + + + + + − − + + + +

+ + + − − + +

∑ ∑
∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

…

…
1 +1 .−∑
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c) All the other elements are known, since they are derived by the corresponding ele-

ments of D PB= .  

Proof.  

• System (1.17) has a consistent solution when the first h th rows of matrix D  are 

equal to zero. Moreover, the first g th rows of matrix Y  are arbitrary. 

• Systems (1.18), i.e. 1, ,i i iv v n v nY D+Λ = , for 1, 2,i g g= + +  ,n r−… , can be written 

as follows 

( )

( )

1, 1,1, 1,

2, 2, 2, 2,

1

, ,1, ,1

0
i

i i

i ii iii

n nn n

n n n n
v v v

v n v nv n v nv nv n

y yd d
y d y d

I

d dy y

× +

+ ×+ ×

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ = ⇔ =⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

#
# ## #

. 

Consequently, 1
, ,

n
l n l ny d ×= ∈^  for every 1,2, , il v= …  (note that l  defines the 

place of vector instead of the dimension), and every 1, 2, ,i g g= + + …  n r− . Fur-

thermore, the row vector 1,iv ny +  is arbitrarily chosen.  

Note that arbitrary row vectors are at 1 1gg v ++ + , 1 2 2g gg v v+ ++ + + , . . . , 

1

n r
ii g

g v n r g−

= +
+ + − −∑ -place of matrix Y .   

• Systems (1.19), i.e. , 1,j j j

t
u u n u nY D +Λ = , for 1, 2, ,j h h m r= + + −… , can be written 

as follows 

( ) ( )

1, 1,1, 1,

2, 2, 2,2,

1 1, 1,, 1 0

j

j
j j j jj jj

nt nn n
u

n n nn

u
u u u n u nu n u nu n

y yd de
y d dy

H d dy+ × + +
+ ××

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⇔ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

" # ## #
. 

Consequently, 1
, ,

n
l n l ny d ×= ∈^  for every 1,2, , jl u= … , 

and every 1, 2, ,j h h m r= + + −… . Furthermore, in order to obtain consistent solu-

tions, the row vectors 1,ju nd +  are equal to zero. Also the zero row vectors are at 

11
1n r

i hi g
h v u−

+= +
+ + +∑ , 1 21

2n r
i h hi g

h v u u−

+ += +
+ + + +∑ , . . . , 

1 1

n r m r
i ji g j h

h v u m− −

= + = +
+ + +∑ ∑  

h r− − -place of matrix D .  
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• From system (1.20), we derive that , , , ,p p n p n p n p nI Y D Y D= ⇒ = . 

• Systems (1.21), i.e. , ,j j jq q n q nH Y D= , for 1, 2, ,j σ= … , can be written as follows 

1, 2,1, 1,

2, 2, 2,3,

, ,, 0

j

j jj jj

n nn n

n n nn
q

q n q nq n q nq n

y yd d
y d dy

H

d dy
××

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⇔ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

# ## #
. 

Consequently, 1
, 1,

n
l n l ny d ×

−= ∈^  for every 2, , jl q= …  and every 1,2, ,j σ= … .  

The row vector 1,ny  is arbitrarily chosen. Furthermore, in order to obtain consistent 

solution, the row vectors ,jq nd  are equal to zero.  

Note that arbitrary row vectors are at  

 
1 1 1

1n r m r
i j ii g j h i

g v n r g u pν− −

= + = + =
+ + − − + + +∑ ∑ ∑ ,                        

11 1
1n r

i ii g i
g v n r g p qν−

= + =
+ + − − + + +∑ ∑ , . . . ,  

 1

1 1 1 1
1n r m r

i j i ji g j h i j
g v n r g u p qν σ− − −

= + = + = =
+ + − − + + + +∑ ∑ ∑ ∑  -place of matrix Y .  

Finally, the zero row vectors are at  

11 1 1

n r m r
i j ii g j h i

h v u m h r p qν− −

= + = + =
+ + + − − + +∑ ∑ ∑ , 

1 21 1 1

n r m r
i j ii g j h i

h v u m h r p q qν− −

= + = + =
+ + + − − + + +∑ ∑ ∑ , . . .,  

1 1 1 1

n r m r
i j i ji g j h i j

h v u m h r p qν σ− −

= + = + = =
+ + + − − + +∑ ∑ ∑ ∑   -place of matrix D . 

The above Theorem is a very interesting and straightforward result of KCF. Thus, 

we have succeeded in having a better understanding of the structure of system (1.3).   

Remarks a) In order to obtain consistent solutions of system (1.4), m r σ− +  rows of 

matrix D  should be equal to zero, see Theorem 1 (a). 

b) Moreover, Y  has n r σ− +  are arbitrarily chosen row vectors, see Theorem 1 (b). 

In what follows with study further the results of Theorem 1.  
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2. Main Results  

References [1], [2] and [4] have pointed out the importance of the pseudo-inverses 

to the solution of a general system of equation (1.1). In this section, we study the solu-

tion of system  (1.1)  fully  by  using a  different approach, which is based on matrix 

pencil theory. However, in order to use the results of Section 1, we shall use the fol-

lowing definitions.  

First, consider   

      [ ]1 2
m n

nA a a a ×= ∈… ^ , 

where m
ia ∈^  for 1, 2, ,i n= …  are column vectors of matrix A . Moreover, we define 

the n n×  matrix as 

        [ ]2 3
n n

nX x e e e ×= ∈… ^ , 

where N[0 0 1 0 0]t
i

i place
e

−

= … … , 2,3, ,i n= … . Finally, we define the matrix 

B  by 

[ ]2
m n

nB b a a ×= ∈… ^ , 

where mb∈^ . It is profound that i iAe a=  for every 2,3, ,i n= … . 

Consequently, we obtain the equivalent system  

[ ] [ ]2 3 2n nAX B A x e e e b a a= ⇔ =… … .        (2.1) 

In order to have the singular case apart from the rectangular matrices, i.e. when 

m n≠ ; for m n= , we need to prove that the ( )det 0sA B− =  is always true (consider-

ing the notion of matrix pencil theory). Thus, the following theorem is more than im-

portant. Note that ,  A B  are not arbitrary matrices, but they are having a very concrete 

expression.  

Theorem 2. Consider the pencil sA B− , where the singular matrix =A  
[ ]1 2 … na a a  and the matrix [ ]2 nB b a a= …  are square, i.e. m n= , and the 

linear system Ax =  b  is consistent then ( )det 0sA B− =  is always true. 

Proof. Considering the matrix pencil  

( ) ( )1 21 1 nsA B sa b s a s a− = − − −⎡ ⎤⎣ ⎦" ,             (2.2)  
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then 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 2

1 2 2

1 1
1 2 2

det 1 1

                  1 1 1 1

                  1  1  .

n

n n

n n
n n

sA B sa b s a s a

sa s a s a b s a s a

s s a a a s b a a− −

− = − − − =

= − − + − − −

= − − −

"

" "

" "

 

However, since we have assumed that 1 2det  0nA a a a= =" , when m n= , we obtain    

( ) ( ) 1
2det 1  n

nsA B s b a a−− = − − " .  

Suppose that ( )det 0sA B− ≠ . We can show that  

2 0nb a a ≠" . 

This is true if 2 nb a a∉ "  and 2 , , na a…  are linear independent.  

Then, the matrix pencil sA B−  is regular. Consequently, there are invertible ma-

trices ,P Q  such that  

( ) w wP sA B Q sA B− = − , 

where w wsA B−  is the complex Weierstrass canonical form of pencil sA B− .  

It is known that  

,

,

p p q
w

q p q

I
PAQ A

H
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

O
O

. 

Now, using the transformation (1.21) and multiplying by P , the system (2.1) can 

be written  

wAQY B PAQY PB A Y D= ⇒ = ⇒ = , where D PB= . 

Moreover, 

,

,

p p q p p
w

q p q q q

I
A Y D

H
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⇔ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y d
y d

O
O

, 

where p n
p

×∈y ^ , q n
q

×∈y ^ ;  p n
p

×∈d ^ , q n
q

×∈d ^  and n p q= + . 
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Then two subsystems are derived, that is 

 p p

q q qH

=⎧⎪
⎨ =⎪⎩

y d

y d
.           (2.3) 

Matrix [ ]2 nB b a a= …  has nonzero determinant. Also, every row vector of ma-

trix B  is nonzero. Additionally, since P  is invertible, the matrix D PB=  is also in-

vertible. Consequently, the last vector 1 n
nd ×∈^  is also nonzero.  

Now, taking the second part of (2.3), we have derived that  

12,1 2,2 2,

1,1 ,2 ,

0 0 0

pp p p n

q q q
p qp q p q p q n

n

dy y y

H
dy y y

d

++ + +

+ −+ + +

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= ⇔ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

y d

…
## # " #

…
…

. 

Consequently, 0nd =  which is not accepted. Thus, ( )det 0sA B− = , and the required 

result is proven.  

We proceed to continue the study of the results presented in Section 1 in more details. 

We can write (1.22) as 

[ ]2 3 , 1 2 3, 1,2,n i j ni j n
X QY x e e e Q y y y y

=
⎡ ⎤⎡ ⎤= ⇔ = ⎣ ⎦ ⎣ ⎦…

… "       (2.4) 

where n
iy ∈^  for 1, 2, ,i n= … , are row vectors of matrix Y . Then 

1, ,1
1

2, ,1
1

, ,1
1

n

j j
j

n

j j
j

n

n j j
j

Q y

Q y
x

Q y

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑

∑

#
                 (2.5) 

and  
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1, ,
1

2, ,
1

, ,
1

n

j j i
j

n

j j i
ji

n

n j j i
j

Q y

Q y
e

Q y

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑

∑

#
 for every 2,3, ,i n= …                (2.6) 

where , , 1,2, ,i j i j n
Y y

=
⎡ ⎤= ⎣ ⎦ …

. However, some of the 1jy , for 1,2, ,j n= …  are arbitrarily 

chosen and some other are already known. More precisely, see also Theorem 1, 

• 1,1 2,1 ,1, , , gy y y… ,  

• 
1 1 2

1
1,1 2,1 ,1

 ,  , . . . , n r
g g g

ii g
g v g v v v n r

y y y −
+ + +

= +
+ + + + + + −∑

,  

and  

• 
11 1 1 1 1 1

1

1 1 1 1

1,1 1,1

+1,1

, , ,

 

ν ν

ν σ

− − − −

= + = + = = + = + =

− − −

= + = + = =

+ − + + + + − + + + +

+ − + + +

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

…n r m r n r m r
i j i i j ii g j h i i g j h i

n r m r
i j i ji g j h i j

v n r u p v n r u p q

v n r u p q

y y

y
 

are arbitrarily chosen. Note that all the other elements are known.  

Thus, each element of x  is given by the following expression, for 1, 2, ,l n= …  

1 1 2 1

1 1 1

11 1
1

1 1 1 1

, ,1 , ,1
1,

 1, 2, . . . , 

1,

1, ,

+1,1 

n r
g g g ii g

n r m r
i j ii g j h i

n r
i ii g i

n r m r
i j i ji g j h i j

n

l l s s l s s
s g
s g v g v v v n r

s v n r u p

v n r p q

v n r u p q

x Q d Q y

ν

ν

ν σ

−
+ + + = +

− −

= + = + =
−

= + =
− − −

= + = + = =

= +
≠ + + + + + + −

≠ + − + + +

+ − + + +

+ − + + +

= +

∑
∑ ∑ ∑

∑ ∑
∑ ∑ ∑ ∑

∑

…

1 1
,g g ,1

1 1
j s

g g

g n r g

l v j v s
s s

Q y
τ ττ τ+ += =

− −

+ + + +
= =

+
∑ ∑∑ ∑  

1 1

1 1 1 1 1 1 1 1
, +1 +1,1

1
.n r m r s n r m r s

i j i i j ii g j h i i g j h i
l v n r u p q v n r u p q

s
Q yν ν

τ ττ τ

σ

− − − − − −

= + = + = = = + = + = =
+ − + + + + − + + +

=

+
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑∑  

Furthermore, we can write it in vector form as  
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1

1

1

1

1 1 1

1 1 1

1 1 11

1,1

,1

2,1

1,1

1,1

,1

2,1

0

0

0

0

0

g

g

n r
ii g

n r
ii g

n r m r
i j ii g j h i

n r m r
i j ii g j h i

n r m rv n r u p qi j i ji g i jj h

g

g v

g v

v n r

v n r

v n r u p

v n r u p

d

d

d

d

dx Q

d

d

d

ν

ν

ν σ

+

+

−

= +

−

= +

− −

= + = + =

− −

= + = + =

− −+ − + + +∑ ∑ ∑= + = == +

+

+

+ +

+ − −

+ − +

+ − + +

+ − + + +

∑

= ∑

∑ ∑ ∑

∑ ∑ ∑

#

#

#

#

#

1 ,1

1 +2,11 1 11

1 ,11 1 11

1,1

,1

0

0

0

n r m rv n r u p qi j i ji g i jj h

n r m rv n r u p qi j i ji g i jj h

g

y

y

y

Q

d

d

ν σ

ν σ

−∑

− − −+ − + + +∑ ∑ ∑ ∑= + = == +

− − −+ − + + +∑ ∑ ∑ ∑= + = == +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

#

#

1

1

1 1 1

1 +1,11 1 11

1,1

,1

1,1

0

0

0

0

0

0

0

0

g

n r
ii g

n r m r
i j ii g j h i

n r m rv n r u p qi j i ji g i jj h

g v

v n r

v n r u p

y

y

y

ν

ν σ

+

−

= +

− −

= + = + =

− − −+ − + + +∑ ∑ ∑ ∑= + = == +

+ +

+ −

+ − + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

∑⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
∑ ∑ ∑⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎣ ⎦

#

#

#

#

Z

⎥
⎥
⎥
⎥

������	�����


    (2.7) 

Remark a) The solution of system (1.1) has ( ) n r nσ− + <  arbitrarily chosen ele-

ments which are sufficiently smaller when r  is close to n , i.e. we have full column 

rank, and the blocks depend on infinite elementary divisors, i.e. σ , tends to zero, as 

well. 

b) If we are interested about consistent solution of systems (1.1), we should also con-

sider the first part of Theorem 1, i.e.  ,1 0id = , for every   

1 1 21 1 1 1

11 1 1 1 1

1 21 1

1, 2, , , 1, 2, ,

, ,

, ,

n r n r n r m r
i h i h h i ji g i g i g j h

n r m r n r m r
i j i i ji g j h i i g j h

n r
i i ji i g j

i h h v u h v u u h v u

m h r h v u m h r p q h v u m h r

p q q h v u

ν

ν

− − − −

+ + += + = + = + = +

− − − −

= + = + = = + = +

−

= = + =

= + + + + + + + + +

+ − − + + + − − + + + + + − −

+ + + + +

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑

∑ ∑

… …

…
1 1 1

.m r
i jh i j

m h r p qν σ−

+ = =
+ − − + +∑ ∑ ∑
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3. Conclusions 

The present paper discusses the classical problem of solving an ordinary system of 

linear equations with rectangular (or singular) coefficient matrices. Using the complex 

Kronecker canonical form, the solution is derived. The proposed methodology im-

proves our knowledge of the problem into two main directions. Firstly, it decreases 

importantly the arbitrary - unknown elements of vector z . Secondly, in order to ob-

tain consistent solutions, we know exactly the required and necessary mathematical 

conditions.  

Finally, it should be stressed that the more our matrix tends to be full row/ column 

rank, and the less infinite elementary divisors it has, the better results are obtained, 

since the arbitrary elements are enormously diminished. That remark is very compati-

ble to the known linear system theory, since our system tends to become regular. 

Acknowledgement: The authors are very grateful for the insightful comments of the 
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